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11. Data transformations

M ] R Healy

Additive and multiplicative effects

In the statistical analyses for comparing two
groups of continuous observations which I
have so far considered, certain assumptions
have been made about the data being analysed.
One of these is Normality of distribution; in
both the paired and the unpaired situation, the
mathematical theory underlying the signifi-
cance probabilities attached to different values
of ¢ is based on the assumption that the obser-
vations are drawn from Normal distributions.
In the unpaired situation, we make the further
assumption that the distributions in the two
groups which are being compared have equal
standard deviations — this assumption allows us
to simplify the analysis and to gain a certain
amount of power by utilising a single pooled
estimate of variance. It is necessary to stress
that the importance of these assumptions is
often exaggerated. Although they form part of
the mathematical framework, departures from
them have very little effect upon the outcome
of the analyses unless they are particularly
marked.

A third assumption is a good deal less
obvious and a good deal more important. This
is the assumption that the effect of the factor
which defines the two groups is additive, mean-
ing by this that it produces (apart from error) a
constant difference between the readings in the
two groups. Consider for example a paired
situation, as when we compare readings before
and after a treatment on the same subjects. For
the purposes of analysis, we form the dif-
ferences between the before and after readings
for each subject, and the variability between
these differences is regarded as error. Put
another way, we assume that we can derive the
after readings on the subjects (error apart) by
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Figure 1  Two distributions differing by a constant
amount.

adding a constant quantity to the correspond-
ing before readings. Exactly the same is true of
the unpaired situation, as when we compare
independent samples of treated and control
patients. Here the assumption is that we can
derive the distribution of patient readings from
that of control readings by shifting the latter
bodily along the axis, and this again amounts
to adding a constant amount to each of the
control variate values (fig 1).

This is not the only way in which two groups
of readings can be related in practice. Suppose
I asked you to guess the size of the effect of
some treatment for (say) increasing forced
expiratory volume in one second in asthmatic
children. Your reply might well be ‘Oh,
perhaps +20%’. This implies a multiplicative
effect of the treatment. A child with an initial
level of 2-01 would be expected to increase this
by 0-41, one with an initial level of 3-01 would
be expected to increase this by 0-61. The dif-
ference between the ‘before’ and ‘after’ read-
ings varies systematically with the level of
response. If data following this pattern were to
be analysed using the assumption of an addi-
tive treatment effect, this kind of systematic
discrepancy between the (after—before) dif-
ferences would be treated as if it was random
and interpreted as being due to error.

Logarithmic transformation of data

A multiplicative treatment effect of this kind
can be converted to an additive effect by trans-
forming all the original readings to logarithms
before doing the analysis. Your memories of
logarithms may be of a rather outdated aid to
arithmetic, but their usefulness in statistical
analysis goes far beyond this. For statistical
purposes, the only thing you need to remember
about logarithms is that the logarithm of the
product of two numbers is the sum of the loga-
rithms of the numbers, while the logarithm of
the ratio of two numbers is the difference
between the logarithms. In symbols

log(aXb)=log(a) +log(b)
log(a/b) =log(a) —log(b)

There are various kinds of logarithm,
depending upon what number is chosen to
have a logarithm of 1-0. So-called ‘common’
logarithms are based on log(10)=1-0 (and
consequently 1log(100)=2-0, log(1000)=3-0,
log(0-1)=—1-0 and so on, using the rules
above). Mathematicians often use logarithms
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based on log(e)=1-0, where e is a magic num-
ber equal to 2-7818 ... and rather presumpt-
uously call these ‘natural’ logarithms. The
numbers that describe the successive titres in a
series of twofold dilutions are actually ‘binary’
logarithms based on log(2)=1-0. The numbers
10, e, and 2 are called the bases of the loga-
rithms. Note that log(1)=0-0, no matter what
the base is (you can prove this if you like, using
the second of the above rules). It is usually
unimportant for statistical purposes what base
is used, since the different kinds of logarithm
differ by no more than a scale factor. The
‘natural’ logarithm of a number, for example,
is simply the ‘common’ logarithm multiplied
by 2:3026. However, if you have to quote
logarithmic values in the text or tables of a
paper, it is essential to specify the base of the
logarithms so as to avoid ambiguity — you can
write log,, log., or log, as required. I person-
ally use logarithmic values so often that I keep
in my head a two figure table of common
logarithms —

No- 1 2 3 4 5 6 7 8 9 10
log 0-00 0-30 0-48 0-60 0-70 0-78 0-85 0-90 0-95 1-00

You may like to satisfy yourself that, for
example, log(24)=1-38, log(0-15)=—-0-82.

The treatment effect of +20% that we spoke
of amounts to assuming that (apart from error)
the treatment multiplies all the ‘before’ read-
ings by the constant factor 1-20. When the
observations are transformed to logarithms,
the treatment effect correspondingly increases
all the ‘before’ log observations by the constant
amount 0-079, which is the logarithm (to the
base 10) of 1-20.

A simple example, using paired data and
logs to the base 10, is shown in the table. Here
you can see quite a clear tendency for the dif-
ference within each pair of original readings to
increase with the average level. The ratios
show no such systematic tendency, suggesting
that the data are closer to showing a constant
ratio rather than a constant difference, in other
words, that the effect of treatment is closer to
being multiplicative than additive.

If you calculate the paired ¢ value from the
differences, you will get t=0-80/0-093=8-60.

Logarithmic transformation

Before After Difference Ratio
Original data
2:0 2-4 +0-4 1-20
22 29 +0-7 1-32
25 32 +0-7 1-28
2-8 3-6 +0-8 1-29
32 4-3 +1-1 1-34
3-7 45 +0-8 1-22
43 54 +1-1 1-26

Mean (SE) +0-80 (0-093)
Logged data

0-301 0-380 +0-079

0-342 0-462 +0-120

0-398 0-505 +0-107

0-447 0-556 +0-109

0-505 0-633 +0-128

0-568 0-653 +0-085

0-633 0-732 +0-099

Mean (SE) +0-104 (0-0067)
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If instead you analyse the differences of the logs
of the original readings, that is the logs of the
ratios, you will get t=0-104/0-0067=15-52, a
considerably larger value. Much more to the
point, the mean and standard error for the
differences are +0-80 and 0-093, so that the
95% confidence interval for the true mean
difference (using the 5% significance value
of ¢t with 6 degrees of freedom) is
0-80+2:447X0-093=+0-57 to +1-03. For the
logarithms of the ratios the mean and standard
error are 0-104 and 0-0067, giving 95%
limits for the true mean difference of
0-104*+2-447X0-0067=0-088 to 0-120. This
interval relates to the differences between the
logarithms of the original data; taking the
antilogs of these figures, the 95% confidence
interval for the true ratio in the original data is
from 1-22 to 1:32, a much more incisive result.

Transformation of data and its effects

In some circumstances an additive effect is
rather implausible, so that it should be con-
sidered whether transforming the data to loga-
rithms would be advantageous. One such
situation arises when the data values are neces-
sarily positive (as with, for example, the
concentrations of some chemical in the blood)
but are close to a definite zero point, in the
sense that zero is within one or two standard
deviations of the mean so that the coefficient of
variation (the ratio of the standard deviation
over the mean) is 50% or more. Suppose that
this describes the distribution of the control
values in a trial; then with an additive treat-
ment effect, the treated values would have to
start abruptly at some non-zero value, an
unlikely state of affairs. A multiplicative effect
as shown in fig 2 is a more realistic model for
data of this kind. A great many measurements,
both physiological and biochemical, exhibit
this behaviour.

But it is worth noticing that this situation,
marked by a large ratio of standard deviation
to mean, is also unlikely to meet the other two
assumptions I have mentioned, of Normality
and equal variability. With a mean close to
zero in the above sense, a Normal distribution
would necessarily imply an appreciable prob-
ability for the impossible negative values.
Figure 2 also shows that, with a fixed
terminus at zero for both distributions, the
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Figure 2 Two distributions differing by a multiplicative

factor.
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Figure 3 Three samples with similar coefficients of
variation. (A) arithmetic scale; (B) logarithmic scale.

distribution with the higher mean is likely also
to have the larger variability. It is important to
realise that transformation of the original data
values to logarithms is likely in practice to be
helpful in both these directions. The transfor-
mation has two effects on the shape of the
distribution; it pulls in the long right hand tail
and it extends the left hand tail, sending the
barrier at zero off to infinity. In this way it can
bring. very skew distributions close to
Normality. It can also bring the unequal
standard deviations closer to agreement. In
fact, it can be shown that, if the original data
have equal coefficients of variation rather
than equal standard deviations, then the
logarithms of the data will themselves have
equal standard deviations. An example of all
this, with three independent samples, is
shown in fig 3. Once again, if asked how
variable a particular kind of data was, most
people would reply ‘Oh, +=15% or so’. This
implies a constant coefficient of variation, not
a constant standard deviation as the standard
analyses assume.

Transformation of the data can also be
useful in a regression context. It is remarkable
how often a curvilinear relationship can be
converted at least approximately to a straight
line by transforming either the y’s or the x’s to
logarithms. An example is shown in fig 4,
where ultrasound measurements of the size of
the ovary are plotted against age (I am grateful
to Dr P Hindmarsh for access to these data).
On the original scale the relationship is curved,
and the scatter of the points increases with age.
It will be seen that a log transformation of the y
axis straightens out the relationship, and also
tends to equalise the scatter.

Age

Figure 4 Ovary length versus age. (A) Arithmetic scale;
(B) logarithmic scale.

The idea of transforming the data before
doing a statistical analysis is unappealing to
some people, who suspect an element of statis-
tical cookery. The suspicion is quite unwar-
ranted. It is to the contrary a manoeuvre
necessitated by the fact that many datasets do
not support the assumptions which underlie
the usual methods of simple statistical
analyses, but can be made to do so by re-
expressing them on a transformed scale. The
use of a logarithmic scale cannot be claimed to
be unfamiliar by anyone who is used to such
scales as pH and decibels.

Quite apart from the technicalities of
statistical analysis, the usefulness of logarith-
mic scales for graphical data presentation
should also be emphasised. Data such as those
plotted in fig 5A (note the off scale points) are
much clearer and more informative on the

logarithmic scale of fig 5B.
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Figure 5 Sample data plotted on (A) arithmetic scale;
(B) logarithmic scale.
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A logarithmic scale is particularly appropriate
when the quantity plotted is a ratio or percent-
age. Consider a scale of (treatment—control)
differences. The null value is 0 and differences
of +1 and —1 can be interchanged by taking the
differences the other way round. With a plot of
(treatment/control) ratios, the null value is 1
and ratios of 2 and 2 are interchangeable by
taking the ratios the other way up. Plotting the
ratios on a logarithmic scale produces a more
intuitive display.

There are many other ways of transforming
continuous measurement data as well as the
logarithmic transformation, but none of these
is equal to it in practical importance. Most of
the common transformations involve raising
the data values to a power, such as the square
root. These have the drawback that the results
may be hard to interpret — a treatment effect
which is constant on a square root scale is at
best unfamiliar. An exception is the reciprocal
transformation, where a value y becomes 1/y
(or perhaps —1/y, so as to avoid the scale being
inverted). This is commonly used for analysing
successive creatinine concentrations in cases of
kidney failure, on the grounds that reciprocal
creatinine often decreases with time at a more
or less constant rate. It can also be useful when
analysing the times taken to reach some event,
such as death or recovery. In this context, the
transformed values can sometimes be inter-
preted as the speed with which the event is
being attained.

More esoteric transformations such as x* or
log(x+c) can be useful in specialised circum-
stances when Normality of distribution is
genuinely important. T J Cole for example has
recommended the use of such transformations
in the construction of age related centile charts
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Figure 6 Sample proportions plotted against age. (A)
Original scale; (B) logit scale.
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(European Fournal of Clinical Nutrition 1990;
44: 45-60).

Transformations for discrete data

A quite different set of data transformations
are applicable to discrete data in the form of
counted proportions. A particular difficulty
arises when such proportions occur as the y
variate in a regression context — we might, for
example, wish to relate the proportion of girls
who have reached menarche to age. The
problem here is that the true proportions
cannot go outside the range from 0 to 1. If a
simple regression of proportion on age is fitted,
then at extreme ages the predicted ‘propor-
tions’ will be impossible. We need a transfor-
mation which removes the barriers at 0 and 1
by sending them off to infinity in both
directions. There are several possibilities, one
of the commonest being the logit or log odds
transformation which transforms a proportion
p to a value z=log(p/(1—p)) using natural
rather than common logarithms. This is illus-
trated in fig 6 which shows a set of proportions
plotted against an x variable and the same data
after transforming the proportions to logits.
Real life data surprisingly often are well
approximated by a straight line after a logit
transformation; a log transformation of the x
scale is sometimes needed as well.

A very similar diagram would illustrate the
probit or Normal equivalent deviate transforma-
tion. This stems from the observation that the
dotted curve in fig 6A (to a statistician’s eye it
resembles a letter S and is often called a sigmoid
curve) is similar to the curve describing a
Normal distribution in its cumulative form.
Suppose that, given a proportion p, we trans-
form it to a deviate z which cuts off a propor-
tion p on the left of a Normal distribution (for
instance if p=0-5, z=0-0; if p=0-975, z=1-96).
The quantity z is known as the Normal
Equivalent Deviate or NED of p (the probit of
p is just the NED plus 5). Then if the
proportions p lie on a Normal sigmoid, the
transformed values z will lie on a straight line.
Strangely, the probit and logit transformations
are very closely similar and can only be
distinguished in very large samples.

The probit transformation can be motivated
by a simple model for the data. Suppose we
observe the proportion of girls who have
achieved menarche at a set of different ages
and plot these proportions against age.
Suppose too that the distribution of the actual
ages at menarche is Normal. Then the plot we
have made will be the cumulative version of
this Normal distribution and a probit transfor-
mation will convert it into a straight line. The
logit transformation can be linked in the same
way to a distribution very like the Normal but
with longer tails.

You should note that the objective of the
logit and probit transformations is to cause
the transformed data points to lie on a straight
line. This corresponds to a form of additivity,
with constant increments in the x variable
leading to constant increments in the
transformed proportions. The original data
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will follow a set of binomial distributions and
these will have different standard deviations,
another departure from the usual simple
regression model. The logit and probit
transformations do not help with this and they
call for a rather complicated form of weighted
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regression (this also has to cope with observed
proportions of 0 of 100% for which the trans-
formed values are infinite). There are good
computer programs available for implement-
ing this, notably the GLIM and GENSTAT
packages.

Startle disease

I think of it as the stiff baby syndrome but it seems that the in-
crowd are now calling it familial startle disease or hyperexplexia. A
faint echo from a previous incarnation reminds me of the ‘jumping
Frenchmen of Maine’. It is an autosomal dominant condition
presenting usually in the newborn with either muscle rigidity or
episodes of stiffening and apnoea often misdiagnosed as epileptic
seizures. An exaggerated response to glabellar tap is characteristic
and the jerks and spasms are inhibited by tight swaddling or trunk

flexion.

Two recent publications throw further light on the syndrome. A
paper from America (Stephen G Ryan and colleagues, Annals of
Neurology 1992; 31: 663-8) describes 30 affected people in five
generations of a single family. All were hypertonic at birth and
feeding difficulty was common as were inguinal and umbilical
hernias, presumably caused by raised intra-abdominal pressure.
Four babies died from apnoea due to intense muscular spasm.
Motor development was delayed in the early years but improved
later as the stiffness regressed and most of the affected individuals
were of normal intelligence. In adults the major complaint is of
sudden falls caused by transient intense muscle spasm with
inability to extend the arms, resulting in frequent head and face
injuries. (Look for the scars on the parents’ faces. ) In this American
series 16 patients were treated with clonazepam, all apparently with
‘dramatic’ improvement. Genetic linkage studies on this family put
the gene on the long arm of chromosome 5 linked to a marker locus
(colony stimulating factor receptor or CSFIR) at 5q 33-q 35.
Several genes are known to be located in this region including one
which encodes a subunit of the gamma-amino butyric acid (GABA)

receptor.

From the Hammersmith Hospital in London Dr Lilly Dubowitz
and her colleagues (Lancet 1992; 340: 80-1) describe a baby with
this condition who was at first thought to be suffering from neonatal
epilepsy. They measured the concentration of free GABA in the
cerebrospinal fluid at 14 days and found it to be low compared with
previously published data. The baby improved on treatment with
clonazepam and at nine weeks the GABA in the cerebrospinal fluid

was within the normal range.

The basic disorder in startle disease is not understood and the
neuropharmacology and neurochemistry are complex. Clonazepam
is a serotonin antagonist and an excess of serotoninergic trans-
mission in the medullary and pontine reticular formation could,
apparently, explain the condition. GABA, of course, is an
important inhibitory neurotransmitter and the finding of low
cerebrospinal fluid GABA is an interesting clue. Dubowitz and
colleagues suggest that clonazepam might work by increasing the
sensitivity of the GABA receptor though they don’t explain how it

might do that.

Clearly the hunt is well and truly on for the explanation of this

rare but fascinating disease.
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