Skip to main content
. 2023 Jun 14;12(6):854. doi: 10.3390/biology12060854
Algorithm 1 Training GAN model
       Input: Set of Sequences S, ganCnt
       Output: GANs based sequences S
1: m_gengenerator() ▹ generator model
2: m_disdiscriminator() ▹ discriminator model
3: m_dis.compile(loss=CE,opt=ADAM)
4: seqLenlen(S[0]) ▹ len of each S sequence
5: iter1000
6: batch_size32
7: for i in iter do
8:       noiserandom(ganCnt,seqLen)
9:       Sm_gen.predict(noise) ▹ get GAN sequences
10:     m_dis.backward(m_dis.loss) ▹ fine-tune m_dis
11:     m_gen.backward(m_gen.loss) ▹ fine-tune m_gen
12: end for
13: return(S)