Table 8.
Quantitative performance analysis of the proposed architecture with state-of-the-art methods for AD classification.
S. No | Model Trained | Number of Trainable Parameters | Accuracy in (%) |
---|---|---|---|
1 | AlexNet | 57 M | 64.69 |
2 | EfficientNet-B0 | 4 M | 75.01 |
3 | ResNet-18 | 11 M | 78.69 |
4 | VGGNet-16 | 134 M | 78.82 |
5 | DarkNet | 26 M | 80.43 |
6 | DenseNet-169 | 12 M | 82.2 |
7 | AHANet (Proposed) | 32 M | 98.53 |