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Simple Summary: Tumor cells accumulate sialylation in tissues via the coordination of sialyltrans-
ferases and sialidases. Tumor sialylation can block receptor and ligand binding at a physical level
and actively inhibit immune activation by binding to the Siglec receptor of immune cells, creating an
immunosuppressive microenvironment. Blocking the sialylation–Siglec axis in tumor tissues could
alleviate the suppression of the immune microenvironment.

Abstract: The tumor microenvironment (TME), where the tumor cells incite the surrounding normal
cells to create an immune suppressive environment, reduces the effectiveness of immune responses
during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins,
lipids, and glycoRNAs, is known to accumulate in tumors and acts as a “cloak” to help tumor cells
evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation
and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing
technologies, more research is being conducted to understand the effects of sialylation on immunity
regulation. This review provides updated insights into recent research on the function of sialylation
in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics,
including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with
sialic acid–Siglec interaction.
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1. Introduction

Sialic acid is a group of negatively charged nine-carbon monosaccharides, which are
extensively distributed throughout the cell membranes of most vertebrate and higher inverte-
brate organisms [1]. Sialylation, a form of glycosylation featuring sialic acid at the terminal,
is crucial for a range of physiological processes, such as cell signaling, cell adhesion, and
immunomodulation, as it connects cells with extracellular environments [2–4].

As described in our previous paper [3], the metabolic pathway of sialic acid is
facilitated by a series of enzymatic reactions that catalyze the synthesis, activation, and
transfer of sialic acids to glycoconjugates [5,6]. Notably, the cytidine monophosphate
N-acetylneuraminic acid (CMP-Neu5Ac), the product of sialic acid biosynthesis, is
the only activated donor for sialylation in constructing cell surface molecules, such
as glycoproteins, glycolipids, gangliosides, and even glycoRNAs. Sialyltransferases,
a group of catalytic enzymes responsible for the addition of sialic acid from CMP-
Neu5Ac to glycans in the Golgi apparatus, play a central role in regulating cellular
sialylation [7]. Sialidases, on the other hand, are primarily responsible for removing
sialic acid from glycans. Mammalian sialidases only have four types, NEU1-4, which
are found in different intracellular compartments and negatively affect the level of cell
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surface sialylation, thereby preserving sialylation homeostasis [8–11]. Normal cells can
precisely regulate sialic acid synthesis and degradation processes. However, in tumors,
there is an accumulation of sialylation due to the high expression of sialyltransferases
and the altered expression of sialidases [12].

The tumor microenvironment (TME) comprises various cellular and acellular compo-
nents that collectively promote tumor proliferation, invasion, metastasis, and response to
therapies [13]. In this ecosystem, tumor cells evade the surveillance of the immune system
by counteracting the surrounding macrophages, fibroblasts, and T regulatory cells, as
well as by suppressing the activity of immune cells via specific critical immunoregulatory
pathways, such as immune checkpoints. Over the past decade, cancer immunotherapy,
particularly the application of immune checkpoint inhibitors, has significantly advanced
cancer treatment. The use of inhibitors targeting immune checkpoint receptors, such as
PD-1 and CTLA-4, has notably enhanced patient outcomes, enabling long-term tumor
stabilization and even remission. However, for some tumors, such as melanoma, the treat-
ment response rate was less than half, suggesting that the immune escape of tumor cells
depends not only on immune checkpoints, such as CTLA-4 and PD-1/PD-L1 but also other
immunosuppressive modalities [14,15].

Recent studies have revealed that sialic acid is regarded as a ligand for Siglecs, another
group of immune checkpoint proteins. Sialylation–Siglecs interactions enable high tumor
sialylation to inhibit the functions of some immune cells, causing immune escape. Therefore,
there has been a growing interest in targeting sialic acid for tumor therapy. Sialic-acid-
targeting therapies are designed to exploit the high expression of sialic acid on the surface of
tumor cells, which can lead to the selective killing of these cells. Several strategies are being
explored to target sialic acid, including antibodies, small molecules, and enzyme-mediated
approaches [16]. These therapies have the potential to target tumor cells while leaving
low-sialylated cells untouched, improving the efficacy of cancer treatments and reducing
unwanted side effects.

This review is a follow-up to our previous review of sialylation function in tumors [3],
updated with the latest research on sialylation and its regulation of the immune system.
We summarized the recent findings on sialylation’s precise regulation via sialyltransferases
and sialidases and discussed how sialylation influences immune cell behavior towards
tumors. Additionally, we also highlighted novel approaches to block the sialylation–Siglecs
axis as a potential immunotherapeutic to boost anti-tumor immunity and potentially curtail
cancer progression. We hope that this review will provide a brief overview for researchers
wishing to study the role of sialic acid in tumor microenvironments.

2. Sialylation Accumulates in Cancer Tissues and Promotes Tumor Development

The biosynthesis of glycan is an orderly, stepwise addition reaction and is strictly
regulated in the cell. Changes in the physiology or environment of cells or tissues can
cause alterations in the glycan modification process, providing a basis for investigating
mechanisms and diagnosing diseases [17,18]. As sialylation takes place in a later stage of
glycan processing in Golgi, the synthesis of sialic-acid-modified glycoconjugates is not only
affected by the preparation stage of the glycan backbone but is also governed by its own
specific regulatory network. Next, we discuss the characteristic highly expressed sialylated
glycan structures present in the tumor microenvironment, as well as the enzyme families
that participate in sialylation.

2.1. Typical Sialylated Glycans in Tumors

Cancer cells are cloaked by a plethora of glycosylation, with many of them exhibiting
a high level of sialylation. Glycosylation has the potential to mask essential antigenic and
receptor-binding sites, as well as interact with certain checkpoints, enabling cells to avoid
being recognized by enemy-identifying signals [19,20]. In addition to physical shielding,
certain glycan structures possess specific physiological functions; they can act as ligands to
mediate signal recognition and immune suppression [21]. These glycans comprise sialyl-
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Tn (STn), sialyl-T (ST), disialyl-T, sialyl-Lewis antigens, polysialic acid, and gangliosides
(Figure 1). The broad distribution and advantageous effects on cancer cells have rendered
sialylated glycans a hallmark of cancer [22].

The short sialylated O-glycan STn and ST antigens are aberrantly expressed in sev-
eral cancers, with high levels being mainly observed in carcinomas and associated with
aggressive tumors, such as those with chemotherapy resistance and poor prognosis [23,24].
The increased level of STn in tumor cells is primarily attributed to the upregulation of
ppGalNAcT and ST6GalNAc I, combined with the low efficiency of COSMC, which assists
C1GALT1 in extending glycans [24]. High serum concentrations of STn have been observed
in patients with breast cancer [23], prostate cancer [24], bladder cancer [25], cervical can-
cer [26], and ovarian cancers and correlated to tumor grade and metastasis [27]. Due to the
high prevalence of STn antigen expression in tumors, serum STn levels can be clinically
utilized to assist with tumor diagnosis. ST antigens were also elevated in cancer, and the
silencing of ST3GAL1 significantly reduced the level of these antigens, further reducing the
tumor size in the prostate cancer xenograft mouse model [28].

Sialyl-Lewis (SLe) antigens, SLeA and SLeX, are other typical structures of sialyl gly-
cans and act as ligands for selectins, a family of lectins involved in lymphocyte trafficking.
Cancer cells that are disguised by SLeA and SLeX are mistaken for leucocytes during their
epithelial–mesenchymal transition and travel throughout the circulation system [29]. E-
selectins, the primary receptors of SLeA and SLeX, are adhesion molecules required for
leukocyte recruitment during the early stages of inflammation. The accumulation of SLeA

and SLeX leads to cell adhesion and subsequent trans endothelial migration of traveling
tumor cells. In ovarian tumors, mucins MUC16 and MUC1 are major carriers of SLeA and
SLex and are used as biomarkers [30].

Polysialic acid is a polymer of sialic acid, with α2,8 and α2,9 linkages and a length
ranging from 8 to 400 units. It is a crucial glycosylation type for several essential proteins,
providing them with a negative charge. In mammalian cells, three sialyltransferases (ST8Sia
II, ST8Sia III, and ST8Sia IV) are responsible for the extension of polysialic acid glycans [31].
Polysialic acid is often detected in brain tissues and is also found in immune cells. Several
molecules are found to undergo polysialylation, such as neural cell adhesion molecules
(NCAMs) [32,33], chemokine receptor 7 (CCR7) [34,35], CD36 [36], and E-selectin ligand 1
(ESL-1) [37]. Interestingly, the sialyltransferase ST8Sia II and ST8Sia III can polysialylate
independently. These polysialylated glycoproteins participate in physiological processes,
including cell adhesion between cells and cells with a matrix, cell migration, synapse
formation, and the functional plasticity of the developing nervous system. In tumor cells,
the level of polysialic acid chains correlates with an aggressive phenotype and the resistance
of cancer treatment [38].

Glycolipids, molecules composed of one or more carbohydrate residues linked to a
hydrophobic lipid moiety via a β-glycosidic linkage, are mainly found in lipid rafts on
the outer leaflet of the plasma membrane bilayer. Some gangliosides (GD2, GD3, GM2,
GM3, fucosyl-GM1) are distinguishable from other gangliosides via their significantly
lower or absent expression in normal cells, yet they are highly expressed in tumor cells [39].
GD3 and GD2 are highly expressed in certain tumors and can be utilized as targets for
immunotherapy. However, they can also inhibit the function of immune cells, such as
macrophages, via binding to Siglec-7 [40].
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Figure 1. The typical sialylated glycans in tumors. The sialylated glycan structures typically highly
expressed in tumors are marked with the translucent rectangular box.

2.2. Sialyltransferases Are Critical Enzymes for Hypersialylation

Approximately twenty sialyltransferases are involved in the positive regulation of
human cell sialylation, and these sialyltransferases are classified into four types based
on the differences in their substrate structure and the linkage of the formed sialylation:
ST3Gal I-VI (add Neu5Ac to galactose in an α2,3 linkage); ST6Gal I-II (add Neu5Ac to
galactose in an α2,6 linkage); ST6GalNAc I-VI (add Neu5Ac to GalNAc in an α2,6 linkage);
and ST8Sia I-VI (add Neu5Ac to Neu5Ac in an α2,8 or α2,9 linkage) [7]. The increased
modification of sialic acid in various malignant tumors is caused by the high expression of
sialyltransferases. Hypersialylation in the tumor microenvironment alters its physiological
characteristics, blocking some immunological recognition and communication [41]. More
importantly, sialylation also promotes tumor cell survival and drug resistance, as well as
suppressing surrounding immune cells, which helps tumor cells to survive [42]. Next, we
briefly summarized recent research on sialyltransferases in tumors.

The sialyltransferase ST6Gal I is a well-studied enzyme, catalyzing the addition of
Neu5Ac to galactose residues of Gal β1-4 GlcNAc in an α2,6 bond mainly on N-glycans.
Elevated levels of ST6Gal I have been linked to a number of different cancer types and can
be a driver of malignant progression, as well as resistance to therapy [43–49]. This is further
supported by the pancreas-specific genetic deletion of ST6GAL1 in a mouse model, which
delays cancer formation [50]. Additionally, ST6Gal I has been observed to add sialylation
in cell surface receptors, such as PDGFRB [44], EGFR [51,52], and PECAM [53], which
increases protein levels and phosphorylation to stimulate pathways such as PI3K/AKT
and RAS [43], thus contributing to tumor growth. ST6Gal I has also been implicated in
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the immune evasion in hepatocarcinoma cells, where it increases levels of MMP9 and
suppresses T-cell proliferation [54]. Moreover, ST6Gal I is released into the extracellular
milieu in either exosome or free forms, thereby remodeling cell surface and secreted
glycans, which has been linked to aggressive tumor cell proliferation in breast cancer [55].
ST6Gal II is another enzyme that can add α2,6-linked sialic acid to N-glycans. Nonetheless,
this enzyme is predominately expressed in the embryonic and perinatal stages of brain
tissue [56]. In a recent study of breast cancer, ST6Gal II accumulated in tumor tissue and was
associated with tumor malignancy. The inhibition of ST6Gal II caused the downregulation
of cell adhesion and invasion-associated proteins, resulting in reduced tumor migration [57].
Similarly, silencing ST6GAL2 in a follicular thyroid carcinoma reduced tumor growth by
inactivating the Hippo pathway in an in vivo model [58].

The ST3Gal family, consisting of six members (ST3Gal I-VI), facilitates the transfer
of sialic acid to the terminal galactose residues of glycochains via an α2,3-linkage in both
glycoproteins and glycolipids. ST3Gal I, which predominantly functions in core-1 O-
glycans, catalyzes the transfer of Neu5Ac to a galactose residue in an α2,3 bond to produce
sialyl-T antigen. The upregulation of ST3Gal I has been reported in many malignant tissues,
such as ovarian cancer [59], glioblastoma tumors [60], and melanomas [61], and it has been
associated with tumorigenesis, poor clinical outcomes and an inflammatory phenotype.
Additionally, CD55, an essential immune checkpoint molecule, has been reported to be
O-glycosylated by ST3Gal I to help cancer cells escape immune attack [62].

ST3Gal II, in contrast, prefers gangliosides as its substrate to form GD1a and GT1b [63,64].
The elevated expression of ST3Gal II has been associated with advanced stages of cancer
and poor clinical outcomes. In addition, ST3Gal II is the only enzyme responsible for syn-
thesizing the glycosphingolipid SSEA4, a well-known biomarker of several cancers [65,66].
Furthermore, ST3GAL2 knockdown led to a dramatic growth reduction in colorectal cancer
in xenografted mice models [67].

ST3Gal III, ST3Gal IV, and ST3Gal VI are implicated in the formation of SLeA and SLeX

glycans on the cell surface, which act as binding ligands for selectins and are essential for
metastasis [68,69]. The high expression of ST3Gal III has a strong positive correlation with
poor prognosis in gastric cancer [70], and ST3Gal IV is the main enzyme for generating
ligands of Siglec-7 and -9 [71,72]. ST3Gal VI generates selectin ligands and accumulates
in liver and urinary bladder cancers [73,74]. Moreover, ST3GAL5 encodes GM3 synthase,
the rate-limiting enzyme for the production of downstream gangliosides, and is, therefore,
crucial to gangliosides synthesis [63]. In renal cell carcinoma research, ST3GAL5 was
consistently overexpressed in tumor tissue and correlated with the infiltration of exhausted
CD8+ T cells, indicating that ST3Gal V contributes to immune suppression [75].

The ST6GalNAc family, consisting of six members, ST6GalNAc I-VI, catalyzes the
α2,6 glycosidic linkage of Neu5Ac to the GalNAc residues on O-glycans or glycolipids.
ST6GalNAc I, which adds Neu5Ac to O-linked GalNAc residues to form sialyl-Tn (STn), is
particularly significant [76]. Evidence suggests that the overexpression of STn is associated
with poor clinical prognosis in a wide range of cancer types [27,77], making it a well-known
tumor-associated carbohydrate antigen. One functional study found that ST6GalNAc
I can promote tumor growth and metastasis and is related to cancer cell stemness [78].
Furthermore, cytokines such as IL-13 promote the phosphorylation of STAT6, which, in
turn, activates the transcription of ST6GALNAC1, thereby facilitating the formation of
STn [79]. The STn inhibits T-cell responses by binding to Siglec-15, leading to immune
evasion in the tumor microenvironment [80,81].

ST6GalNAc II is an enzyme responsible for synthesizing ST and STn antigens. The
role of ST6GalNAc II in tumors varies with the stage and status of the tumor. In breast
cancer metastasis, ST6GalNAc II catalyzes the formation of ST and STn that blocks tumor
binding to galectin, negatively affecting tumor metastasis [82,83]. However, in the tumor
microenvironment, ST6GalNAc II is positively correlated with higher tumor stage and
worse prognosis [84].
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Another ST6GalNAc family member for O-glycan is ST6GalNAc IV, a key ST6GalNAc
enzyme that is involved in the formation of disialyl-T antigen and GD1α from sialyl-
lactotetraosyl-ceramide GM1b (gangliosides). In a primary lung cancer model, the
upregulation of ST6GALNAC4 was demonstrated to confer glycosylation changes in
tumor cells, contributing to their metastatic activity. This is likely due to the preservation
of the T-antigen presentation and adherence to galectin 3 [85]. The catalytic product
of ST6GalNAc IV, the disialyl-T antigen, was shown to be a ligand for Siglec-7. The
high expression of ST6GalNAc IV increased disialyl-T antigens in CD162 and CD45 and
inhibited NK cell activity via the binding of Siglec-7 in chronic lymphocytic leukemia
B cells [86]. Moreover, in liver cancer, the elevated ST6GALNAC4 promoted tumor
proliferation, migration and invasion ability, and affected the expression of immune
checkpoints on tumor cells [87].

The sialyltransferases ST6GalNAc III, ST6GalNAc V, and ST6GalNAc VI are mainly
involved in glycolipid synthesis. ST6GalNAc III and ST6GalNAc V use GM1b as a substrate
to synthesize GD1α [88,89], whereas ST6GalNAc VI catalyzes the synthesis of α-series
gangliosides, including GD1α, GT1aα, and GQ1bα; globo-series glycosphingolipids (GSL);
and disialyl LeA. It has been reported that ST6GalNAc III increased M2 macrophages via the
accumulation of prostaglandin and arachidonic acid in gastric cancer [90]. ST6GALNAC5
was expressed at low levels in tumors, and its overexpression significantly inhibited tumor
growth and invasiveness [91]. On the other hand, the downregulation of ST6GALNAC6
resulted in a change from disialyl LeA to sialyl LeA and an elevation in E-selectin binding
activity during metastasis, which supports inflammation-driven carcinogenesis by reducing
its binding to the immunoregulatory Siglec-7 [92].

Members of the ST8Sia family catalyze the transfer of sialic acid to another sialic
acid, forming α2,8 linkages. Notably, the 2,8-disialic glycan structure, ligands for Siglec-7
and Siglec-9, can potentially regulate immune responses. Notably, ST8Sia I, also known
as GD3 synthase, is positively correlated with the astrocytoma grade and accumulates
in glioblastomas [93]. Similarly, ST8Sia II and ST8Sia IV are polysialyltransferases that
produce polysialylated cell adhesion molecules, which are highly expressed during cancer
development. In tumors, the expression of ST8SIA2 has been shown to correlate with the
tumor stage [94]. Moreover, the overexpression of ST8SIA2 increased the invasiveness and
metastatic abilities of small-cell lung cancer cells in vitro [94,95]. Additionally, ST8SIA4 is
overexpressed in breast cancer tissues and contributes to chemoresistance in acute myeloid
leukemia [96,97]. Furthermore, ST8Sia III, which causes the sialylation of a variety of
glycolipids (GM3, GD3, and α2,3-sialylparagloboside), was identified as a therapeutic
target for glioblastomas [98]. Other ST8Sia family members, such as ST8Sia V and ST8Sia
VI, are also related to malignant potential. ST8Sia V, the enzyme adding Neu5Ac to
gangliosides, was expressed at a low level and negatively correlated with patient survival
in bladder cancer and colon cancer [99,100]. ST8Sia VI generates disialic acid structures
preferentially on O-linked glycoproteins, and these products are proven to bind with
Siglec-7 and Siglec-9. Studies have shown that ST8Sia VI contributes to tumor growth
in a mouse model by inhibiting immune responses via the alteration of the macrophage
polarization towards M2 and increasing the immune modulator arginase in the tumor
microenvironment [101].

2.3. The Function of Sialidases in Tumor Sialylation Regulation

The sialidases and sialyltransferases in cells collectively act to maintain sialylation
homeostasis. In tumor cells, an abnormally increased level of sialylation is generally
attributed to elevated sialyltransferase activities; however, the role of sialidases in regulating
the sialylation levels remains to be addressed.

Mammalian sialidases, NEU1-4, are enzymes with distinct cellular localizations. NEU1,
mainly present in lysosomes, is associated with the degradation of sialylated glycans
and the recycling of sialic acid. Evidence suggests that the upregulation of NEU1 in
cancers may increase the utilization of sialic acid, thus contributing to the maintenance of
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cell sialylation. NEU1 is highly expressed in various cancers, such as liver cancer [102],
pancreatic cancer [103], ovarian cancer [104], and melanoma [105]. However, NEU1 is
reported to be expressed at low levels in certain stages of tumors and has been found to
remove cytosolic sialic acid modifications and inhibit tumor progression [10,106]. Therefore,
the effect of NEU1 on tumors must be comprehensively and dialectically analyzed. NEU2
is located in the cytosol and predominantly inhibits tumor growth. The decrease in NEU2
leads to increased sialylation levels and reduces the stemness-like properties of cancer
stem cells [107]. Additionally, NEU2 causes a reduction in α2,6-linked sialylation on the
Fas protein, leading to apoptosis in pancreatic cancer [108]. In ovarian cancer cells, the
overexpression of NEU2 leads to a significant reduction in α2,3- and α2,6-linked sialylation
and induces cellular autophagy by upregulating the expression of ATG5, an essential
protein involved in autophagosome formation [109]. NEU3, a membrane sialidase, is
essential for the hydrolysis of sialic acid in ganglioside. In colon cancer, the upregulation
of NEU3 accumulates lactosylceramide and leads to protection against programmed cell
death [110]. NEU4 is located in the ER membrane, mitochondria and lysosomes, and
is downregulated in many tumors. NEU4 has been reported to negatively regulate the
motility of tumors via the desialylation of CD44 in hepatocellular carcinoma [111], as well
as reduce sialyl Lewis antigens to prevent cell adhesion to E-selectin in colon cancer [112].
While the role of sialidases in tumors may vary based on tumor type and status, tumor cells
consistently regulate sialidase expression and control sialylation in a way that promotes
tumor progression.

Sialyltransferases and sialidases are strictly and dynamically regulated to increase and
maintain high sialylation levels, which helps to induce the immunosuppressive status of
the tumor microenvironment via interactions with immune cells, thus facilitating tumor
survival and growth. In the following sections, we summarize the latest research progress
regarding the mutual interactions between sialylation and immunity in recent years.

3. Sialylation Reshapes the Tumor Microenvironment
3.1. Sialylation Serves as a Camouflage for the Passive Protection of Tumor Cells

In recent years, knowledge on the distribution and visualization of sialylation in
tumor microenvironments has increased due to the development of multiple sialic acid
imaging technologies. A study on ovarian cancer utilized a mass spectrometry imaging
technique with sialic acid derivation and revealed a significant increase in α2,3- and α2,6-
linked sialylation in both cancer tissues and adjacent stromal tissues [113]. In pancreatic
cancer research, mass spectrometry imaging was used to detect an increase in sialylated
N-glycans in all cancer tissues, and the characteristic tetrasaccharide structure of CA19-9
was also enriched in these tissues [114]. In addition to the mass spectrometry imaging
technique, the sialic-acid-specific labeling technique has been widely used to visualize
sialylation in tumor microenvironments. A sialic-acid-specific quantum dot was utilized
for the efficient and selective labeling of sialic acid, and the staining results of cancerous
tissue slices demonstrated strong fluorescence signals in cancerous tissues, with a clear
boundary to distinguish them from normal tissues [115]. These findings supported the
notion of a substantial accumulation of sialylation in the tumor microenvironment. With
newer technologies applied to the visualization of sialylation, the distribution of sialic
acid in tumor microenvironments can be elucidated. The glycans on the cell surface,
especially sialylated glycans, have a significant protective effect and are considered as
cloaks of the cell. Reducing glycan synthesis using chemicals such as a glucose analog
(2-deoxy-d-glucose) could efficiently rescue the activity of CAR-T cells in xenograft
mouse models of pancreatic adenocarcinoma [116]. Due to the unique physicochemical
properties and the terminal location on glycans, sialic acid is particularly suitable for
covering key recognition sites to block the recognition of related receptors and specific
antibodies [117]. In this sense, cancer cells evade some signal regulation and antibody-
dependent immune attacks.
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The presence of sialylation on the surface of tumor cells enhances their ability to
evade apoptosis upon encountering immune cells that release apoptotic signals. The
hypersialylation of the Fas receptor (FasR) and tumor necrosis factor receptor (TNFR1) has
been observed to hinder the internalization of these receptors and decrease downstream
cell death signaling in tumor cells [118]. Additionally, galectins, a family of lectins that
recognize β-galactosides via their conserved carbohydrate recognition domains, have been
found to induce cell apoptosis [119]. However, the sialylation of extracellular galectin-
binding partners, such as integrins, can disrupt galactose–galectin interactions and mitigate
galectin-induced apoptotic signaling [42,120–123]. In this sense, tumor cells survive under
immune attack.

Aside from passive defense, sialylation also plays a vital role in actively modulating
the activity of surrounding immune cells, a field that has been widely studied in recent
years [124]. In particular, the sialylated glycan has specific receptors in mammals, and, in the
following section, we discuss its interactions with ligands in the tumor microenvironment.

3.2. Tumor Cells Deceive Immune Cells through the Binding of Sialylated Ligands to Siglecs

The environment in which a tumor grows is a complex social milieu, where tumor
cells must not only exchange material and energy with the external environment but also
integrate into the “social networks” of surrounding cells, engaging in mutually beneficial
relationships. Based on the infiltration of immune cells in tumor tissues, the tumor microen-
vironment can be simply categorized into two distinct types: inflamed and non-inflamed.
These types are commonly referred to as “hot” and “cold” tumors, respectively [125]. In hot
tumors, tumor cells establish contact with immune cells. However, they hinder the function-
ing of immune cells by employing various pathways, such as immune checkpoints [126].
Remarkably, sialylated glycans are believed to possess immunosuppressive properties. The
interaction between sialylation on tumor cells and the sialic acid receptors (Siglecs) on
immune cells conveys immunosuppressive signals, thus avoiding eliciting an inflammatory
response from the immune cells [127,128].

Siglecs are a family of receptors that bind to sialic-acid-containing glycans (sialylated
glycans) [129]. Thus far, fifteen Siglecs have been identified in human cells. Interestingly,
Siglec-12 (also named Siglec-XII) lost the ability to bind sialic-acid-containing glycans
due to a homozygous missense mutation that was found only in humans [130]. We
arranged and grouped the Siglecs based on the similarity of their protein sequences in
human cells (Figure 2), and the results clearly demonstrated that all of these Siglecs had a
conserved transmembrane domain (TM) and N-terminal immunoglobulin V-set domain
(V-set Ig domain). The V-set Ig domain contained the arginine active site with sialic-acid-
binding activity. Siglecs also had different numbers of immunoglobulin C2-set domains
(C2-set Ig domain) that support the binding domain and are all characterized by a single
transmembrane structure, indicating their location to be primarily on the cell membrane
(Figure 3). For the intracellular part, nine (Siglec-2,3,5-11) Siglecs contained tyrosine-based
inhibitory motifs (ITIM) that transmitted immunosuppressive signals via the engagement
of SHP1 and SHP2 phosphatases upon ligand binding, three (Siglec-14,15,16) contained
positive charges in the transmembrane region and can bind DAP12 to transmit immune
activation signals, and the remaining two (Siglec-1,4) did not have signaling functions.
Based on evolutionary similarity, Siglecs can be classified into conservative (Siglec-1, 2,
4, 15) and rapidly evolving types (Siglec-3, 5-12, 14, 16, also known as CD33-related
types). Although the binding domain is similar, the ligand structures for those Siglecs
differ (Figure 3) [21,131]. Next, we describe how tumors actively suppress the function of
immune cells via Siglecs.
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Figure 3. Ligand glycan structure and expression cells of human Siglecs. There exists a total of
15 Siglecs within the human body, among which Siglec-14 has incurred a mutation resulting in the
loss of its sialic acid binding functionality. The Siglecs are arranged based on their sequence similarity.
The upper section provides insight into the preference of Siglec for glycan structures, while the lower
section indicates the immune cells that have been reported to predominantly express these Siglecs.
The colors of the lines are distinguished based on the glycan structure or cell type.



Biology 2023, 12, 832 10 of 21

NK cells are crucial innate immune cells that are capable of killing tumor cells without
prior antigen stimulation and are involved in critical functions such as cell lysis, secretion of
chemokines, and cytokines to attract other immune cells. Tumor cells mitigate the threat of
NK cells mainly via ligand binding to Siglec-7 and -9. Siglec-7/9 are primarily expressed in
NK cells. Siglec-9 expression occurs during the early stages of NK cell differentiation [132],
whereas Siglec-7 is predominantly expressed in highly cytotoxic mature NK cells [133].
Both Siglecs play a suppressive role in regulating immune homeostasis via the negative
regulation of NK cell activation and reducing toxicity towards target cells. Siglec-7 and
Siglec-9 are two of the most extensively studied members of the Siglec family. They share
a high degree of similarity in their amino acid sequences, reaching up to 98%. However,
they exhibit significant differences in their ligand preferences. Siglec-7 shows a higher
affinity for α2,8-linked sialic acid and poor affinity for α2,3- and α2,6-linked sialic acids,
primarily binding to O-glycans on mucin substrates such as CD43 [134–136]. Conversely,
Siglec-9 exhibits a preference for α2,3- and α2,6-linked sialic acids in both N-glycans and
O-glycans, mainly binding to sulfated SLex [137]. In tumor cells, the gangliosides DSGb5
and GD3 were reported to inhibit the cytotoxic activity of NK cells via binding to Siglec-7
on the surface of the NK cells [138,139]. Interaction experiments confirmed that PSGL-1
is a ligand for Siglec-7 on NK cells in multiple myeloma, and the treatment of myeloma
cells with sialidase relieves the inhibition of NK cell activity and enhances the sensitivity
of targeted drugs [140]. In another study on chronic lymphocytic leukemia, the disialyl-T
antigen on CD162 and CD45 was proven to inhibit NK cells via binding to Siglec-7 [141].
Adenocarcinoma tissues exhibited high expression levels of MUC1 and MUC16, which
contained substantial amounts of SLex. The SLex shields tumors from immune attacks by
binding to Siglec-9 on the surface of NK cells and conveying inhibitory signals [142].

The complex relationship between tumors and macrophages stems from the dual
role of macrophages in tumor growth. As crucial components of the innate immune
system, macrophages are responsible for the release of cytokines and the presentation
of antigens. Macrophages can undergo different polarization states depending on envi-
ronmental conditions and can be classified into two major groups: classically activated
M1-type macrophages (pro-inflammatory, anti-tumor) and alternatively activated M2-type
macrophages (anti-inflammatory, pro-tumor). In the interplay between tumor cells and
macrophages, Siglec-7 and Siglec-9 remain the principal sialic acid receptors. Tumor cells
upregulate the sialyltransferase ST3Gal IV, leading to an increase in ST antigen that inhibits
macrophage activation and promotes macrophage differentiation in tumor-associated
macrophages, in combination with Siglec-9, thereby inducing the formation of an im-
munosuppressive microenvironment [71]. Recent studies have also revealed that the high
expression of ST6GALNAC4, which is driven by the oncogene MYC, promotes the synthesis
of disialyl-T glycans in CD43. This process inhibits Siglec-7 and prevents macrophages
from clearing tumors [143]. CD24 is also reported to inhibit macrophages vis its connection
to Siglec-10, delivering the “do not eat me” signal. Blocking the binding between CD24 and
Siglec-10 or reducing tumor CD24 expression through neutralizing antibodies can restore
the ability of macrophages to inhibit tumor cells and improve animal survival [144].

Dendritic cells are the most potent and specialized antigen-presenting cells in the
immune system. Recent studies have demonstrated increased expressions of Siglec-7,
Siglec-9, and Siglec-10 in conventional DC cells derived from patient tumor samples,
indicating their potential involvement in tumorigenesis. Additionally, transcriptomic and
proteomic analyses revealed the impaired maturation of DC cells. The inhibition of these
Siglecs in DC cells resulted in restored DC activity, leading to improved antigen uptake,
processing, and T cell activation [145].

T cells are crucial players of adaptive immunity that mediate the killing of tumor cells
and have become the focus of research on immune checkpoint and CAR-T therapy in recent
years. While traditional immunotherapies are insufficient, the sialic acid–Siglec interactions
are considered to provide a potential alternative immune checkpoint target. Generally,
Siglec is not highly expressed in T cells, but Siglec-9 and Siglec-5 are abundantly expressed
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in tumor-infiltrating cytotoxic CD8+ T cells. Ligand binding to Siglec-9 strongly inhibits
the TCR signaling pathway and essential effector functions of CD8+ T cells [146]. Similarly,
Siglec-5 is highly expressed in a variety of T cells activated by antigens. Upon binding to
ligands, highly expressed Siglec-5 inhibits the activation of the NFAT and AP-1 signaling
pathways of T cell activation [147].

Within the tumor microenvironment, tumors cells express glycosyltransferases that pro-
duce glycoproteins and glycolipids with typical glycan chains that bind to Siglecs, preventing
immune cells from attacking the tumor. As a result, an immune-suppressive environment is
created that supports tumor growth and invasion (Figure 4). However, despite the regulatory
functions of most Siglecs in suppressing inflammation and modulating immune suppression,
three specific Siglecs (Siglec-14, 15, and 16) have been identified to incite inflammation and
stimulate immune activation [148–150]. The intricate mechanism underlying the interaction
between sialylation and Siglecs in the tumor microenvironment necessitates further exploration.
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are high levels of sialylation on the tumor cell surface. These sialylations act as ligands, engaging
with Siglecs on infiltrating immune cells within the tumor tissue, inhibiting the activity of immune
cells and affecting their differentiation, thereby mediating tumor immune escape.

4. Opportunities for Cancer Treatment via the Removal of Sialylation-Caused
Immune Suppression
4.1. Metabolic Interference with Sialylation

The enhancement of sialic acid synthesis in the tumor microenvironment is a com-
mon phenomenon regarded as one of the hallmarks of cancer [22]. In previous studies, the
metabolic network of sialic acid synthesis has been elucidated. In eukaryotic cells, sialic acid is
synthesized in the cytoplasm and transported to the nucleus for cytidylate 5′-monophosphate
(CMP)-Neu5Ac synthesis. Then, it is transported to the Golgi apparatus via the sialic acid
transporter SLC35A1 and added to glycoconjugates via sialyltransferases before being se-
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creted or delivered to the cell surface [3]. At this point, metabolic intervention to reduce tumor
sialylation is considered to be a practical approach to block tumor sialylation.

Analogues of sialic acid can achieve a reduction in sialylation by sneaking into the
sialic acid metabolic pathway and interfering with the function of sialyltransferase or
sialidase, thereby constituting an efficient sialylation inhibitor of tumor cells (Figure 5).
Among all the analogues, fluorinated sialic acid can provide long-term sialylation inhibition.
Ac53Fax-Neu5Ac acetylates, which enhances cellular uptake, and, when converted to CMP -
3Fax-Neu5Ac, it also inhibits sialyltransferases, aided by an axial fluorine atom incorporated
into the C-3 carbon [151]. Moreover, the accumulation of CMP-3Fax-Neu5Ac, an analogue
of CMP-Neu5Ac, inhibits the activity of the GNE enzyme (the rate-limiting enzyme of
sialic acid synthesis) via feedback regulation, thereby attenuating the cell’s own sialic acid
synthesis and reducing sialylation [152]. In a study on pancreatic ductal adenocarcinoma,
treatment with Ac53FaxNeu5Ac resulted in the inhibition of the tumor cell production
of α2,3-sialic acid and SLeX-modified glycans, leading to reduced adhesion of tumor
cells to selectin. Subsequent animal experiments demonstrated that sialic acid inhibition
significantly modified the composition of immune cells in the tumor microenvironment by
increasing the proportion of CD8+ cells and NK cells, which facilitated the restoration of
tumor immune surveillance [153]. However, the use of 3Fax-Neu5Ac as a global inhibitor
of sialyltransferase may affect sialic acid metabolism in other normal organs and has been
shown to be toxic to the liver and kidneys when used in large amounts in vivo [154].
This deficiency has been effectively addressed using nanoparticles coated with tumor-
targeting antibodies [155] and self-assembled nanoparticles [156]. Innovation in drug
delivery enables safer and more sustained in vivo inhibition of sialylation.
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Figure 5. Opportunities for cancer treatment via the interruption of the sialylation–Siglecs axis. (Blue)
the employment of inhibitors to interfere the formation of sialylation, (Green) the use of neutralizing
antibodies to obstruct the binding of sialylation to Siglecs in immune cells, and (Orange) the targeted
degradation of sialylation on the tumor cell surface through the use of sialidase-linked antibodies
specifically directed to tumor cells.



Biology 2023, 12, 832 13 of 21

4.2. Target Sialylation Degradation

Sialidase is an enzyme that efficiently removes sialic acid from glycans. By coupling
sialidase with tumor-targeting antibodies, the tumor-targeted removal of sialic acid can be
achieved (Figure 5). HER2 is the marker protein of a breast cancer subtype, and several
commercial antibody drugs are available for its treatment.

A protein complex consisting of HER2 antibodies and sialidase from Salmonella ty-
phimurium had been designed to precisely remove sialic acid from the surface of breast
cancer cells, reducing the suppression of immune cells. In a mouse breast cancer model,
the injection of this protein complex effectively reduced sialylation, enhanced immune
cell infiltration and activation in breast cancer tissues, and prolonged the survival of the
mice [157]. Additionally, chimeric antigen receptor (CAR)-T cell therapy is used with
hematologic tumors but remains challenging in solid tumors. The immunosuppressive
cellular environment and sialic-acid-rich stroma of solid tumors make it difficult for T cells
to infiltrate and activate. However, the addition of sialidase to CAR-T cells targeting Tn
antigens in tumors resulted in the degradation of extracellular matrix sialic acid within the
tumor microenvironment. This, in turn, facilitated the infiltration of T cells into the tumor
and enhanced anti-tumor activity [158].

4.3. Siglecs Blockade

As the sialylation–Siglec interaction inhibits immune cell activity, reducing sialylation
in tumor tissue helps to mitigate this restriction; however, blocking Siglec binding is a
more effective method for achieving this. Anti-Siglec antibodies have the potential to block
interactions between Siglec and its ligands, thereby modulating the function of immune
cells (Figure 5). For instance, the Siglec-15 antibody NC318, a humanized monoclonal
antibody, was shown to effectively block the function of Siglec-15, leading to the restoration
of T-cell killing, the cessation of tumor growth, and the prevention of tumor metastasis in
mouse models that constitutively express Siglec-15 [81]. Although, the phase I/II clinical
studies of NC318 did not make satisfactory progress, this therapy remains a promising
treatment for immune rescue [159–161]. Siglec-7 and Siglec-9 are also well-studied receptors,
and novel antibodies were designed based on these receptors. A method was developed to
produce Siglec antibodies by immunizing mice with human-derived Siglec-9 and screening
antibody cells enriched from the spleen for clones with a high affinity, resulting in the
identification of the 8A1E9 clone. In a humanized mouse model of ovarian cancer, treatment
with anti-Siglec-9 effectively reduced tumor volume [162].

The three main methods of blocking the sialylation–Siglecs axis can effectively promote
the inhibitory effect of tumor sialylation, thus recovering the killing activity of immune
cells, which has a very positive effect on tumor treatment (Figure 5).

5. Discussion and Future Perspectives

Monosaccharides are a highly valued source of energy for cells. However, cells have
developed an extensive network for synthesizing and processing glycosylation, utilizing
glycans to modify essential proteins, lipids, and even nucleic acids on the cell surface.
Human exploration of glycans has progressed from the early days of isolating and iden-
tifying glycan composition and identifying glycosylated proteins or lipids to the use of
high-throughput tools for studying glycosyltransferases and glycomics. These explorations
provided the foundations for current research on the global effects of glycosylation in tumor
cells from a microenvironmental perspective.

In recent years, the crucial role of glycosylation has received increased recognition,
especially negatively charged monosaccharides such as sialic acid. Sialylation has been
found to significantly accumulate in tumor cells and tissues, as demonstrated in previous
studies. Utilizing high-throughput techniques such as transcriptomics and proteomics,
researchers have identified sialyltransferases that contribute to the significant accumulation
of sialic acid and have extensively studied their roles in tumor proliferation, apoptosis,
metastasis, and resistance to treatment. However, the in-depth characterization of glycosy-
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lation remains challenging due to technical limitations. Specifically, intact glycan analysis,
particularly at the single-cell level, is still in the stage of early exploration. It is crucial to
develop techniques for analyzing glycan modifications at the single-cell level, especially at
specific sites on key ligands, to facilitate a better understanding of the role of glycosylation
in the tumor microenvironment. Such advancements in technology would greatly enhance
our ability to explore the complex interactions between sialylated glycans and immune
systems in cancer.

Sialic acid modification acts similar to a cloak, concealing the true identity of the
tumor from the immune system and preventing recognition and attacks. Under normal
conditions, sialic acid expression is also upregulated during inflammatory responses to
protect normal cells from immune cell attacks. However, tumors exploit this property by
overexpressing sialic acid to evade immune system surveillance. Despite the explosive
growth of research on the sialylation–Siglec axis in recent years, the mechanism by which
sialic acid suppresses the immune microenvironment is still not fully understood and
requires further investigation. While tumor therapies targeting the sialylation–Siglec axis
have been reported, the number of patients who enter the clinic is not substantial. Moreover,
the most promising antibody against Siglec-15 was not as effective as expected in the phase
II clinic trial [159–161], and greater investment is needed to design effective drugs.

6. Conclusions

In summary, tumor cells accumulate sialylation in tissues via the coordination of sialyl-
transferases and sialidases. Sialylation can block receptor and ligand binding at a physical
level and actively inhibit immune activation by binding to the Siglec receptor of immune
cells, creating an immunosuppressive microenvironment. Blocking the sialylation–Siglec
axis in tumor tissues could alleviate the suppression of the immune microenvironment.
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