
Introduction 
N-methyl D-aspartate receptor (NMDAR) encephalitis is the 

most common antibody-mediated autoimmune encephalitis 

that frequently affects young females [1-4]. Ovarian teratoma, 

herpes simplex encephalitis, or other autoimmune diseases 

such as neuromyelitis optica spectrum disorder are known to 

trigger the production of immunoglobulin G1 (IgG1) and pro-

mote autoantibody binding to the NR1 subunit of NMDAR, re-

sulting in the hypofunction of NMDA signals in neuronal syn-

apses [5-8]. 

NMDAR encephalitis is a well-characterized clinical syndrome 

[9,10]. After the prodromal manifestation of fever and headache, 

typical symptoms occur that involve the limbic system, includ-

ing memory dysfunction, psychiatric symptoms, language dis-
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turbance, and seizures. Once developed, encephalitis tends to 

rapidly deteriorate neural function, with patients exhibiting in-

tractable seizures, dyskinesia, dysautonomia, central hypoventi-

lation, and coma [4,11]. Although NMDAR encephalitis has a 

monophasic course with a near-complete recovery of symptoms 

in most cases, long-term sequelae such as executive dysfunc-

tion, psychomotor slowing, disinhibition, and disturbed sleep 

remain in some severe and intractable cases [9-14]. However, 

the mechanism for the anti-NMDAR autoantibody-related de-

velopment of these characteristic clinical features and patterns 

of progression has not been fully addressed. 

Here, we briefly introduce several pathomechanistic hypotheses 

that explain how NMDAR hypofunction causes the typical 

symptoms and prognosis of NMDAR encephalitis. 
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NMDAR and Its Function 
NMDAR is one of the three major glutamate-gated cation chan-

nels, along with α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-

onic acid (AMPA) receptor and kainate receptor. NMDAR is a 

tetramer comprised of two NR1 and two NR2 or NR3 subunits 

[15]. Alternative splicing of the GRIN1 gene results in eight iso-

forms of the NR1 subunit; NR2 and NR3 are also classified into 

four (NR2A–NR2D) and two (NR3A–NR3B) isoforms, respec-

tively. The combination of these isoforms makes up various 

subtypes of NMDARs with different spatial distributions and 

molecular functions [15,16]. 

Binding of glycine/D-serine to the NR1 subunit or binding of 

glutamate/NMDA to the NR2/3 subunit activates NMDARs and 

results in the flow of Na+ and Ca2+ into neurons and K+ out of 

neurons. By means of Ca2+ influx, NMDAR mediates various in-

tra-neuronal signaling pathways [6,9,17,18]. NMDAR is also in-

volved in synaptic plasticity, which is crucial for learning and 

memory, and a certain level of NMDA signaling is also critical 

for maintaining neuronal survival [19-24]. 

Anti-NMDAR Autoantibody Mechanism of 
Action 
The main mechanism of the NMDAR autoantibody is the an-

ti-NMDAR autoantibody-provoked cross-linking of NMDARs 

which inhibits NMDAR’s interaction with ephrin B2, a synaptic 

protein that stabilizes NMDAR for its placement in the synaptic 

structure [5,6,8,9,18,25,26]. Consequently, anti-NMDAR auto-

antibodies cause the NMDAR hypofunction by removing 

NMDAR from the synaptic surface by receptor internalization or 

by repositioning to the extrasynaptic surface [5,6,8,9,18,25]. 

Binding of IgG1 autoantibodies to NMDARs induces the tran-

sient NMDAR-mediated hyperactivation of neurons, which 

manifests as seizure, dyskinesia, and dystonia, and provokes ex-

citotoxic damage to neurons. Additionally, IgG1 autoantibodies 

have a high affinity for the Fcγ receptor, which enables the com-

plement activation and provocation of T-cell mediated autoim-

munity, resulting in permanent damage to neurons [6]. This 

mechanism might be an explanation for long-term neurological 

deficit after severe and refractory NMDAR encephalitis associat-

ed with diffuse cerebral atrophy and progressive cerebellar atro-

phy [9,10,12,13]. 

Pathomechanism of Rapidly Progressive 
Limbic Dysfunction 
Given that the typical symptoms involving the limbic system in 

NMDAR encephalitis resemble the core symptoms of schizo-

phrenia, the NMDA-mediated pathomechanism of schizophre-

nia might be successfully applied to understand the symptom-

atologic mechanism of NMDAR encephalitis [9,10,27]. In the 

schizophrenia model, parvalbumin or glutamate decarboxylase 

(GAD) positive inhibitory interneurons activated by NMDAR 

have a key mechanistic role. Parvalbumin-positive interneurons 

exert gamma-aminobutyric acid (GABA)-dependent inhibition 

on glutamatergic pyramidal neurons in the dorsolateral prefron-

tal cortex (DLPFC) and the subiculum of the hippocampus, 

which excites the nucleus accumbens (NA) of the striatum. NA 

exerts inhibitory regulation on the globus pallidus medialis 

(GPm), and the GPm also inhibits the ventral tegmental area 

(VTA) in the midbrain. Excitatory dopaminergic neurons in the 

VTA stimulate the DLPFC, NA, and hippocampus while receiv-

ing inhibitory regulation from GAD-positive interneurons 

[9,10,27]. 

Taken together, the DLPFC/subiculum, NA, and VTA form a 

closed loop of simulative interaction, and NMDAR-containing 

interneurons have a critical role as a restrainer of this positive 

feedback system [9,10,27]. Hypofunction of NMDAR in this sys-

tem induces hyperactivation of the NA and VTA by disinhibi-

tion, resulting in dysregulated excitation of the DLPFC and 

subiculum (Figure 1). Given that DLPFC is the fundamental 

structure responsible for executive function and the integration 

of other cognitive functions and the subiculum is the main out-

put structure of the hippocampus, dysregulated hyperactivation 

of these structures explains memory, language, and other cog-

nitive dysfunctions [28-30]. Additionally, the VTA exerts wide-

spread dopaminergic stimulatory projections to the cerebral 

cortex and limbic structures, which are called mesocortical and 

mesolimbic pathways, respectively [31]. Therefore, unregulated 

hyperfunction of the VTA might be responsible for psychiatric 

symptoms along with working memory deficit and global cogni-

tive impairment in NMDAR encephalitis [27]. However, in con-

trast to NMDAR encephalitis, schizophrenia is a disorder with a 

high genetic predisposition, and its symptoms contain both 

positive and negative symptoms of dopaminergic dysregulation. 

Additionally, as well as NMDAR hypofunction, the disrupted 

balance between NMDA and AMPA receptors also has a signifi-

cant role in the pathomechanism of schizophrenia [32]. The dif-

ferences between these two diseases should be investigated to 

further elucidate the pathomechanism of NMDAR encephalitis. 
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The unregulated auto-activation of the DLPFC/subiculum–NA–

VTA system also explains the rapidly progressing features of dis-

ease at the acute stages. Due to the loss of the NMDAR restrain-

er, the stimulatory interaction among DLPFC/subiculum, NA, 

and VTA strengthens by itself via this positive feedback loop, 

manifesting as an accelerated disease progression to the neuro-

logical nadir [9-11]. 

Extreme Delta Brush: Role of the Thalamus 
Although not yet elucidated due to the high complexity of its in-

volved circuits, thalamic structures might be critically involved 

in the pathogenesis of extreme delta brush, the core features of 

NMDAR encephalitis [33]. This hypothesis is supported by de-

scriptions of abnormally enhanced delta and beta-gamma ac-

tivities in both schizophrenia and NDMAR encephalitis [33-36] 

and research demonstrating that the thalamus is the main gen-

erator of the brain activities of those frequency bands during 

wakefulness [37-43]. 

The first pathologically important thalamic structure is the nu-

cleus reuniens (nRE). The nRE is located in the medial thalamus 

and exerts excitatory signaling on the cornu ammonis 1 and the 

subiculum of the hippocampus [43,44]. Thus, the nRE facilitates 

activation of VTA via the subiculum–NA–VTA pathway [43,44]. 

As activation of dopaminergic cells in the VTA results in the re-

ciprocal enhancement of thalamic bursting, the nRE–hippo-

campus–VTA constitutes another loop of simulative interaction. 

The second thalamic structure of interest is the nucleus reticu-

laris thalami (nRT) of the dorsal thalamus, a crucial structure 

that regulates cortical wakefulness [37-39]. The nRT is com-

posed of parvalbumin-positive GABAergic neurons activated by 

NMDARs. GABAergic neurons in the nRT exert a strong inhibi-

tory regulation on thalamocortical neurons, and their activation 

results in strong cortical deactivation [40]. The inhibitory effect 

of nRT on thalamocortical neurons might is justified given that 

the nRT is the main inhibitor of the nRE, and thereby regulates 

general activation of the cortex via suppressing the nRE–hippo-

campus–VTA loop [43,45]. Due to these network properties, the 

nRT is regarded as the thalamic pacemaker of the cortex [40-42]. 

The infralimbic subdivision of the medial prefrontal cortex also 

contributes to the balance between nRE-mediated cortical acti-

vation and nRT-mediated depression by exerting stimulatory 

signals on both the nRT and nRE [43,45]. 

As the nRT’s GABAergic inhibition on the nRE is mediated by 

NMDAR, the nRE is the most highly activated thalamic structure 

by NMDAR antagonism [34,36]. Loss of NMDAR-mediated inhi-

bition from nRT can enhance the burst activation of nRE by the 

nRE–hippocampus–VTA positive feedback loop, resulting in the 

formation of a rhythmic, synchronized activity of nRE (Figure 1) 

[34,36]. Accordingly, the cortex might be synchronized with the 

rhythmic activity of nRE via thalamocortical connections and 

projections from the VTA [34,36,40-42]. Synchronized low-fre-

quency rhythmic activity in the cortex might appear as a frontal 

dominant rhythmic delta activity, a core electroencephalogra-

phy feature of severe NMDAR encephalitis [33]. Fast activities 

with beta to gamma frequency bands superimposed with rhyth-

mic delta activities, constituting another major feature of ex-

treme delta brush, might represent the increased rhythmic cor-

tical activity (Figure 2) [33,35,46,47]. This hypothesis is consis-

tent with a recent study which demonstrated that pharmacolog-

ical inhibition of the nRT resulted in the marked increment of 

cortical, delta, and gamma activity during wakefulness [36]. 

Pathomechanism of Consciousness 
Decrement, Seizure, Dyskinesia, and 
Psychosis 
The thalamic hypothesis might also be applied to explain other 

major symptoms of NMDAR encephalitis. Multiple neurotrans-

mitter systems involving the brainstem, hypothalamus, thala-

mus, and basal forebrain form a complex interaction to regulate 

cortical wakefulness. Among them, the nRT is a key structure for 

maintaining wakefulness [38,42]. Although activation of the nRT 

induces local suppression of cortical activity, global hypofunc-

tion of the NMDAR-dependent nRT provokes an unregulated 

burst activation of the nRE–hippocampus–VTA loop [38,42]. 

This results in the predominate delta rhythm throughout the 

cortex, which may critically contribute to the decrement of con-

sciousness [38,41,42]. 

The major pathomechanism of intractable seizure development 

in NMDAR encephalitis is the shutdown of NMDR-dependent, 

parvalbumin- or GAD-positive inhibitory interneurons in the 

cortex and the thalamus [6,9,27]. Synchronized rhythmic corti-

cal activation resulting from unregulated activation of the DLP-

FC/subiculum–NA–VTA and nRE–hippocampus–VTA positive 

feedback loops maximizes the susceptibility to seizure develop-

ment [9,33,48] and can fulfill the definition of a seizure in itself 

[49]. Additionally, binding of autoantibodies to NMDAR might 

provoke a transient activation of NMDAR, which provokes the 

flow of Na+ and Ca2+ into neurons and K+ out of neurons 

[6,17,50]. This antibody binding-mediated neuronal excitation 

might partially contribute to the development of seizures at very 

acute stages of disease. 
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Figure 1 Schematic demonstration of altered interactions among the structures involved in the pathomechanism of N-methyl 
D-aspartate receptor (NMDAR) encephalitis

Panel A demonstrates the normal interaction, and panel B demonstrates altered interactions among the structures involved in the pathomechanism 
of NMDAR encephalitis. Red arrows indicate gamma-aminobutyric acid-mediated (GABAergic) inhibitory action, black arrows represent excitatory 
action, green arrows indicate glutamatergic excitatory action, and yellow arrows indicate dopaminergic excitatory action. In panel A, parvalbumin (PV)-
positive interneurons exert GABAergic inhibition on glutamatergic pyramidal neurons in the dorsolateral prefrontal cortex (DLPFC) and the subiculum 
of the hippocampus. Those pyramidal neurons, the nucleus accumbens (NA) in the striatum, and the ventral tegmental area (VTA) form a closed loop 
of simulative interaction, and NMDAR-containing interneurons are restrainers of this positive feedback system. The nucleus reuniens (nRE) in the 
medial thalamus exerts excitatory signaling on the cornu ammonis 1 (CA1) and subiculum and facilitates activation of the VTA via the subiculum–NA–
VTA pathway. As activation of VTA results in the reciprocal enhancement of thalamic bursting, the nerd–hippocampus–VTA constitutes another loop 
of simulative interaction. GABAergic neurons in the nucleus reticularis thalami (nRT) in the dorsal thalamus are the main inhibitors of the nRE, and 
also inhibit activation of the cortex via suppressing the nRE–hippocampus–VTA loop. The infralimbic subdivision of the medial prefrontal cortex (ilPFC) 
contributes to the balance between nRE-mediated cortical activation and nRT-mediated depression. In panel B, hypofunction of NMDAR in the DLPFC/
subiculum–NA–VTA system induces hyperactivation of the NA and VTA, resulting in excitation of the DLPFC and subiculum. Loss of NMDAR-mediated 
inhibition of the nRT on the nRE can enhance the burst activation of the nRE, resulting in the formation of synchronized rhythmic activities in the nRE 
and cortex. Thick arrows indicate enhanced interactions, and finely dotted arrows indicate weakened interactions. Structures named in red indicate 
activated structures, whereas structures named in blue indicate inhibited structures.
GPm, globus pallidus medialis; GAD, glutamate decarboxylase.

A B

Dyskinesia is a frequently encountered symptom of NMDAR 

encephalitis, especially among severe cases [4]. Although the 

underlying mechanisms of dyskinesia are heterogeneous and 

largely unrevealed, a recent study using a rat model of NMDAR 

encephalitis suggested that levodopa-induced dyskinesia is 

strongly associated with predominant gamma-band oscillation 

in the primary motor cortex [51,52]. The use of a dopamine an-

tagonist suppressed this gamma-band oscillation along and im-

proved dyskinesia [51,52]. The authors suggested that promi-

nent gamma oscillation represents VPA-mediated primary mo-

tor cortex hyperactivation, which might be responsible for the 

development of dyskinesia [51,52]. The hypothesis of dopa-

mine-mediated cortical hyperactivation can also explain the 

pathomechanism of dyskinesia in NMDAR encephalitis, as the 

unregulated activation of both the DLPFC/subiculum–NA–VTA 

and the nRE–hippocampus–VTA results in enhancement of do-

paminergic cortex activation by VTA [35,46]. 

In the NMDA model of schizophrenia, it is speculated that indi-

viduals susceptible to the disease have partially compromised 

NMDAR function [10,34,44]. A triggering event such as acute 

stress stimulates dopaminergic activity, which can turn on the 

DLPFC/subiculum–NA–VTA and the nRE–hippocampus–VTA 

systems to an auto-reactivated status by means of a positive 

feedback loop [9,10,27,43,44]. Once activated, positive feedback 

loops contribute to the sustained activation of the VTA, resulting 

in the persisting symptoms of schizophrenia even after the ini-

tial trigger is removed [10,27,34,44]. This hypothesis can be ap-

plied to understand psychosis in NMDAR encephalitis, which is 

prominent at the initial disease presentation and at the recover-

ing stages [9,10,14,53]. At those disease stages, the level and ac-

tivity of anti-NMDAR antibody might not accumulate to reach a 
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fulminant shut down of NMDAR function, but sufficiently di-

minish the NMDAR-mediated inhibition of the positive feed-

back systems to be activated by a certain trigger, resulting in de-

lirium, disinhibition, and aggressive and compulsive behaviors 

[14,53]. 

Cerebellar Atrophy in NMDAR Encephalitis 
and Its Implication on Long-term Sequelae 
NMDAR encephalitis exhibits two types of brain atrophy; diffuse 

cerebral atrophy and cerebellar atrophy [54-57]. Although dif-

fuse cerebral atrophy is reversible and has an unclear associa-

tion with long-term outcomes, cerebellar atrophy is progressive, 

irreversible, and associated with poor long-term clinical out-

comes [54-57]. In our long-term cohort of NMDAR encephalitis 

patients with recurrent magnetic resonance imaging evalua-

tions, we observed a significant reduction in both cerebellum 

and cerebrum volume, although the degree was higher in the 

cerebellum. Cerebellar atrophy was identified in 23.3% of the to-

tal study population and followed a progressive course once de-

veloped. The degree of cerebellar volume reduction was cor-

related with poorer scores of long-term global neurological out-

comes and major functional domains such as memory, lan-

guage, and psychiatric symptoms, which indicate that the de-

gree of cerebellar atrophy is associated with the extent of perma-

nent neurological deficits. The degree of cerebellar volume re-

duction was also associated with an increased cumulative dis-

ease burden (unpublished data). 

High degrees of cerebellar atrophy suggest that the cerebellum 

might be especially vulnerable to brain atrophy in NMDAR en-

cephalitis [19,58]. Previous studies demonstrated that a physio-

logical level of NMDARs is required to maintain neuronal sur-

vival due to NMDAR-dependent Ca2+-mediated signaling. The 

cAMP response element-binding protein, extracellular sig-

nal-regulated kinase, calcium/calmodulin-dependent kinase II, 

and nuclear factor kappa-B pathways are required for the down-

stream activation of brain-derived neurotrophic factor [19-24]. 

Therefore, autoantibody-mediated depletion of NMDAR below 

a certain level might provoke neuronal degeneration. Consider-

ing that cerebellar granule cells, comprising more than 50% of 

the neurons in the brain, are highly abundant with NMDAR, the 

cerebellum might be the most highly affected by NMDAR deple-

tion [59]. 

The progressive features of cerebellar atrophy imply that a long-

term mechanism of neuronal degeneration might persist. A pre-

Figure 2 Extreme delta brush

Electroencephalography of a patient with N-methyl D-aspartate receptor encephalitis exhibits a synchronized low-frequency rhythmic activity and 
superimposed fast activities with beta to gamma frequency (red arrows).
This figure was reprinted from Encephalitis: the textbook of encephalitis by Korean Encephalitis and Neuroinflammation Society [47] with permission.
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vious study demonstrated chronic persistence of autoantibodies 

in cerebrospinal fluid, even in patients with favorable recovery, 

and a slighter decrease of autoantibody was correlated with 

worse outcomes [60]. This finding suggests that the degree of 

cerebellar atrophy represents the cumulative effect of long-term 

NMDAR depletion by persisting autoantibodies [6,9,18]. In this 

regard, cerebellar volume reduction might be utilized as a sur-

rogate marker for the cumulative burden of disease, which is 

also associated with long-term outcomes. The association of 

cerebellar volume reduction with functional outcomes might 

also be explained by the complex interconnection of the cere-

bellum with the limbic areas and neocortex [59,61-63]. 

Therapeutic Implications 
Accelerated activation of the DLPFC/subiculum–NA–VTA and 

the nRE–hippocampus–VTA systems via positive feedback ex-

plains intractability at the fulminant status and the rapid pro-

gression of disease to the neurological nadir at acute stages of 

disease. In this regard, the use of combination immunotherapy 

at early disease stages might be rationalized, especially in cases 

with high clinical severity or rapid progression, to restore the 

NMDAR-mediated regulatory system and effectively interrupt 

the self-accelerated activation of these systems [11]. Further-

more, given that unregulated activation of the VTA-mediated 

dopaminergic pathway is critically involved in consciousness 

decrement, seizure, dyskinesia, and psychosis in NMDAR en-

cephalitis, drugs affecting the dopaminergic system should be 

used with special attention to their adverse effects. 

The irreversible and progressive feature of cerebellar atrophy, of 

which its degree is correlated with long-term neurological defi-

cits, also supports the benefit of the early introduction of combi-

nation immunotherapy over the conventional stepwise use of 

immunotherapy, as it promotes early control of the disease and 

therefore can minimize the cumulative disease burden 

[11,64,65]. Additionally, in patients with persisting neurological 

symptoms in the chronic phase, adjuvant immunotherapy 

might be rationalized to interrupt the ongoing disease activity, 

halt the progression of cerebellar atrophy, and prevent long-

term sequelae [11,64-68]. 

Conclusion 
The main molecular mechanism of NMDAR encephalitis is au-

toantibody-mediated NMDAR hypofunction in the neuronal 

synapse. This results in the suppression of the NMDAR-depen-

dent GABAergic interneurons, provoking accelerated activation 

of the DLPFC/subiculum–NA–VTA and the nRE–hippocampus–

VTA systems via positive feedback which explains the rapidly 

deteriorating clinical course to the neurological nadir. Dysregu-

lated activation of the VTA and cortex via those positive feed-

back loops might explain the well-characterized clinical syn-

drome of NMDAR encephalitis that includes limbic system dys-

function, intractable seizures, dyskinesia, coma, and the charac-

teristic extreme delta brush. Progressive cerebellar atrophy is 

identified in severe and intractable cases, and its degree is cor-

related with the cumulative disease burden and worse out-

comes, which might be explained by the NMDAR-dependent 

pathways for maintaining the cerebellar granule cell survival. 

Those pathomechanistic hypotheses of NMDAR encephalitis 

support the rationale for the early introduction of combination 

immunotherapy and the use of adjuvant immunotherapy in pa-

tients with persisting symptoms in chronic phases. 

It should be noted that the symptomatologic pathomechanisms 

introduced here are hypothetical. Given the abundant distribu-

tion of NMDAR throughout the brain and the high complexity of 

functional interactions among the structures addressed in this 

review, further investigations should be aimed to elucidate the 

exact pathomechanisms of NMDAR encephalitis symptoms by 

using in vivo models or by functional or perfusion imaging anal-

yses matched to quantitative electroencephalography data. 
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