Table 1.
Pseudocode.
Algorithm Steps |
---|
1. Initialize dataset |
2. Conduct exploratory data analysis |
2.1. Use descriptive statistics, box plots, pair plots, and clustering techniques |
3. Preprocess data |
3.1. Scale numerical variables with StandardScaler |
4. Build Machine Learning models |
4.1. For each model (Logistic Regression, Decision Tree, Random Forest, Support Vector Machines) |
4.1.1. Apply GridSearchCV for parameter tuning |
4.1.2. Train model on training data |
4.1.3. Evaluate model on validation data |
5. Determine the most significant predictors |
6. Validate research hypothesis |