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Abstract: Matrix metalloproteinases (MMPs) are a large family of Ca2+ and Zn2+ dependent prote-
olytic enzymes, able to cleave the various components of the extracellular matrix (ECM), as well as a
range of other regulatory molecules. Several reports have proven the important role of both MMPs
and their endogenous inhibitors, TIPMs, in oral health, the initial development of the tooth, and
during enamel maturation. In this mini-review, we aim to summarize the literature information about
the functions of MMPs, paying more attention to MMP-8 (collagenase-2 or neutrophil collagenase)
in the development and progression of periodontitis, peri-implantitis, and carious lesions. We also
emphasize the role of particular gene variants in MMP8 as predisposing factors for some oral diseases.
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1. Introduction

Matrix metalloproteinases (MMPs) are a type of Ca2+- and Zn2+-dependent proteolytic
enzymes. They are also called “matrixins”, and their main role is to cleave the various
components of the extracellular matrix (ECM), as well as a range of other molecules, such
as growth factors, cytokines, chemokines, and adhesion proteins [1]. In humans, the MMP
family consists of more than 23 members, divided into six groups: collagenases, gelatinases,
matrilysins, stromelysins, membrane-type MMPs, and other MMPs [2].

A variety of cell types are able to express and secrete MMPs as the main producers are
the activated neutrophils, macrophages, endothelial cells, epithelial cells, vascular smooth
muscle cells, glial cells, tumor cells, etc. [1].

Usually, after the activation of the cells, MMPs are released together with regu-
latory molecules such as interleukins (IL-8 and IL-1β), tumor necrosis factor (TNF)-α,
osteoprotegerin (OPG), prostaglandins (PGE2), and receptor activator of nuclear factor
kappa-B ligand (RANKL) [3].

The MMPs are involved in a vast range of physiological processes: angiogenesis, apop-
tosis, cellular differentiation, embryogenesis and morphogenesis, wound healing, immune
responses, etc. However, the MMPs participate practically in all types of pathological
conditions; for example, they are secreted and activated in diseases such as periodontal
disease, rheumatoid arthritis, asthma, liver fibrosis, autoimmune diseases, and cancer [4].

MMPs are synthesized in non-active form as proenzymes (zymogenes, proMMP), and
the MMP activity is regulated via gene expression, proenzyme activation, and endogenous
tissue inhibitors, called tissue inhibitors of matrix metalloproteinases (TIMPs). There are
four types of TIMPs that are present in humans (TIMPs 1–4). Together with MMPs, TIPMs
play a major role in the remodeling of ECM and in the replenishing of its components [5,6].

Several reports have proven the important role of both MMPs and TIPMs in oral
health, describing the implication of MMPs/TIPMPs balance in the initial development
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of the tooth and during the enamel maturation. They are also found in both intact and
carious dentin, as well as in the pulp and in the saliva [7]. MMPs are expressed by different
types of cells in the oral cavity. For example, in an early report from 1994, MMP-9 was
mainly detected in gingival keratinocytes, while MMP-2 was expressed by gingival and
granulation tissue fibroblasts [8]. Later, Tervahartiala et al., have described expressions of
MMP-2, -7, -8, and -13 in gingival sulcular epithelium. In addition, MMP-7 and -13 were
also found to be secreted by fibroblasts and macrophages and MMP-8 by neutrophils [9].

In this mini-review, we aim to summarize the literature information about the functions
of MMPs, paying more attention to MMP-8 (collagenase-2 or neutrophil collagenase) in the
development and progression of periodontitis, peri-implantitis, and carious lesions. We
also emphasize the role of particular gene variants in MMP8 as predisposing factors for
some oral diseases.

The review was done on the bases of international databases, such as PubMed
(National Library of Medicine, Bethesda, MD, USA), Google Scholar, EBSCO (EBSCO
Industries, Ipswich, MA, USA), Scopus (Elsevier, Amsterdam, The Netherlands), and Web
of Science (Clarivate Analytics PLC, London, UK). We performed a search using keywords
MMPs, metalloproteinase, MMP-8, MMP8, MMP8 polymorphism, oral health, periodonti-
tis, peri-implantitis, periimplantitis, implant loss, caries. We summarized the results and
conclusions from the papers. The papers included in the review are mainly from the period
of 2010–2022.

2. MMP-8

Matrix metalloproteinase 8 is a type of collagenase (collagenase-2 or neutrophil colla-
genase). It is a glycoprotein and as all MMPs, it is synthesized as a zymogene (proMMP-8),
which during the activation, undergoes proteolytic cleavage, leading to the removal of
80 amino acid propeptide from the N-terminus [10]. MMP-8 is released mostly by poly-
morphonuclear cells (PMNs, neutrophils), which store the MMP-8 pro-enzyme in specific
granules, but it can also be expressed by various other cell types such as macrophages,
T-cells, plasma cells, endothelial cells, vascular smooth muscle cells, fibroblasts, chondro-
cytes, keratinocytes, epithelial cells of bronchi, cornea, colon, gingival sulcus, etc. [6]. The
main substrates of MMP-8 are ECM proteins as fibril collagens (types I, II, III), non-fibril
collages (type IX, XII, XIV), fibronectin, laminin, entactin, tenascin C, and the proteoglycan
aggrecan. MMP-8 is also able to cleave some non-matrix proteins and peptides such as
angiotensin l, serpins, bradykinin, substance P, fibrinogen, α2-macroglobulin, bradykinin,
α1-antitrypsin, CXCL5 (chemokine (C-X-C motif) ligand), IL-8 [2,10,11].

ProMMP-8 is released from PMNs, and then it is activated in the extracellular space
using the cysteine switch mechanism [11]. In the gingiva, when secreting MMP-8, the
activated immune and non-immune cells also release different cytokines and regulatory
molecules (IL-8, OPG, PGE2, IL1β, TNF-α and RANKL) (Figure 1) [3,12]. One of the
biological roles of MMP-8 is to facilitate the migration of neutrophil granulocytes from
circulation into the tissues, including periodontium, by cleavage of collagen and other ECM
components [13]. The uncontrolled increased expression, release, and activation of MMPs
and other proteinases, including MMP-8, is thought to induce an inflammatory response,
which leads to the destruction of periodontal tissues and other inflammatory diseases [14].

The MMP8 gene is located in chromosome 11q22.3; in the same cluster as eight other
MMP genes encoding MMP-1, MMP-13, MMP-3, MMP-10, MMP-7, MMP-12, MMP-20,
and MMP-27 [15,16]. A number of gene variants have been identified in the promoter and
in the encoding regions of the MMP8 gene, as several of them have been proven to have
allele-specific effects on the expression and/or enzyme activity [17–19]. Such naturally
occurring sequence variations with functional activity are MMP8 + 17 C > G (rs2155052),
MMP8 −799 C > T (rs1320632), −381 A > G (rs11225395) [17,18], −1089A > G (rs17099452),
−815G > T (rs17099451), −795C > T (G > A) (rs11225395), −763A > T (rs35308160); [19],
rs1940475 (C > T), rs3765620 (A > G) [20], and rs2508383 [21] (Figure 2).
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Figure 1. Secretion in oral fluid of MMP-8 and several regulatory molecules by activated polymorpho-
nuclear leukocytes (PMNs) and non-immune cells (gingival epithelium) and fibroblasts in gingival con-
nective tissue. E-enamel; D-dentin; G-gingiva; CT—gingival connective tissue: AB—alveolar bone; 1—
junctional epithelium; 2—sulcular epithelium; 3—oral-gingival epithelium (modified by [3,12]). 
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tional single-nucleotide polymorphisms (SNPs) (modified [22]). 

Particularly, the T allele of the promoter polymorphism MMP8 −795 C > T (G > A) 
(rs11225395) is bound with higher affinity by nuclear proteins leading to increase protein 
MMP-8 expression [23,24]. In chorion-like trophoblast cells, the promoter sequence con-
taining the minor alleles of three single-nucleotide polymorphisms (SNPs) (−799C > T, 
−381A > G, and +17C > G) has been shown to have 2-3-fold higher activity in comparison 
to the major allele promoter construct (C/A/C) and to any other haplotypes with at least 
one major allele. However, in other cell types, such as U937 leukocyte cells or THP-1 mon-
ocytes/macrophage cells, this difference in promoter activity has not been detected, sug-
gesting cell host dependence in MMP8 promoter activity [10]. A recent study has reported 
that the haplotype, Hap3, constructed by the variant alleles (GTTT) of four other SNPs in 
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phonuclear leukocytes (PMNs) and non-immune cells (gingival epithelium) and fibroblasts in gingival
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1—junctional epithelium; 2—sulcular epithelium; 3—oral-gingival epithelium (modified by [3,12]).
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Figure 2. Schematic illustration of the structure of MMP8 gene with some of the most studied
functional single-nucleotide polymorphisms (SNPs) (modified [22]).

Particularly, the T allele of the promoter polymorphism MMP8 −795 C > T (G > A)
(rs11225395) is bound with higher affinity by nuclear proteins leading to increase protein
MMP-8 expression [23,24]. In chorion-like trophoblast cells, the promoter sequence con-
taining the minor alleles of three single-nucleotide polymorphisms (SNPs) (−799C > T,
−381A > G, and +17C > G) has been shown to have 2-3-fold higher activity in compar-
ison to the major allele promoter construct (C/A/C) and to any other haplotypes with
at least one major allele. However, in other cell types, such as U937 leukocyte cells or
THP-1 monocytes/macrophage cells, this difference in promoter activity has not been
detected, suggesting cell host dependence in MMP8 promoter activity [10]. A recent study
has reported that the haplotype, Hap3, constructed by the variant alleles (GTTT) of four
other SNPs in the promoter of MMP8 (−1089A > G [rs17099452], −815G > T [rs17099451],
−795C > T or G > A, [rs11225395], −763A > T [rs35308160]) has lower promoter activity
than the wild-type Hap1 haplotype (AGCG). The latter finding was explained by the di-
minished binding of the NF-kB to the −815T allele of Hap3 in comparison to the wild-type
−815G allele [19].

The non-synonymous SNP in MMP8, the substitution of A with G at position 259
(+259A > G, rs. 1940475) leads to the replacement of Lysine 87 with Glutamate (Lys87Glu,
K87E). This mutation is localized in the pro-domain of MMP-8 and results in the modifica-
tion of the structural stability and, furthermore, the impairment of the catalytic activity of
the enzyme [25].
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In an extensive body of case-control studies and meta-analyses, the functional SNPs in
MMP8 have been shown to associate with the risk and progression of diseases such as colorec-
tal and breast cancers [22–24], atherosclerosis [16], hypertension [19], bronchial asthma [26],
osteoarthritis [27], and several oral pathological conditions such as periodontitis [5,17,18,28–31],
gingivitis, caries, peri-implantitis and early implant failure [2,32].

3. MMPs and MMP-8 in Periodontal Diseases

Periodontitis is a multifactorial disease that causes soft tissue and bone loss. Severe
periodontitis affects 740 million people worldwide and is the sixth most prevalent disease.
The diagnosis is based on the evaluation of the standard clinical parameters [3].

The main initiator of this chronic inflammatory disease is the interaction between
the pathogenic biofilm in the subgingival and the aberrant host immune response [33].
Evidence suggests that MMPs and their tissue inhibitors (TIMPs) play an important role in
tissue remodeling and tissue destruction in general and in dental tissues as periodontal
tissues in particular [7,34]. Periodontal inflammation is associated with the disruption of
the balance between MMPs and TIMPs [35] (Figure 3).
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Stimulation of the host cells by the pathogens from the dental plaque is considered a
type of indirect mechanism of destruction of the tissues in periodontitis [5] (Figure 1).

Pathogens such as Treponema denticola (T. denticola), Tannerella forsythia (T. forsythia),
and Porphyromonas gingivalis (P. gingivalis), which are the main components of pathogenic
biofilm found in the gingival crevicular fluid and plague, induce a cascade which leads to
the increased levels of an active form of several MMPs [4,36,37]. Several studies have
demonstrated that those pathogens activate the secretion (e.g., MMP-2, MMP-9) and
especially the activation of MMPs (e.g., MMP-8) both by bacterial-derived protease (a
serine-type protease) and by the oxidative stress and release of myeloperoxidase (MPO)
caused by the respiratory burst during the neutrophil phagocytosis [4].

In periodontal diseases, special attention has been paid to three collagenases (MMP-1,
MMP-8, and MMP-13) and to the gelatinases (MMP-2 and MMP-9) because the major
component of the ECM is collagen type I. All other MMPs (MMP-7, -12, -14) and proteases
have relatively moderate effects in periodontitis [4].

Recently, MMP-8 has been considered to be one of the most promising biomarkers
for early detection of periodontitis and for its progression and prognosis of treatment [3,4].
Elevated salivary and gingival crevicular fluid (GCF) MMP-8 levels have been reported
in patients with initial and chronic periodontitis and in those with periodontitis linked to
diabetes [3,38], while the antibiotic and/or scaling and root planning treatment, as well
as the application of MMP inhibitory adjuvant medicines, have been shown to lead to the
reduction of the level of MMP-8 [4,39–41]. For example, Yakov et al. reported that the
persistent increase in MMP-8 in the gingival crevicular fluid is an indicator of a high risk of
poor response to periodontal therapy [36]. Sensitive MMP-8-based assays of saliva, applied
as chair-side kits, have been recently created [3]. These assays effectively distinguish
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clinically healthy sites and gingivitis from periodontitis and could also be applicable in
monitoring the treatment of patients with chronic periodontitis [41]. Thus the introduction
of that method for periodontal disease testing would give an advantage not only for the
diagnosis but also for the identification of susceptible individuals and the prognosis of
treatment [3,42].

Factors determining the susceptibility for periodontitis are some functional variants of
the genes encoding the MMPs [17,43]. Variations in the MMP8 gene that have been mostly
investigated in association with periodontitis are MMP8 −799 C > T (rs11225395) +17 C/G
(rs2155052) and −381A/G (rs11225395) (Table 1).

Table 1. Observations from studies concerning MMP8 −799 C > T (rs11225395) +17 C/G (rs2155052)
and −381A/G (rs11225395) polymorphisms in periodontitis.

Polymorphism
in MMP8 Population Disease Patients/Controls Observation

−799 (C > T) Taiwan AgP + CP 96 + 361/106 Increased risk for AgP (p = 0.04) and CP
(p = 0.007) in carriers of T allele [44].

−799 (C > T)
No differences in allele (p = 0.06) and genotype
(p = 0.280 distributions. No associations with

particular periodontal pathogen [45]
Czech CP 341/278

+17 (C > G) Czech CP 341/278
No differences in allele (p = 0.38) and genotype
(p = 0.09) distributions. No associations with

particular periodontal pathogen [45]

−799C>T/+17C > G
haplotypes Czech CP 341/278 -799T/+17C haplotype is associated with

1.273-fold risk of CP (p = 0.038) [45]

−799 (C > T) Turkish GAgP 100/267

T allele (p < 0.0001) and T allele genotypes
(CT + TT, p < 0.0001) were more common in

GAgP determining 2.878-; 6.76-fold higher risk
of GAgP compared to the wild C allele and CC

genotype [18].

+17 (C > G) Turkish GAgP 100/267 No differences in allele (p = 0.290) and genotype
(p = 0.581) distributions [18]

−381 (A > G) Turkish GAgP 100/267

G allele (p = 0.027) and G allele genotypes
(AG + GG, p = 0.015) were less common in

GAgP determining 1.5- and 2.27-fold lower risk
of GAgP (OR = 0.664 and OR = 0.44) compared

to the wild A allele and AA genotype [18]

CP—chronic periodontitis; AgP—aggressive periodontitis; GAgP—generalized aggressive periodontitis.

As it is shown in Table 1, there are quite a few studies for MMP8 gene variants in the
development of periodontitis, and the results show that polymorphisms in the promoter
regions (−799 C > T, −381 A > G) might be of importance as predisposing factors both for
chronic and aggressive periodontitis [18,44]. The results of the two meta-analyses published
lead to similar conclusions suggesting that the variant T allele of MMP8 −799 C > T SNP is
associated with an increased risk of periodontitis in four genetic models [29,43]. When the
meta-analysis was performed in subgroups, it proved that the increased risk was mainly
valid for Asians, for chronic periodontitis, and non-smokers [29].

There are also a few other MMPs evaluated in saliva and GCF and in periodonti-
tis gingiva in patients with periodontitis. The immunohistochemically labeled cells for
MMP-13 and for MMP-8 were higher in density in periodontitis gingiva when compared
with healthy control tissue (p < 0.01). In periodontal diseases, gingival sulcular epithelium
expresses several, rather than a single, collagenolytic MMPs, and this proteolytic cas-
cade is evidently responsible for the tissue destruction characteristic of adult and juvenile
periodontitis [9].
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Besides MMP-8, decreased levels in gingival crevicular fluids after the effective treat-
ment of periodontitis have also been observed for MMP-1, -9, -12, and -13 [4,46,47]. Indeed,
the analyses of GCF from 29 African-American individuals diagnosed with localized ag-
gressive periodontitis treated with full-mouth scaling and root planning and systemic
antibiotics have proven that the levels of MMP-1, -8, -9, -12 and -13 were significantly
reduced up to 6 months after the beginning of therapy and correlated positively with some
clinical parameters as the pocket depth [46]. Even more, MMP-9 found in the saliva is
shown to be a more sensitive biomarker during orthodontic treatment, which is promising
for the decreasing of periodontal hazards during such manipulations [4].

In addition, significant associations were found between MMP-8 and MMP-9 activi-
ties in gingival crevicular fluid and the severity of the periodontal disease, together with
negative correlations with TIMP-1 and TIMP-2 levels. This means that there is a dynamic
in the balance between the active MMPs and their endogenous inhibitors, TIMPs, and
suggests that MMP inhibitors could be a part of an innovative therapy against the effects of
MMP on periodontal tissues [2]. Such MMP inhibitory effect is expressed by subantimi-
crobial doses of doxycycline, which have been approved as adjuvant therapy for treating
periodontitis [48].

4. MMPs and MMP-8 in Peri-Implantitis

Implant-supported oral rehabilitation has attracted increasing attention due to high
clinical success and proven improvement in patient quality of life [49]. However, it is
associated with complications such as peri-implant mucositis (PIM) and peri-implantitis
(PI). PIM is an inflammatory lesion confined to the soft tissues surrounding an endosseous
implant in the absence of supporting bone loss or ongoing marginal bone loss [50]. Peri-
implantitis is a localized infectious disease that causes an inflammatory response in both
soft tissues and bone loss surrounding the osseointegrated implant. The microorganisms
that are linked to implant failure are Gram-negative anaerobes and spirochetes. The
traditional diagnosis is based on bleeding, changes of color, suppuration, assessment of the
depth of the peri-implant pocket, and x-ray determination of bone loss [51].

More and more, we focus on early diagnosis of peri-implantitis and its rate of pro-
gression. The use of biomarkers can aid in the early detection of peri-implantitis [52].
Biomacromolecules, such as chemokines, MMPs, and cytokines derived from the peri-
implant crevicular fluid (PICF), have been proposed as additional parameters to promote
the diagnosis, prognosis, and management of peri-implant mucositis (PIM) and peri-
implantitis (PI) [53]. The available biomarkers in the oral cavity are found in the saliva,
the gingival crevicular fluid, the peri-implant sulcular fluid, and the mouth rinse remnant.
Those fluids can be collected without being invasive, and they show great potential to
detect periodontal health and periodontal disease [54].

Recent studies have shown that the level of MMP-8 is often elevated in PICF [55,56].
Elevation of MMPs is associated with the irreversible destruction of connective tissue
around the implant [57] and has been attributed to a polymorphism in the promoter region
of MMP8, which explains the different responses among individuals in the same disease
category [58,59]. According to Alassiri, S. et al., low levels of MMP-8 (<20 ng/mL) in PICF
are linked to periodontal health, while the upregulation is associated with an increased
risk of peri-implant inflammation (Figure 3). Pathologically increased levels of MMP-8
(>20 ng/mL) can be observed by a quantitative MMP-8 chair-side device—ImplantSafe®,
which helps to differentiate inactive from active periodontal and peri-implant sites with
a sensitivity of 90% and a specificity of 70–85% [60]. Additionally, even with the high
accuracy of MMP-8 in differentiating health from disease, the level of MMP-8 in saliva
can be modified due to caries, smoking, and increased body mass index (BMI). This may
affect accuracy in the early stages of diagnosing periodontal disease [61]. The levels of
MMP-8 can also be affected by medications, such as the low doses of drugs that take part
in the conventional treatment of both peri-implantitis and periodontitis (Figure 3). Their
goal as an adjuvant is to modify the host inflammatory response, which usually includes
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tissue destruction [62]. Doxycycline (20mg) is a well-known inhibitor of MMP-8, which
modulates the host immune response. Low dose of Doxycycline does not lead to a bacterial
resistance or cross-resistance. For those reasons, patients on Doxycycline therapy should
be examined with special attention, because of the inhibitor effect on MMP-8 [63].

As one of the major proteases in GCF, MMP-8 plays a vital role in the initiation and
progression of peri-implantitis and shows a relationship with various clinical indicators.
MMP-8 may also have potential application in the diagnosis and prognosis of peri-implant
disease and serve as an adjunct to other related biological indicators in the diagnosis of
peri-implant disease [4,32,64–66].

In the literature, there is a very limited number of studies focused on the MMP8
gene variants as factors involved in peri-implantitis and implant loss. An early study by
Costa-Junior et al. has explored the possible relationship between one of the functional
polymorphisms in the MMP8 gene (−799 C > T, rs 11225395) and early implant failure [32].
The authors have analyzed the genotype distribution in 100 nonsmoking patients with
one or more healthy implants and in 80 non-smokers that have one or more early implant
failures. The results have suggested that the variant T allele and the TT genotype may
be predisposing factors for early implant failure [32]. Similar results were obtained in
a later case-control cross-sectional study from 2018, including 100 patients with early
implant failure and 100 non-smokers with age and gender volunteers. The authors have
explored the possible effect of four SNPs in four genes encoding MMPs: MMP8 −799 C > T
(rs 11225395), MMP1 −519 A > G (rs 1144393), MMP1 −1607 G > GG (rs 1799750) and
MMP3 −1612 5A > 6A (rs 3025058) [65]. The T allele and TT genotypes have appeared to
be more frequent in test groups than in controls. A significant finding of this study is that
the haplotype T-A-GG-5A is a risk factor, while the C-A-G-6A and C-G-G-6A are protective
against implant loss [65].

5. MMPs and MMP-8 in Carious Lesions

Caries is considered to be a multifactorial disease, which is influenced by environmen-
tal, biological, and behavioral factors that, if present, increase the possibility of a disease
occurrence [67].

Carious lesions occur when the mineral and organic matrix are dissolved. The dem-
ineralization is caused by bacterial acids and other risk factors. The degradation of the
collagen is thought to be initiated by collagenolytic MMPs, more specifically, MMP-8.
Studies show that patients with manifest carious lesions have higher levels of salivary
MMP-8 compared to subjects without carious lesions [61].

MMPs have been found in dentine, odontoblasts, periapical tissue, and in pulp.
They play an important role in maintaining homeostasis in the processes of normal tissue
modeling, dentine matrix formation, and modulation of the progression of caries and
secondary dentine formation. MMPs also take part in numerous extracellular pathologic
conditions. Furthermore, they participate in the processes of both reversible and irreversible
pulpitis, as well as in the inflammation of the periapical region [68].

MMPs take part in the processes of mineralization of the enamel and the dentin, the
prevention, and the treatment of dental erosion [7]. MMPs that are found in saliva, dentinal
fluid, and mineralized dentin may affect the caries of the dentin process at the early stages
of demineralization. The changes in collagen suggest the participation in the lowering of
the mechanical properties of the affected dentin and the reduced ability to remineralize [69].

When it comes to restorative dentistry, recent studies propose that MMPs play an
important role in maintaining adequate bond strength. The endogenous dentinal MMPs
are affected by the etching process and sequentially influence the bond strength [70].

The genetic factors are also explored concerning the enamel development and caries
establishment. In a study with 505 Brazilian children and adolescents from 3 to 21 years of
age (293 with caries and 212 caries-free), Tannure et al. have observed that the variant G
allele of the polymorphism rs2252070 (A > G) in MMP13 has a protective role, while none
of the other studied SNPs [MMP2 rs243865 (C > T), MMP9 rs17576 (A > G) and TIMP2
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rs7501477 (G > T)] have demonstrated a significant association with caries experience [71].
Later, Vasconcelos et al. explored the possible predisposing role of selected polymorphisms
in MMP8 (rs17099443 C > G and rs3765620 G > A), MMP13 (rs478927 C > T and rs2252070
C > T), and MMP20 (rs1784418 T > C) for caries experience and developmental defects of
enamel (DDE) in 216 children from the Amazon region of Brazil [72]. The main findings are
that only the variant T allele of MMP13 rs478927 C > T SNP is a significant risk factor for
both caries experience and DDE, while the other four SNPs do not express any significant
associations [72].

6. Conclusions

It can be concluded that MMPs indeed play an important role in the breakdown of
the collagenous structure leading to the destruction of periodontal tissues and to various
other pathological conditions. However, they are also essential in the physiologic process
of tissue remodeling. Assessing MMP-8 is an extremely valuable tool for diagnosing and
targeting this enzyme could be an efficient approach for treating periodontitis or early
implant loss.

Biomarkers such as MMP-8 can assist in both staging and grading periodontitis. Future
studies should focus on implementation and more efficient chair-side tests that could be
used in daily practice.
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