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Abstract: Diabetic retinopathy (DR) is the foremost cause of blindness in people with diabetes
worldwide, and early diagnosis is essential for effective treatment. Unfortunately, the present DR
screening method requires the skill of ophthalmologists and is time-consuming. In this study, we
present an automated system for DR severity classification employing the fine-tuned Compact
Convolutional Transformer (CCT) model to overcome these issues. We assembled five datasets to
generate a more extensive dataset containing 53,185 raw images. Various image pre-processing
techniques and 12 types of augmentation procedures were applied to improve image quality and
create a massive dataset. A new DR-CCTNet model is proposed. It is a modification of the original
CCT model to address training time concerns and work with a large amount of data. Our proposed
model delivers excellent accuracy even with low-pixel images and still has strong performance with
fewer images, indicating that the model is robust. We compare our model’s performance with transfer
learning models such as VGG19, VGG16, MobileNetV2, and ResNet50. The test accuracy of the
VGG19, ResNet50, VGG16, and MobileNetV2 were, respectively, 72.88%, 76.67%, 73.22%, and 71.98%.
Our proposed DR-CCTNet model to classify DR outperformed all of these with a 90.17% test accuracy.
This approach provides a novel and efficient method for the detection of DR, which may lower the
burden on ophthalmologists and expedite treatment for patients.

Keywords: diabetic retinopathy; retinal fundus images; image pre-processing; compact convolutional
transformer; ablation study; low pixel

1. Introduction

Diabetic retinopathy (DR) is a progressive condition, often affecting both eyes. It is
a complication of diabetes mellitus, which occurs when high glucose levels in the blood
induce lesions on the retina of the eye. It is the leading cause of blindness among people
with diabetes [1]. According to the World Health Organization (WHO), in 2014, 422 million
people worldwide had diabetes; a total of 35% of these had developed retinopathy due to
the progressive destruction of blood vessels in the retina [2]. Irreversible damage to the
blood vessels can occur if this persists for a prolonged period [3]. Early diagnosis of diabetic
retinopathy can inform treatment and prevent DR from reaching the most severe stage.
However, based on years of experience and time, ophthalmologists’ clinical expertise is

Biomedicines 2023, 11, 1566. https://doi.org/10.3390/biomedicines11061566 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11061566
https://doi.org/10.3390/biomedicines11061566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-5341-2362
https://orcid.org/0000-0002-0787-5403
https://orcid.org/0000-0001-7572-9750
https://orcid.org/0000-0003-2675-5471
https://doi.org/10.3390/biomedicines11061566
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11061566?type=check_update&version=1


Biomedicines 2023, 11, 1566 2 of 27

required for effective diabetic retinopathy screening [4]. DR can be diagnosed and classified
employing color fundus images. The DR screening process involves an ophthalmologist
examining the fundus and integrated retinal images captured by specialized equipment,
which requires significant time. There is a severe shortage of ophthalmologists, so there
are fewer available screening appointments than individuals in need [3]. Automatic dia-
betic retinopathy classification techniques may help diagnose DR and increase screening
productivity [5].

Computer aided diagnosis (CAD) systems for diverse medical imaging modalities are
currently being studied [6]. Researchers have been introducing many aspects to diagnosing
diabetic-related diseases in recent times [7]. However, deep learning models have several
shortcomings, including complexity and a long training time. While convolution is often
used in classification models, it is possible to construct effective models without this.
Studies of transformer models have gained prominence in the field of Machine Learning
(ML). Adding simple convolutional blocks to the tokenization stage of a visual transformer
was the idea behind the Compact Convolutional Transformer (CCT), which was first
proposed by Hassani et al. [8]. To address the shortcomings (i.e., high training time,
complexity, high dimensional image) of the deep learning models, this study proposes a
novel automated approach to classify the DR with small image size and short training time
to detect the progression of DR at an early stage.

Several researchers have classified DR using different retinal fundus datasets, deep
learning (DL), and ML techniques. In most instances, their methods failed to provide a
strategy for dealing with a large data hub containing low-pixel images. We describe the lim-
itations of these models in the literature review. We attempt to overcome these limitations
by employing the CCT model on a merged dataset comprising many diabetic retinopathy
photos and classify DR into five classes: no DR (Grade 0), mild Non-proliferative Diabetic
Retinopathy (NPDR) (Grade 1), moderate NPDR (Grade 2), severe NPDR (Grade 3), and
Proliferative Diabetic Retinopathy (PDR) (Grade 4).

The main contributions of this paper are as follows:

1. A total of five datasets are amalgamated to generate a larger and more encompassing
dataset, and a wide range of diabetic retinopathy images with diverse resolutions and
image quality are utilized. The resulting datahub contains 53,185 raw images.

2. Several image pre-processing techniques, including Otsu thresholding, contour detec-
tion, region of interest (ROI) extraction, morphological opening, non-local means de-
noising, and Contrast Limited Adaptive Histogram Equalization (CLAHE), are used to
eliminate artifacts and noise from retinal fundus images and enhance
their quality.

3. An augmentation strategy is applied to increase the number of images and create a
large data hub.

4. A detailed comparison between three transformer models (Vision transformer, Swin
transformer, and Compact Convolutional Transformer) and four transfer learning
models (VGG19, VGG16, MobileNetV2, and ResNet50) using our dataset is done to
evaluate how well the models perform in terms of accuracy and training time and to
find the optimal transformer or transfer learning model for a vast number of images.

5. A new model, DR-CCTNet, is proposed. It is constructed by modifying the original
CCT model to overcome the long training times issue and work with a large data
hub. Using convolutional blocks, the tokenization step of the vision transformer is
accomplished, drastically lowering model training time while attaining high accuracy,
even with low-pixel images.

6. An ablation study is carried out by modifying the proposed model’s various hyper-
parameters and layer architecture to improve its performance further, reducing
the number of parameters and making the training process less complicated and
time-consuming.

7. To further examine the generalization capabilities and robustness of our model in
relation to the size of the training dataset, the model is trained four times with a
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gradually decreasing number of images. Even with a smaller number of images,
the model demonstrates good performance, demonstrating the robustness of the
DR-CCTNet model.

2. Literature Review

In recent years, the need for accurate diagnosis of DR has attracted attention. Several
CAD methods have been developed to aid clinicians’ analysis of fundus images [9]. Deep
learning algorithms are becoming more popular due to their superiority in automatic
feature extraction and classification. However, deep learning has drawbacks when work-
ing with big data hubs because of its computational complexity [6]. Machine Learning
models, transfer learning models, and in some cases, transformers have been described for
DR classification. In this section, prior studies related to DR classification are discussed.
Hemanth et al. [10] proposed effective image-processing techniques with histogram equal-
ization and contrast-enhanced limited adaptive histogram equalization techniques. They
employed a CNN model for classification and used 400 retinal fundus images of the MESSI-
DOR dataset. Their model achieved 97% accuracy, 94% recall, 98% specificity, 94% precision,
an F1-score of 94%, and a mean value of 95%. Other researchers [3] focused on categorizing
DR fundus images according to the severity of the diseases, achieving high accuracy. They
used the Alexnet model architecture to deploy suitable pooling, Softmax, and rectified
linear activation unit (ReLU) functions. They utilized 1190 retinal images of the Messidor
dataset, including healthy retinas, DR stage 1, DR stage 2, and DR stage 3. They split their
images into RGB channels and used the green channel for further processing. Classification
accuracies of 96.6%, 96.6%, 95.6%, and 96.6% were achieved for healthy images, stage 1,
stage 2, and stage 3, respectively. Gu et al. [11] proposed a method to detect all five DR
stages, no DR, mild, moderate, severe, and proliferative DR. They employed a feature
extraction block (FEB) and a grading prediction block (GPB) and used the DDR and the
IDRiD datasets. The area under the curve (AUC) for classes 0 through 5 were 0.9980,
0.6128, 0.9509, 0.9455, 0.9741, and 0.9293, respectively. Sehrish et al. [12] proposed a CNN
ensemble-based framework for identifying and classifying the various stages of DR in color
fundus images. They applied up-and-down sampling to the Kaggle DR dataset to balance
the dataset for multiclass classification. They integrated multiple deep learning models,
including Reset50, inceptionV3, Xception, Dense121, and Dense 169, and trained these on
balanced and unbalanced datasets. A test dataset was developed to validate the model, and
the findings were compared to previous research using a comparable dataset. However,
the accuracy of their proposed ensemble model for the unbalanced dataset was just 80.8%.

Liu et al. [13] introduced three hybrid deep learning models, Hybrid-a, Hybrid-f, and
Hybrid-c, for diabetic retinopathy classification with an improved loss function. To assess
the proposed model’s performance, they utilized three datasets, DeepDR, APOTS, and
EyePACS. Binary processing, resizing, and geometric augmentation techniques were used
to process the dataset. The improved version of the E-CE loss function accelerated their
training process. Their proposed model structures outperformed multiple base models,
attaining an accuracy of 86.4%. Wu et al. [14] created a CNN-based Coarse-to-Fine Net-
work (CF-DRNet) architecture for automatic DR categorization. They utilized two publicly
available datasets, IDRiD and the Kaggle fundus image dataset, and employed augmen-
tation strategies to overcome the class imbalance problem. ResNet, a transfer learning
model, was employed for comparison. Their model outperformed ResNet with an accuracy
of 80.61% and 80.00% for the IDRiD and the Kaggle fundus image dataset, respectively.
Lam et al. [15] applied convolutional neural networks (CNNs) to color fundus images
of the Kaggle and Messidor datasets for automated diabetic retinopathy detection. The
CLAHE algorithm improves the dataset quality, and various augmentation techniques
help balance the dataset. The GoogleNet transfer learning model provided the best ac-
curacy of 74.5% in binary classification, and the proposed model obtained accuracies of
68.8% and 57.2% on three and four-class classifications, respectively. Gao et al. [16] pro-
posed a hybrid structure of different inception models. They used three normalization



Biomedicines 2023, 11, 1566 4 of 27

techniques and five augmentation strategies to pre-process the fundus images. Their pro-
posed model inception@4 attained an accuracy of 88.72% and a recall value of 94.84% for
multiclass classification.

The existing literature shows that most researchers have worked with a limited number
of images, and a minimum image size is 150 × 255 pixels, as can be seen in Table 1. To
address these limitations, we introduce an efficient approach to work with a data hub of
154,882 images. Low resolution images with dimensions of 16 ×16 pixels are used.

Table 1. Comparison of existing literature.

Paper Model Datasets Number of Image Image Size (Pixels)

Shanthi et al. [3] Modified AlexNet Messidor 1190 259 × 259
Hemanth et al. [10] Proposed CNN model MESSIDOR 400 150× 255

Gu et al. [11]
Proposed transformer model
by using vision transformers

and residual attention

DDR and
IDRiD

13,673
and
516

512 × 512

Sehrish et al. [12] Ensemble Classifier DR’s Kaggle dataset 35,126 512 × 512

Liu et al. [13] Hybrid deep learning model DeepDR, APOTS, and
EyePACS

1200, 3662
and 35,126 380 × 380

Wu et al. [14] CF-DRNet IDRiD and DR’s Kaggle
dataset 413 and 35,126 256 × 256

Lam et al. [15] CNN based architectures DR’s Kaggle dataset
and Messidor-1 35,126 and 1090 256 × 256

Gao et al. [16] Inception@4 DR Fundus 4476 600 × 600

3. Methodology

This research consists of six stages. Figure 1 illustrates the overall procedure where the
first five public datasets have been merged to create a large dataset. In the second stage, the
fundus photos are pre-processed to eradicate noise and artifacts and enhance the quality of
the images. Under-sampling and augmentation techniques are utilized in the third stage to
create a data hub. Stage four of this study involves constructing a base model, and in stage
five, ablation studies for this model are done. Finally, we evaluate the performance of the
model and other results in stage six. All the stages are described in detail in this section.

3.1. Dataset Description

One of the major objectives of our study is to work with a wide range of images with
different resolutions and quality to make a diverse dataset. We have integrated five datasets:
APTOS [17], Messidor2 [18], IDRiD [19], DDR [20], and Kaggle Diabetic Retinopathy [21].
Every dataset has five categories: no DR (Grade 0), mild NPDR (Grade 1), moderate NPDR
(Grade 2), severe NPDR (Grade 3), and PDR (Grade 4). Grade 0 to Grade 4 represent the
progression of diabetic retinopathy. Table 2 illustrates the number of images in each dataset
and the number of images for each grade after merging all the datasets. Some of the fundus
images of each dataset are displayed in Figure 2.
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Figure 1. Workflow diagram; Stage-1 (Dataset Preparation): Combination of five different datasets;
Stage-2: Image pre-processing (A). Artifacts removal, (B). Noise Removal, and (C). Image Enhance-
ment; Stage-3 (Data Balancing): Down sampling (Applying 12 types of augmentation techniques);
Stage-4 (Base Model Creation): Apply seven types of CNN models (Compact Convolutional Trans-
former (CCT), Swin Transformer, Vision Transformer, VGG16, VGG19, MobileNetV2, and Incep-
tionV3); Stage-5 (Ablation Study): Apply twelve types of alteration to the base model for creating
a proposed model; Stage-6 (Results and Discussion): Results Analysis, Comparison with Existing
Literature, model performance evaluation, and Robustness Analysis.

Table 2. Dataset description.

Datasets Messidor2 APTOS IDRiD Diabetic
Retinopathy DDR Merge

No DR (0) 1017 1805 134 25,810 6265 34,830
Mild NPDR (1) 270 370 20 2443 630 3718

Moderate NPDR (2) 347 999 136 5292 4447 11,209
Severe NPDR (3) 75 193 74 873 236 1441

PDR (4) 35 295 49 708 913 1987
Total Images 1744 3662 413 35,126 12,491 53,185

3.2. Image Pre-Processing

Image pre-processing is essential to improve the quality of the images collected from
public datasets. High-quality color retinal images are required for reliable and prompt
classification of DR [22]. In this study, five different image datasets are combined. Public
datasets of retinal fundus images have been developed with varying resolutions and
compression formats and contain background noise [23]. To ensure the quality of the
fundus images, we employ various methods to eliminate artifacts, eliminate undesirable
noise, and enhance the image. Figure 3 illustrates the process of image pre-processing.
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3.2.1. Artifacts Removal

Images can contain artifacts, such as unwanted regions or objects. Removing these
artifacts, especially if they are evident, is crucial for DR classification. Our dataset of retinal
fundus images contains a considerable amount of black background, which is unnecessary
for the classification task. We eliminate the black region from our dataset using three
procedures (e.g., Otsu thresholding, contour detection, and ROI extraction).

Otsu Thresholding

The Otsu method determines an optimal global threshold value using an image’s
histogram [24]. The threshold is used to distinguish the image’s background and the ROI.
This nonlinear transformation converts a grayscale image to a binary image. For our study,
we use a minimum value of 0 and a maximum value of 255. Utilizing the Otsu algorithm,
we successfully distinguish the background and the ROI. Figure 3B(i) exhibits the Otsu
threshold mask.

Contour Detection

A contour is an outline that depicts the shape or form of an object, and contour
detection is a technique that extracts curves from images that correspond to the shape of
the objects [25]. The binarized image from Otsu’s thresholding is used as the source image
for the contour detection algorithm. Figure 3B(ii) represents the contour of the fundus
image, which is necessary for the next step.

Regions of Interest Extraction

In the image of the retinal fundus, the ROI is the targeting area for classifying diabetic
retinopathy. The ROI is cropped using pixel coordinates and the contours list from the
previous stage. Figure 3B(iii) depicts the separation of the ROI region without unnecessary
black background padding.

3.2.2. Noise Eradication

The publicly available fundus images dataset contains noise, making recognizing and
evaluating retinal fundus images challenging [23]. To eliminate noise from the images in
the dataset, we first employ morphological opening, and then non-local means denoising.
Figure 3C provides a pictorial representation of the noise elimination steps.

Morphological Opening

Morphological opening is utilized to eliminate image artifacts. Morphological opening
is a method that removes single-pixel noise, such as noisy spikes and tiny spurs, and
blackens small objects [6]. Objects usually retain their original dimensions and shapes. For
the input image, the initial step in this operation is erosion, followed by dilation. After
getting the ROI extracted image, the morphological opening is applied using a kernel.
Several kernel sizes were tested, and a kernel size of (10,10) resulted in the best results. A
resultant image after the morphological opening procedure is provided in Figure 3C(i).

Non-Local Means Denoising (NLMD)

NLMD has been adopted to reduce underlying noises in our study. The NLMD
approach replaces each pixel with the weighted average of nearby pixels. The formula for
this algorithm is as follows [26]:

NLu(p) =
1

C(p)

∫
f (d(B(p), B(q))u(q)dq (1)

Here, NLu(p) is the filtered value, f is a decreasing function, d(B(p), B(q)) is the
Euclidean distance between patches (p) and (q) which specifies the pixel’s surroundings,
and C(p) is a normalizing factor that divides the average weighted function result to obtain
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the filtered value. In our study, we have performed NLMD using the fastNlMeansDenois-
ingColored() function. The output image after morphological opening is utilized as the
input image for NLMD. The templateWindowSize and searchWindowSize are set at 7 and
21, respectively. Our approach eliminates the underlying noise in the retinal fundus images
in our study, resulting in an adequately denoised image. Figure 3C(ii) depicts a noise-free
image produced using NLMD.

3.2.3. Image Enhancement (CLAHE)

Denoised retinal fundus images are processed with CLAHE [27] to enhance the con-
trast. Darkness, brightness, and uneven illumination distort the image [28]. To address
this, we converted the RGB color channels to YUV color channels, where the Y channel
(Figure 3D) represents the lightness components [29]. Several different parameter combina-
tions were utilized to tune clipLimit and tileGridSize, and it was found that a clipLimit of
0.5 and a tileGridSize of (8,8) give the best results. These values are utilized when applying
CLAHE to the Y channel. The final image after CLAHE processing is shown in Figure 3D.

3.3. Data Balancing

After completing the image preprocessing steps, a vital concern is creating a large
datahub without making the dataset biased towards any particular class and creating
a significant data imbalance between classes. To achieve this, the random under sam-
pling technique is applied to the majority classes to balance the dataset. Subsequently, 12
augmentation strategies are utilized to increase the size of the dataset and create a large
data hub.

3.3.1. Under Sampling

Table 2 shows large differences in the number of images in different classes. Grade 0
and Grade 2 have more images than the other classes. To resolve these discrepancies, we
utilize a unique strategy to reduce the number of images in the two classes with the most
significant number of images. Algorithm 1 describes the process in detail.

Algorithm 1: Under Sampling

1. Define class names
class_names = [‘Grade 0’, ‘Grade 1’, ‘Grade 2, ‘Grade 3’, ‘Grade 4’]
2. Define image numbers for each class
class_image_numbers = [7 ‘Grade 3’: 1441, ‘Grade 4’: 1987]
3. Calculate the average image numbers of the smaller three classes
smallest_classes = [‘Grade 1’, ‘Grade 3’, ‘Grade 4’]
Smaller classes image numbers = [class_image_numbers[class_names] for class_name in smaller_classes]
average_image_numbers = int(np.mean(lower_classes_image_numbers))
4. Random under sample the higher two classes to the average size
Larger_classes = [‘Grade 0’, ‘Grade 2’]
for class_name in larger_classes
class_image_number = class_image_numbers[class_names]
undersample_ratio = average_image_numbers/class_image_number
undersampled_image_numbers = int(class_image_number × undersample_ratio)
class_image_numbers[class_name] = undersampled_image_numbers

Algorithm 1 describes that we calculated the mean number of images in the three
smaller classes, which is 2384. After getting the mean, we set this value as the threshold for
random under sampling and reduced the number of images to 2384. Table 3 depicts the
number of images after under sampling.
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Table 3. Image counts after augmentation.

Grade Merge Under Sampling After Augmentation

0 34,830 2384 30,992
1 3718 3718 48,334
2 11,209 2384 30,992
3 1441 1441 18,733
4 1987 1987 25,831

Total 53,185 11,914 154,882

3.3.2. Data Augmentation

Data augmentation can help to balance a dataset. After reducing the two majority
class images, we employed a data augmentation method to create a balanced dataset
in this study. Data augmentation is also a fundamental practice for avoiding overfitting
problems [30]. Increasing the amount of data should create samples similar to actual images
and ensure the dataset is balanced. Another issue is maintaining high image quality, which
is especially important in the medical field [31]. In this work, we have employed 12 types
of augmentation techniques to enhance the dataset. These techniques included two types
of zooming (with factors of 1.2 and 1.5), two types of flipping (vertical and horizontal
plus vertical), rotations of 90 degrees and −90 degrees, and adjustments to the brightness,
sharpness, contrast, and color, as well as color jittering and gamma correction. We used
these augmentation techniques to generate a large data hub of quality fundus images.

Changing the image’s brightness, sharpness, contrast, and color can improve image
quality and increase the visibility of structures in fundus images. Figure 4B–E depicts
fundus images acquired through these methods. Adjusting the image properties improves
the visibility of substantial structures in fundus images, including blood vessels, optic discs,
and lesions.
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Figure 4. Output images after applying 12 augmentation techniques; (A). Original Image,
(B). Brightness, (C). Color, (D). Sharpness, (E). Contrast, (F). Gamma Correction, (G). Color Jit-
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and (M). Horizontal Vertical Flip.

In this study, gamma correction is employed to adjust an image’s gamma value, which
affects the image’s brightness and contrast. This technique also improves the visibility
of structures in images, as depicted in Figure 4F. Gamma correction can enhance the
contrast of fundus images, making the forms more distinguishable and facilitating accurate
feature extraction.

Color jittering is a method used to add random color variations to an image. We
applied color jittering to fundus images to diversify the dataset’s color palette. This method
could enhance the model’s ability to recognize structures in fundus images with varying
hues. Color jittering can simulate the natural color variation of fundus images caused by
variations in illumination, camera settings, and patient characteristics, thereby making the
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model more robust to these differences. The image presented in Figure 4G is the result of
color jittering.

Zooming is a technique used to increase or decrease the scale of an image. Zooming in
enlarges the fundus image, enabling a closer examination of details, whereas zooming out
reduces the image size, providing a broader view of the retina. It may enhance the visibility
of delicate structures in fundus images, such as blood vessels, optic discs, and lesions,
by providing various scales of the same image. Fundus images are zoomed with factors
of 1.2 and 1.5 in this study. Figure 4H,I portray images zoomed with a factor of 1.5 and
1.2, respectively.

Rotation is a technique where a certain angle rotates an image. For our dataset, we
performed two forms of rotation: a 90-degree and a −90-degree rotation. These rotations
provide various orientations of the same fundus image, allowing the model to learn features
from different angles. This can improve the model’s ability to recognize structures in fundus
images with varying orientations. Figure 4J,K depict images rotated by 90 and −90 degrees,
respectively.

An approach that horizontally or vertically mirrors an image is called “flipping.”
Fundus images have been flipped in two ways, vertically and horizontally, in our study.
Flipping fundus images horizontally or vertically may enhance the model’s ability to
generalize various image orientations encountered during testing. Figure 4L depicts
vertical flipping, whereas Figure 4M depicts vertical plus horizontal flipping.

Table 3 lists the number of images of the dataset after completing 12
augmentation strategies.

3.4. Model Comparison
3.4.1. Training Strategy for Transfer Learning Models

To train the models, the batch size was set to 128, and the number of epochs was set to
400. The SGD optimizer and the average pooling layer were utilized with a learning rate of
0.006. In multi-class scenarios, the default loss function is mean squared error (MSE). The
tanh activation was used to estimate the probability for each class. The dataset split ratio
for training, validation, and testing was 70%, 20%, and 10%, respectively.

3.4.2. Transfer Learning Models

A total of four distinct transfer learning models, VGG19, VGG16, MobileNetV2, and
ResNet50, were used. Below is a description of these models.

VGG16

VGG16 is a transfer learning model consisting of 16 weighted layers, which achieved
an accuracy of 92.7% on the ImageNet dataset and was part of the top five test results. The
VGG can aid the kernel in learning more complicated characteristics [6].

VGG19

The VGG19 model is a variant of the VGG model that consists of 19 weighted layers.
In addition to the VGG16 model, there are three extra FC layers with 4096, 4096, and 1000
neurons. A Softmax classification layer and five max pool layers are also present. In the
convolutional layers, the ReLU activation function is employed [6].

ResNet50

The ResNet50 model contains 50 layers, including 48 convolutional layers and one
average and max pool layer. It has about 23 million parameters [32]. The model is commonly
utilized in computer vision applications because the design reduces vanishing gradient
difficulties by following an alternative shortcut path. The model uses stacked convolutions
to carry out convolution and max pooling layer operations. This can resolve gradient
vanishing issues more effectively [33].
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MobileNetV2

The MobileNetV2 model consists of 53 layers and has 3.5 million trainable parame-
ters [34]. It is made up of two types of blocks, each with three layers. In both blocks, the
first and the third layers are 1 × 1 convolutional layers with 32 filters, while the middle
layer is a depth-based convolutional layer. The longitudinal bottlenecks between the layers
are essential in preventing nonlinearity due to large data loss [27].

3.4.3. Transformer Models

Nowadays, the most commonly used model for natural language processing (NLP) is
the transformer model [35]. Transformer models excel in the use of attention-to-model range
relationships in the data. They were designed for sequence modeling and transduction
activities. The success of the transformer model in NLP has inspired researchers to extend
it to computer vision, where it has shown promising results in image classification [34].
Several transformer models are also utilized in this study. The augmented dataset was
employed for each of them used with three transformer models: vision transformer (ViT),
shifted window transformer (Swin transformer), and compact convolutional transformer
(CCT). The main objective of applying these models was to find the transformer model
which would be the best base model for this study using the augmented dataset. This base
model was utilized for further processing. SGD was used as an optimizer, MSE was the
loss function, the learning rate was 0.06, an average pooling layer was used, the batch size
was 128, and the total number of epochs was 400.

Vision Transformer (ViT)

Transformer models, which are widely used in natural language processing, pay
attention to image patches and sequences. In this instance, a series of image patches serves
as the input to the transformer block, which employs the multi-head attention layer as
a self-attention mechanism. Generally, the transformer blocks provide a tensor of batch
size, several patches, and projection dimensions, which can be supplied to the classifier
head using Softmax to compute the class probabilities [36]. Alexey et al. [37] proposed a
novel method for applying transformers to visual data and presented vision transformers
(ViTs) for image categorization. Figure 5 depicts a general approach used in ViT models.
It shows how an image is transformed into a group of patches, each indicating a location
of a portion in the image. This approach allows us to consider an image as sequential
data and use transformers originally designed for NLP. To ensure consistency in protection
dimensions, these image patches are flattened before they are fed into a trainable linear
projection layer. Since the ViT model is utterly indifferent to the hierarchy of the input
image, position embedding is included in these projections. The transformer encoder block
takes these patches, their positions, and an additional classification token, called the CLS
token. To learn different types of self-attention, the transformer encoder has layers that may
split their focus among seven different heads. A multi-layer perceptron (MLP) receives a
combined set of results from all existing nodes.

Shifted Window Transformers (Swin Transformers)

Another sophisticated computer vision tool is the Swin transformer, which is a modi-
fied version of the ViT. It uses hierarchical feature maps and scales computationally with
image size. It generally builds a hierarchical representation by starting with small-sized
patches and gradually integrating nearby patches in deeper transformer layers. It can
use feature pyramid networks (FPN) [38] or U-Net [39] for dense prediction with these
hierarchical feature maps. Since the number of patches is fixed in this method, the patch
size and the complexity scale linearly with the image size. Unlike previous transformer-
based systems [37], which produce a single-resolution feature map and have quadratic
complexity, the Swin transformer has properties that make it suitable as a general-purpose
backbone for many vision tasks. Figure 6 shows the architecture of the Swin transformer.
It can be seen from Figure 6 that the Swin transformer consists of four different building
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blocks. First, a patch partition layer will segment the input image into several patches. The
patches are then sent to the Swin transformer block, which is a part of the linear embedding
layer. The basic architecture is structured into four stages: linear embedding layers and
transformer blocks. The Swin transformer is built based on a modified self-attention and
a block that comprises multi-head self-attention (MSA), layer normalization (LN), and a
2-layer multi-layer perception (MLP) [36]. We employed the Swin transformer in this study
to solve the classification problem and diagnose retinal diseases.
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Compact convolutional transformer (CCT)

The compact convolutional transformer (CCT) has two blocks, including a transformer
with sequential pooling and convolutional tokenization. The intricate workings of the
CCT are depicted in Figure 7. In this process, the convolutional tokenization blocks gather
image patches. The dimensions of the augmented images are the height (h), weight (w),
and channel (c) of an image. The image patches are combined into a sequence of length (l).
For an image (y) with dimensions h, w, and c, the convolutional tokenization procedures
will be:

y0 = MaxPool(ReLU(Conv2D(y))) (2)
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Here, the convolutional layer (Conv2D) contains 64 filters with a stride of 2 and the
ReLU activation function. The maxpool layer then scales down the generated Conv2D
feature maps. The convolutional tokenization block accepts images of any dimension
as input. Consequently, the CCT models do not need all the image patches to be of the
same size. These convolutional patches in the CNN layers aid in the model’s ability to
store local spatial information. The image patches made by the first block are sent to the
transformer-based backbone, where an encoder block is made up of a multi-head self-
attention (MSA) layer and a multilayer perception (MLP) head. The transformer encoder
uses layer normalization (LN), the GELU activation function, and dropout. In CCT models,
layer normalization comes after positional embedding, where the positional embedding
is learnable.

The output of the transformer backbone is pooled via the sequence pooling layer,
which is utilized as an alternative to applying a class to map successive outputs to a single
class [8]. This sequence pooling allows the network to weigh the sequential embedding of
latent spaces generated by the transformer encoder and improve data correlation for the
input data. The sequence pooling layer pools the full sequence of data since it contains
meaningful information from diverse portions of the input images. This method is known
as mapping transformation; it is denoted as T : R(i×n×j) → R(i×j) .
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This procedure can be described as:

yL = f (y0) ∈ R(i×n×j) (3)

where the transformer encoder of a layer is denoted as L and its output is denoted as yL or
f (y0). Furthermore, a mini-batch size denoted by i, j is taken as the embedding dimension,
and n indicates the sequence length. Then, yL is fed to a linear layer g (yL) ∈ R(i×1) and
the Softmax activation function (Equation (4)) is utilized.

y′L = so f tmax(g
(

yL)
T
)
∈ R(i×1×n) (4)

The output can be calculated as:

output; o = y′LyL = so f tmax(g
(

yL)
T
)
× xL ∈ R(i×1×j) (5)

After pooling of the second dimension, output (o) ∈ R(i×i) is attained as an output.
After passing through a linear classification layer, the images are categorized.

3.4.4. Results of the Transfer Learning and Transformer Models

In this work, we initially tested four transfer learning and three transformer learning
models. We evaluated our enriched dataset with an image size of 32 × 32 for each model.
The number of epochs remains the same, at 400 epochs, for all transformer models. The
objective of this experiment was to find the optimal model, which means that it should
outperform the other models and take a minimal amount of time. Table 4 shows that the
CCT model outperformed the other models for 32 × 32 images. The CCT model achieved
the highest accuracy of 84.52%, taking only 78 s to complete each epoch. The ViT model
had the second-highest accuracy of 81.56%, with 180 s per epoch. The Swin transformer
model’s accuracy was very close to the ViT model, but it took a long time. In contrast, all
the transfer learning models had low accuracies and required a long time. We can see that
ResNet50 took 423 s per epoch. The remaining transfer learning models also required a
long time compared to the transformer models. Since the CCT model took the least amount
of time with 32 × 32 images and had the highest accuracy, we selected the CCT as the base
model for the rest of this research.

Table 4. Result of augmentation and image size based on transformer and transfer learning models.

Model Name Image Size Accuracy Epoch × Time

MobileNetV2 32 × 32 71.98% 195 × 386 s
VGG16 32 × 32 73.22% 165 × 391 s
VGG19 32 × 32 72.88% 177 × 404 s

ResNet50 32 × 32 76.67% 142 × 423 s
Swin Transformer 32 × 32 82.23% 200 × 95 s

Vit 32 × 32 81.56% 200 ×104 s
CCT 32 × 32 84.52% 200 × 78 s

3.5. Base Model

After testing three different transformer models, it was found that the CCT model
performs very well compared to other models. There are several opportunities to en-
hance the CCT model’s performance. We modified the base framework of the CCT
model and proposed an enhanced model. However, Figure 8 illustrates the CCT base
model architecture.

The base CCT model consists of several modules and layers: an input layer, an
augmentation layer, a CCT tokenizer, a multi-head attention layer, a regularization layer,
and pooling, dropout, dense, and output dense layers equipped with the Softmax activation
function. This framework takes input images of 32 × 32 × 3 dimensions, and several
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geometrical augmentations techniques are applied to the input images. The augmented
images are fed to the CCT tokenizer, and all the output images are reshaped into dimensions
of 36 × 128. Initially, the convolutional layer of the CCT tokenizer block has a stride size of
3, a kernel size of 5, and a kernel size of the pooling layer of 4. After passing through the
CCT tokenizer, it moves to the tensor flow addons and then passes through transformer
encoder block1 and block2. These encoder blocks consist of several layers, including
layer normalization, regularization, multi-head attention, another pair of regularization
and normalization layers, and two pairs of dense and dropout layers along with another
regularization layer. The last regularization layer’s output is the encoder block’s input.
The dimensions of the output of the final regularization block were 36 × 128. After the
transformer encoder block comes the following layer normalization with dimensions of
36 × 128. Then the normalization output is connected to the dense layer with a Softmax
layer that produces an output with dimensions of 64 × 1. This is sent to a sequence pooling
layer, which generates output data of 1 × 128 dimensions. In the final steps, the retinal
fundus images are classified into five classes utilizing a linear classification layer.
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3.6. Ablation Study

As previously mentioned, we performed an ablation study on the base CTT model to
optimize performance by modifying the layer design and fine-tuning the hyperparameters.
A total of 12 studies were carried out, including modifying the activation functions, different
pooling layers, changing the number of transformer encoder blocks, changing the kernel
size, changing the size of stride, different loss functions, batch learning rates, different
optimizers, and kernel size of the pooling layer. Ablation study is a sequential process.
Initially, a conventional hyperparameter value is set, and then experiments are carried out
by altering values. After optimizing the first parameter, a second ablation experiment is
done with the optimized first parameter. This process is repeated in successive steps until
we find the optimal configuration for our proposed CCT model. After performing the
ablation experiments on the base CCT model, the modified CCT model has a more robust
architecture with improved classification accuracy and a lower processing time. All results
are listed in Tables 5 and 6.
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Table 5. Ablation study on image size changing transformer encoder block dense layer, dropout layer,
activation function, pooling layer, and stride size.

Study 1: Changing Image Size

Configuration
No. Image Size No. of

Parameters Epoch Training Time Test
Accuracy (%)

1 32 × 32 (Base
model) 5,41,638 200 78 s 84.88%

2 28 × 28 541,638 200 60 s 83.91%
3 24 × 24 541,638 200 48 s 83.23%
4 16 × 16 541,638 200 38 s 82.52%

Study 2: Changing the Transformer Encoder Block

Configuration
No.

No of
transformer

encoder blocks

No. of
Parameters Epoch training time Test accuracy

(%)

1 3 707,142 200 70 s 82.88
2 2 541,638 200 38 s 82.52
3 1 300,678 200 21 s 82.38

Study 3: Changing the Dropout Layer and Dense Layer

Configuration
No.

No of dropout
layer

No of dense
layer

No. of
Parameters

Epoch ×
training time

Test accuracy
(%)

1 3 3 317,190 200 × 21 s 82.42
2 2 2 300,678 200 × 20 s 82.38
3 1 1 284,166 200 × 19 s 82.16

Study 4: Changing the activation function

Configuration
No.

Activation
function

No. of
parameters

Epoch ×
training time

Test accuracy
(%) Findings

1 Tanh 284,166 200 × 19 s 82.16 Previous
accuracy

2 relu 284,166 200 × 19 s 83.06 Highest
Accuracy

3 elu 284,166 200 × 19 s 82.38 Accuracy
improved

4 softsign 284,166 200 × 19 s 76.40 Accuracy
dropped

5 softplus 284,166 200 × 19 s 75.97 Accuracy
dropped

Study 5: Changing the pooling layer

Configuration
No.

Type of pooling
layer

No of
parameters

Epoch ×
training time

Test accuracy
(%) Findings

1 Max 284,166 200 × 19 s 84.33 Highest
Accuracy

2 Average 284,166 200 × 19 s 83.06 Previous
accuracy

Study 6: Changing the stride size

Configuration
No. No. of strides No. of

Parameters
Epoch ×

training time
Test accuracy

(%) Findings

1 1 284,166 200 × 19 s 84.33 Previous
Accuracy

2 2 284,166 200 × 19 s 83.16 Accuracy
dropped

3 3 284,166 200 × 19 s 82.97 Accuracy
dropped

4 4 284,166 200 × 19 s 81.43 Accuracy
dropped
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Table 6. Ablation study on changing kernel size, kernel size of the pooling layer, loss function, and
batch size.

Study 7: Changing the Kernel Size

Configuration
No.

No. of Kernel
Size

No. of
Parameter

Epoch ×
Training

Time

Test
Accuracy (%) Finding

1 4 284,166 200 × 19 s 84.33 Previous
accuracy

2 3 225,478 200 × 16 s 84.62 Highest
Accuracy

3 2 183,558 200 × 13 s 80.12 Accuracy
dropped

4 1 158,406 200 × 11 s 76.31 Accuracy
dropped

Study 8: Changing the kernel size of the pooling layer

Configuration
No.

No. of pooling
kernel size

No. of
Parameter

Epoch ×
training time

Test accuracy
(%) Finding

1 5 225,478 200 × 16 s 84.57 Accuracy
dropped

2 4 225,478 200 × 16 s 85.12 Accuracy
improved

3 3 225,478 200 × 16 s 85.68 Highest
Accuracy

4 2 225,478 200 × 16 s 84.62 Previous
accuracy

5 1 225,478 200 × 16 s 83.9 Accuracy
dropped

Study 9: Changing the loss function

Configuration
No. Loss Function No. of

Parameter
Epoch ×

training time
Test accuracy

(%) Finding

1 Binary
Cross-entropy 225,478 200 × 16 s 87.12 Accuracy

improved

2 Categorical
Cross-entropy 225,478 200 × 16 s 87.35 Highest

Accuracy

3 Mean Squared
Error 225,478 200 × 16 s 85.68 Previous

accuracy

4 Mean absolute
error 225,478 200 × 16 s 84.93 Accuracy

dropped

5
Mean squared

logarithmic
error

225,478 200 × 16 s 85.76 Accuracy
dropped

Study 10: Changing the batch size

Configuration
No. Batch size No. of

Parameter
Epoch ×

training time
Test accuracy

(%) Finding

1 256 225,478 200 × 12 s 86.88 Accuracy
dropped

2 128 225,478 200 × 16 s 87.35 Previous
accuracy

3 64 225,478 200 × 22 s 87.53 Accuracy
improved

4 32 225,478 200 × 31 s 87.78 Accuracy
improved
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Table 6. Cont.

Study 11: Changing the optimizer

Configuration
No. Optimizer No. of

Parameter
Epoch ×

training time
Test accuracy

(%) Finding

1 Adam 225,478 200 × 16 s 87.42 Highest
Accuracy

2 Nadam 225,478 200 × 16 s 86.78 Accuracy
dropped

3 SGD 225,478 200 × 16 s 87.35 Previous
accuracy

4 Adamax 225,478 200 × 16 s 84.18 Accuracy
dropped

5 RMSprop 225,478 200 × 16 s 86.8 Accuracy
dropped

Study 12: Changing the learning rate

Configuration
No. Learning rate No. of

Parameter
Epoch ×

training time
Test accuracy

(%) Finding

1 0.01 225,478 200 × 16 s 86.12 Accuracy
dropped

2 0.006 225,478 200 × 16 s 87.42 Previous
accuracy

3 0.001 225,478 200 × 16 s 90.17 Highest
Accuracy

4 0.0008 225,478 200 × 16 s 89.8 Accuracy
improved

Study 1: Altering the image size
In this case, we tested our base model by reducing the image size. Initially, the image

size was 32 × 32. After that, it was reduced to 28 × 28, 24 × 24, and 16 ×16. The main goal
was to achieve high accuracy with minimal time. We can see that the CCT model achieved
83.91% accuracy using a 28 × 28 image size in 60 s. When the image size is reduced to
24 × 24, 83.23% accuracy is achieved in 48 s. When the model was tested with an image
size of 16 × 16, it achieved 78.52% accuracy with a minimum training time of 80 s per
epoch. The accuracies were close to the base model, but the training time was different.
Although the accuracy with 16 × 16 images was 82.52%, slightly lower than the base
model, and it took the minimum time per each epoch, we chose the 16 × 16 image size for
further research.

Study 2: Altering the transformer layers
To attain the best accuracy, the transformer layers configuration of the base model

was altered by adding or removing the transformer encoded blocks. Table 5 displays the
outcomes of the model with a variety of configurations of the transformer-encoded blocks.
The model attained the greatest accuracy for configuration number 1 with a training time
of 70 s per epoch. However, configuration numbers 2 and 3 attained the test accuracies of
82.52% and 82.38%, respectively, which are very close to the first configuration’s acquired
accuracy. Since configuration 3 had the lowest number of trainable parameters (300,678), it
required the lowest number of epochs to train. Configuration 3 was therefore chosen for
further ablation research.

Study 3: Altering the Dropout Layer and Dense Layer
The performance of a classifier might vary depending on the number of dense and

dropout layers. In this study, we have experimented by adding or removing some dropout
and dense layers. In configuration 1, our base model attained the highest accuracy of
82.42%, but also had the highest number of parameters (317,190) and the longest training
time per epoch (21 s). After adding dense and dropout layers (configuration 2), our base
model performed with the second-highest accuracy with 300,678 parameters and 20 s
per epoch. For configuration 3, our model acquired 82.16% test accuracy with the lowest
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number of parameters, 284,166, and a training time of 19 s in each epoch. Though the
third configuration acquired close to the highest accuracy, its training time and parameters
were less than for the other configurations. Therefore, configuration 3 was chosen for
further experiments.

Study 4: Altering the Dropout Layer and Dense Layer
A classification model’s effectiveness is affected by choice of activation functions. The

performance of a model can be improved by choosing the best activation function. We
experimented with several activation functions, including the hyperbolic tangent activation
function (Tanh), the rectified linear unit (ReLU), the exponential linear unit (ELU), the soft
sign, and the soft plus. Table 5 shows that the ReLU activation function performed very
well, with the highest test accuracy of 83.06%. The number of parameters (284,166) and
the training time for each epoch (19 s) are the same for all the activation functions. In this
regard, the ReLU activation is chosen for further studies.

Study 5: Altering the type of pooling layer
A total of two different pooling layers, maxpooling and average pooling, were tried.

In both configurations, the number of trainable parameters and the training time for each
epoch were 284,166 and 47 s, respectively. The base model achieved the highest accuracy of
84.33% using the maxpooling layer. For this reason, the maxpooling layer was selected for
further processing.

Study 6: Altering the stride size
This study investigates alternative stride sizes in the model’s transformer layers. We

have applied several stride sizes: 1, 2, 3, and 4. In each configuration, the number of
parameters was the same, 284,166, and each configuration took 19 s per epoch. The first
configuration had the highest accuracy (84.33%), which was the same as in the previous
study, while the other configurations resulted in lower accuracies. Stride size 1 was therefore
selected for further processing.

Study 7: Altering the kernel size
Several transformer layer kernel sizes (4, 3, 2, and 1) were explored. A kernel size of

3 resulted in the highest test accuracy of 84.62% with 225,478 parameters, and its training
time per epoch was 16 s. The first configuration obtained a similar accuracy (84.33%),
while the accuracy dropped for other configurations. Therefore, a kernel size of 3 for the
transformer layers was used for further ablation studies.

Study 8: Altering the kernel size of the pooling layer
Experiments were conducted with different kernel sizes (5, 4, 3, 2, and 1) for the

pooling layers. The number of parameters (225,478) and the time per epoch (16 s) were the
same for all kernel sizes. A kernel size of 3 resulted in the highest test accuracy of 85.68%.
Most other configurations acquired close to the highest accuracy, while in some cases, the
accuracy decreased. Therefore, a kernel size of 3 for the model’s pooling layers would be
used in further ablation studies.

Study 9: Altering the loss function
To optimize the model, experiments were conducted with five loss functions: binary

cross-entropy, categorical cross-entropy, mean squared error, mean absolute error, and mean
squared logarithmic error. The outcomes are displayed in Table 6. All the parameters and
the epoch time are the same for all configurations. Categorical cross-entropy outperformed
the other loss functions with the highest accuracy of 87.35%. Therefore, the categorical
cross-entropy loss function was used for further studies.

Study 10: Altering the batch size
The classification performance may change with different batch sizes. We, therefore,

experimented with several batch sizes: 256, 128, 64, and 32. The number of parameters
remained the same (225,478). Though the model achieved the highest accuracy of 87.78%
while using a batch size of 32, the per-epoch time was long at 31 s. For configuration 1, the
model had close to the highest accuracy with minimal training time per epoch (12 s). We,
therefore, chose a batch size of 256 for the remaining ablation studies.

Study 11: Altering the optimizer
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A total of five different optimizers, Adam, Nadam, SGD, Adamax, and the RMSprop,
were explored to identify the optimal optimizer. In this case, the Adam optimizer attained
the highest accuracy, 87.42%, while the other optimizers obtained close to the highest
accuracy. The Adam optimizer was selected for further experimentation.

Study 12: Altering the learning rate
We experimented with learning rates of 0.01, 0.006, 0.001, and 0.0008. The number of

parameters and the training time were the same. The model achieved the highest accuracy
while using a learning rate of 0.001. We, therefore, selected a learning rate of 0.001 for our
proposed model.

The configuration of the proposed model after completing the ablation studies is
shown in Table 7.

Table 7. Configuration of proposed architecture after the ablation study.

Configuration Value

Image size 16 × 16
Epochs 100

Optimization function Adam
Learning rate 0.001

Batch size 256
Kernel size 3

Activation function ReLU
Loss Function Categorical Cross-Entropy

Kernel size of the pooling layer 3
Stride size 1

Pooling layer Max pooling
Projection_dim 128

Stochastic_depth_rate 0.1
Weight_decay 0.001

Figure 9 displays the configuration of our proposed model architecture. Figure 9
depicts the increase in test accuracy and the decrease in the number of parameters. Initially,
the parameters were 541,638 with a test accuracy of 82.52%. After completing the ablation
study, the accuracy increased by 7.65% (90.17%), and the number of parameters of the
model decreased by 316,160.
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3.7. DR-CCTNet

After performing ablation studies on the base CTT model, a new CTT model, named
DR-CCTNet, was proposed. DR-CCTNet architecture is constructed to minimize compu-
tational complexity and training time while optimizing performance. The DR-CCTNet
model resembles the original CCT model with fewer transformer encoder components and
some layer changes. Figure 10 depicts the DR-CCTNet model architecture. The base or
the standard CTT model has two transformer encoder blocks, whereas the DR-CCTNet
model has only one transformer encoder block, resulting in a smaller model with a faster
training time. Otherwise, the model architecture is similar but with several changes in
model hyperparameters, such as the stride and kernel sizes. After ablation, the kernel and
the stride size were replaced with 3 and 1, respectively. In the base CTT model, there were
two pairs of dense and dropout layers, while in the DR-CCTNet, one pair of dense and
dropout layers was eliminated. Moreover, the CCT tokenizer output was replaced with a
16 × 128 dimension. In contrast to transfer-based models, the model does not need posi-
tional encoding. This contributes to its low computational complexity. Self-attention has an
O(m2.d) computational complexity, where m denotes the length of the input sequence, and
d represents the dimensionality of the vector representation. Adding positional encoding
raises the computational complexity to (O(m2.d + m.d2)) [35]. Since positional encoding is
not required in the DR-CCTNet model and the transformer backbone is completely based
on the self-attention system, the training and testing phases of the proposed model require
fewer resources and are faster. This improves the model’s efficiency.
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4. Analysis of Results
4.1. Performance Metrics

Several metrics are produced to evaluate the effectiveness of the proposed classification
model. When the model correctly categorizes the positive class, the outcome is a true
positive (TP). When the model correctly identifies the negative class, it is called the true
negative (TN). A false positive (FP) is an outcome where the model incorrectly predicts the
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positive class, while a false negative (FN) is an outcome where the model incorrectly predicts
the negative class. For this research, we calculated the accuracy (ACC), precision, recall,
specificity, F1-score, false positive rate (FPR), false negative rate (FNR), false discovery rate
(FDR), negative predicted value (NPV), and the Matthew correlation coefficient (MCC) to
evaluate the model’s performance [27,34].

ACC =
TP + TN

TP + TN + FP + FN
(6)

recall =
TP

TP + FN
(7)

speci f icity =
TN

TN + FP
(8)

precision =
TP

TP + FP
(9)

F1 − score = 2
precision× recall
precision + recall

(10)

FPR =
FP

FP + TN
(11)

FNR =
FN

FN + TP
(12)

FDR =
FP

FP + TP
(13)

NPV =
TN

TN + FN
(14)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

4.2. Performance Analysis of the Proposed Model

After performing ablation studies on the base model, a final proposed CCT model with
a significantly improved classification performance was obtained. Table 8 shows the values
of several performance metrics, including statistical analysis, for the proposed CCT model.

Table 8. Various matrices computed for performance evaluation of the proposed model.

Measure Value

Recall 90.10%
Specificity 97.51%
Precision 89.38%

F1 Score (F1) 89.72%
Fall-out or False Positive Rate (FPR) 0.02492

Miss Rate or False Negative Rate (FNR) 0.09526
False Discovery Rate (FDR) 0.10618

Negative Predictive Value (NPV) 97.46%
Matthews Correlation Coefficient (MCC) 87.22%

Table 8 shows that after evaluating the proposed CTT model with the test data set, the
model obtained a precision of 89.38%, a recall of 90.10%, a specificity of 97.51%, and an
F1-score of 89.72%. The FPR, FNR, FDR, NPV, and MCC were 0.02492, 0.09526, 0.10618,
97.46%, and 87.22%, respectively. The values of the performance metrics indicate that our
proposed model can effectively classify fundus images.
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Figure 11 shows the accuracy and loss curves of the proposed model. The training and
validation curves converge efficiently with no significant gaps between them, indicating
no overfitting during the model’s training phase (Figure 11A). Similarly, the loss curves
in Figure 11B demonstrate consistent convergence. It may be inferred that no overfitting
or underfitting occurred throughout the model’s training phase. Figure 11C depicts the
proposed model’s confusion matrix. The row values denote the actual labels of the test
images, while the column values indicate the labels predicted by the model. The diagonal
values of the confusion matrix show the number of correctly predicted test images. It can
be seen that the model is not biased toward one or more classes and does not predict any
one class much better than the others. In fact, the model provides almost a similar number
of correct predictions for each class.
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4.3. Analysis of Image Size Tuning

Table 9 shows the results of the proposed model for images of different sizes. For com-
parison accuracy, the number of parameters and the execution time were also considered.
The results listed in Tables 5 and 6 demonstrate that we can obtain optimal results using
an image size of 16 × 16. To verify our ablation findings and display the computation
times, we changed the image size while keeping the parameters and configuration the
same as listed in Table 7. We first changed the image size to 32 × 32 and acquired a higher
accuracy of 93.81%. However, this image size was the most time-consuming, which does
not align with this study’s objective to minimize computational training time. The size
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was then changed to 28 × 28 and 24 × 24. Compared to the 32 × 32 images, the accuracy
was decreased. The accuracy for the 28 × 28 dimension was 93.33%, which is higher than
the accuracy for our 16 × 16 images, but this required 12 s more per epoch. The model
yielded an accuracy of 91.12% for 24 × 24 images, which is only 0.54% more than for
16 × 16 images, but this also cost nearly 7 s more time for each epoch. The experiment
demonstrates that the image size somewhat increases the overall accuracy but demands
more computational time. This cost will increase for a large amount of data. In our study,
we aimed to develop an efficient architecture for diagnosing retinopathy images. Since the
other three dimensions take a considerably longer execution time, we preferred to utilize
the 16 × 16 image size for the configuration.

Table 9. Robustness validation with different image sizes.

No. of Parameters Image Size Accuracy Epoch × Time

225,478 32 × 32 93.81% 200 × 32 s
225,478 28 × 28 93.33% 200 × 28 s
225,478 24 × 24 91.12% 200 × 23 s
225,478 16 × 16 90.17% 200 × 16 s

4.4. Analysis of the Performance with Image Reduction

This study has followed an image reduction strategy to test the robustness of the
proposed DR-CCTNet model’s performance. The number of input images gradually
decreased, and the DR-CCTNet model was tested multiple times to observe the accuracy
and an error bar to visualize the gaps between the actual and estimated results. The number
of images was reduced by 25% of the original size for each step. Additionally, we performed
three times on randomly selected images to test the model’s performance in each test case.
Figure 12 depicts the error bars with the mean value of model accuracy three times the test
case. In contrast, the ± value indicates the difference between the maximum accuracy (in
triplicate performance) and their mean value. The results are depicted in Figure 12.
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Figure 12. Results of image reduction.

Figure 12 demonstrates that during the test cases, the model obtained a ratio of
90.13 ± 0.04 % for 100% of images, 88.667 ± 0.155 % for 75% of images, 86.19 ± 0.232 % for
50% of images, and 84.79 ± 0.207 % for 25% images. Figure 12 shows that when the data is
reduced to 75% and 50%, the accuracy does not drop significantly compared to the highest
accuracy of 90.17%. In the final experiment, we only used 25% of the data compared to
the original augmented dataset, yet the drop in accuracy is only 5.377% (compared to the
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90.17% accuracy); it might be increased or decreased to 0.207. The finding of this experiment
illustrates that even when 75% of the images are removed, our model still performs well in
terms of accuracy. It demonstrates the robustness of our proposed DR-CCTNet model.

5. Conclusions

This study addresses some issues of automated DR diagnosis. A modified transformer
model (DR-CCTNet) framework was proposed. A wide range of fundus images was
considered; five different datasets with different resolutions and quality of images were
combined. Since image qualities were diverse and various artifacts and noise were present
in these images, further processing was challenging. Image processing techniques were
adopted. Working with a large amount of data, 154,882 images, was another challenge of
this study. The dataset was balanced and augmented. From three transformers and four
transfer learning models, the best model, CCT, was selected. A total of 12 ablation studies
were performed to identify the best configuration and improve the model’s classification
accuracy; the DR-CCTNet model was proposed after modifying the original CCT model
to address training time concerns and work with a large data hub. An image size of
16 × 16 resulted in the lowest computational time. Our proposed model achieved an
accuracy of 90.17%, even with low-pixel images, and still displayed a strong performance
with fewer images, indicating that the model was robust. This study’s contributions include
a larger and more reliable dataset created with a unique augmentation strategy, quality
of enhancement of the fundus images using different image pre-processing techniques, a
detailed comparison between three transformer and four transfer learning models, and an
ablation study to propose an optimized model that can produce an excellent result with
16 × 16 size images.

6. Limitations and Future Research

The proposed transformer (DR-CCTNet) model performed substantially better than
conventional deep learning models for multiclass identification of a large variety of low-
pixel fundus images. Nonetheless, our proposed model has drawbacks that can be ad-
dressed in future research. Increasing the number of raw images for all grades might be
possible in the future. The performance of our proposed model on real-time data could
also be assessed. However, our proposed method operates well in most test instances and
can accurately classify the five distinct fundus image classes. The proposed DR-CCTNet
model is robust despite minor shortcomings.
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