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Abstract: Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related
deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted
therapies in recent years, the prognosis for lung cancer patients, especially those in advanced
stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at
multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown
promise in preclinical development. More importantly, miRNA-based therapies can also complement
conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance
and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA)
and miRNA-based therapies have entered clinical trials and have shown favorable development
prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung
cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer
treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of
lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.

Keywords: microRNAs; lung cancer; chemoradiotherapy; targeted therapy; immunotherapy; MiRNA-
based therapy

1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide and is also one
of the most serious malignant tumors, endangering human health and lives. Histologi-
cally, lung cancer can be classified as small-cell lung cancer (SCLC) or non-small-cell lung
cancer (NSCLC). The latter accounts for more than 76% of lung cancer cases [1], and this
paper mainly discusses NSCLC. Furthermore, there were 1.28 million new NSCLC cases
recorded from 2010 to 2017 in the United States [2]. Traditional treatments for NSCLC,
including surgery, radiotherapy, and chemotherapy, are often ineffective for patients with
advanced NSCLC. Although new progress has been made in immune checkpoints and
targeted therapies in recent years, the prognosis of NSCLC patients is still poor; the median
overall survival (OS) of advanced NSCLC patients has only increased by 1.5 months in
the United States [3]. The treatment of lung cancer still faces numerous challenges due
to drug resistance after conventional chemotherapy [4], recurrence and the generation of
cell resistance after radiotherapy, the acquisition of resistance-conferring genetic muta-
tions caused by targeted therapy [5], and related immune adverse responses following
immunotherapy [6]. Furthermore, micorRNA (miRNA)-based therapies have shown great
potential to become novel therapies for NSCLC. Therefore, miRNA-based therapy is likely
to be a very promising new treatment strategy (Figure 1).
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MiRNAs are a family of short noncoding RNAs that are widely distributed in eukary-
otes and are single-stranded RNAs consisting of 19–25 nucleotides. MiRNA expression is
highly conserved and displays high sequentiality (stage specificity) and tissue specificity. In
general, miRNAs regulate gene expression through three mechanisms: cleavage of mRNA
to promote mRNA degradation, inhibition of mRNA translation, and miRNA-mediated
mRNA deadenylation and decay [15]. Studies have shown that the expression of some
miRNAs is dysregulated in NSCLC. Moreover, these small molecules influence almost
every genetic pathway, from cell cycle checkpoints and cell proliferation to apoptosis, and
they regulate a wide range of target genes (Figure 2). It has been estimated that miRNAs can
target more than 60% of human protein-coding genes [16]. Currently, studies indicate that
more than 2000 miRNAs regulate the expression of approximately one-third of genes in the
human genome [17]. Thus, supplements or inhibitors of miRNAs can directly modulate the
biological behavior of lung cancer cells and control the progression of cancer. In addition,
miRNA-based therapies can be applied as complementary strategies to chemotherapy
to reverse drug resistance [4]. Furthermore, they can be combined with radiotherapy to
improve the radiosensitivity of lung cancer cells [18] and with immunotherapy to improve
the sensitivity, adaptability, and effector function of T cells to tumor antigens [19]. Addi-
tionally, miRNA-based therapies can be used to reverse resistance to epidermal growth
factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) as an alternative treatment [20].
Thus, miRNA-based therapies can improve the therapeutic efficacy of lung cancer.

However, to date, only a few miRNA-targeting drugs have entered clinical trials, and
most of the relevant studies are still being conducted at the cellular level and in animal
testing. Currently, there are still many challenges, such as complex regulatory networks, the
efficacy and safety of the drug, drug resistance, and poor delivery systems. It is urgent to
further address these challenges of miRNA-based treatment for NSCLC. This article reviews
the recent progress and potential value of miRNAs for NSCLC treatment and adjuvant
existing NSCLC therapies based on the current status of NSCLC clinical treatment, with
the aim of providing new ideas for the further development of miRNA-based treatment
strategies for NSCLC.
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2. MiRNA-Based Lung Cancer Therapies

Cancer-related miRNAs can be broadly divided into two categories: tumor suppressor
gene miRNAs and oncogene miRNAs [21]. The function of miRNA genes depends on their
target in a particular tissue. If the key target of the miRNA gene in a specific cell type is
an oncogene, the miRNA gene can be considered a tumor suppressor gene; if the target of
the miRNA gene is a tumor suppressor gene in different cell types, the miRNA gene can
be considered an oncogene [22]. When multiple miRNAs are overexpressed or inhibited,
they can affect the growth of cancer cells in vivo or in vitro. Therefore, we can control the
growth of cancer cells through the regulation of miRNAs.

Some miRNAs that act as tumor suppressors are usually downregulated or absent in
cells. MiRNA replacement therapy is based on delivering exogenous miRNAs to patients
to regulate abnormal functions [21]. For instance, let-7 is highly expressed in normal lung
tissue and downregulated in lung cancer cells [23]. Let-7a inhibits NIRF expression in
lung cancer while increasing p21WAF1 expression and inhibiting cell proliferation [24]. In
addition, let-7a inhibits the growth of lung cancer by inhibiting the expression of k-Ras
and c-Myc [25]. Similarly, let-7b-3p inhibits the proliferation and metastasis of LUAD cells
in vivo and in vitro by directly targeting the BRF2-mediated MAPK/ERK pathway [26].
Let-7c inhibits the migration and invasion of lung cancer by acting on ITGB3 and MAP4K3
targets [27]. Although the effect of a single miRNA acting on a single target may be subtle,
the collective suppression of tens to hundreds of genes may have a significant impact on
cells and produce strong phenotypic results [28]. Therefore, regulation of the let-7 miRNA
tumor suppressor gene shows potential as an alternative therapy tool. Phong Trang et al.
found that in a xenotransplantation model of lung cancer, intratumoral injection of let-7
could reduce tumor size, interfere with the carcinogenic characteristics of tumor cells,
and induce a therapeutic response [29]. At the same time, Aurora et al. found that nasal
injection of let-7 could reduce the formation of lung tumors in animals expressing the
G12D activation mutation of the k-Ras oncogene [10]. Therefore, Let-7-based therapies are
promising treatment strategies for lung cancer patients. Regulating Let-7 expression may
affect tumor proliferation by targeting various oncogenes and inhibiting key regulators of
several mitotic pathways [30]. Although the expression of miRNA target genes may vary
in different tissues and cells, the ability of miRNAs to target multiple key oncogenes may
be more effective than drugs targeting a single gene, which makes miRNAs an attractive
therapeutic tool.
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Some miRNAs expressed in tumor cells are upregulated. MiRNA inhibitors are natural
or artificial RNA transcripts that can isolate miRNAs and reduce or even abolish their
activity. Suppressive miRNA therapy is based on alleviating abnormalities in patients
by treating them with exogenous miRNA mimics for miRNA inhibition, which include
natural miRNA inhibitors such as competitive endogenous RNAs (ceRNAs) and artificial
miRNA inhibitors such as anti-miRNA oligonucleotides and miRNA sponges [31,32].
Competitive endogenous RNAs are RNA transcripts, such as mRNAs, lncRNAs, circRNAs,
and pseudogene transcripts, that can regulate each other by competing for the same but
limited pool of miRNAs to reduce miRNA availability and mitigate repression of target
genes [33]. LINC00336, a nuclear lncRNA, is upregulated in lung cancer and functions
as an oncogene by acting as a ceRNA. LINC00336 binds to the RNA-binding protein
ELAVL1 through nucleotides 1901–2107 of LINC00336 and the RRM interaction domain
and key amino acids of ELAVL1, inhibiting ferroptosis. Moreover, ELAVL1 was shown to
increase LINC00336 expression by stabilizing it at the posttranscriptional level. LINC00336,
as a ceRNA of miR-6852, regulates the expression of the iron death surrogate marker
cystathionide-β-synthase (CBS), eventually promoting ferroptosis to inhibit the growth
of NSCLC cells [34]. Anti-miRNA oligonucleotides (ASOs) have been developed and
used to inhibit miRNAs by directly binding small RNA molecules in the RNA-induced
silencing complex (RISC), blocking or inhibiting the ability of endogenous target genes,
leading to the translation escalation of miRNA regulatory genes [35]. To increase the
binding affinity, specificity, biological stability, and pharmacokinetic properties of targeted
miRNAs, effective silencing of dysregulated miRNAs requires chemical modification with
anti-miRNA oligonucleotides. The most commonly used sugar modifications to improve
the melting point of double-stranded DNA and the resistance to miRNA nuclease include 2’-
O-methyl, 2’-O-methoxyethyl, 2’-fluoro, locked nucleic acid modification, and phosphorus
thiophosphate modification [36]. Liang et al. found that most miR-21-5p isolated from
NSCLC tissues had a 3’-terminal 2’ OME, and this phenomenon was not observed for
miRNAs in noncancerous lung tissues. Methylated miR-21-5p was more resistant to
digestion by 3’→ 5’ exo-ribonuclease polyribonucleotide nucleotransferase 1 and had a
higher correlation with Argonaute-2, which may have contributed to its higher stability and
stronger inhibition of programmed cell death protein 4 (PDCD4) [37] (Table 1). MiRNA-
based therapies for NSCLC, which are an extremely promising new therapy, can directly
affect a variety of biological behaviors of lung cancer cells to control the development of
lung cancer.

Table 1. MiRNA-based lung cancer therapies.

MiRNAs or
lncRNAs Expression Cell Source Target Function Ref.

MiRNA replacement therapies

Let-7a Down A549 NIRF Inhibit the
proliferation [24]

Let-7a Down A549 k-Ras c-Myc Inhibit the growth [25]

Let-7b-3p Down

A549
PC9

H1299
etc.

BRF2
Inhibit the

proliferation and
metastasis

[26]

Let-7c Down

SKMES-1
H520
H157
etc.

ITGB3
MAP4K3

Inhibit migration
and invasion [27]

Suppressive miRNA therapies

LINC00336 Up A549
H358 CBS

As a ceRNA of
miR-6852 to inhibit

the growth
[34]

MiR-21-5p Up A549 PDCD4 Promote apoptosis [37]
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3. MiRNAs as Complementary Therapies

Traditional treatments for NSCLC include surgery, radiotherapy, and chemotherapy.
Patients with early stages of NSCLC (stage I, stage II, and stage IIIA) are mainly treated by
radical surgical resection, with adjuvant cisplatin-based chemotherapy for those patients
in stages II-IIIA. Unfortunately, the OS for patients with advanced NSCLC receiving
combination chemotherapy is less than 2 years [38], the risk of death is only reduced
by 5.4% at five years, and there is a high recurrence rate and a relatively high level of
drug toxicity [39]. Compared to a decade ago, significant advancements in the clinical
treatment of lung cancer have been realized due to the application of targeted therapy and
immunotherapy [40]. Most stage III NSCLC patients are nonsurgical candidates, and the
current standard of care is concurrent chemoradiotherapy followed by immunotherapy [41].
Targeted therapy for patients with alterations in EGFR, ALK, ROS1, RET, BRAF V600E,
MET exon 14, and NTRK genes can greatly improve clinical outcomes [42]. Although the
median survival of NSCLC patients has been prolonged after the application of targeted
therapy and immunotherapy in clinical therapies, there are still many challenges in the
treatment of NSCLC [43,44]. Recent evidence has shown that miRNA-based therapy might
be a valuable complementary strategy to increase the cure rate of lung cancer patients.

3.1. MiRNAs and Chemotherapy

Cisplatin (CP), which combines with DNA to induce cross-linking, destroys the func-
tion of DNA, and inhibits cell mitosis, is a cell-nonspecific drug that is often used as a
chemotherapy agent [4]. However, most patients develop resistance to chemotherapy, and
resistance to conventional therapies is one of the major reasons for cancer chemotherapy
failure. Cancer cells acquire resistance to chemotherapy through four main mechanisms:
(1) abnormal repair of DNA damage in tumor cells can induce the activity of the DNA
repair system, leading to the development of chemotherapy resistance in tumor cells [45];
(2) removal of biomolecules or organelles damaged during chemotherapy by autophagy
can allow tumor cells to avoid further cell death [46]; (3) abnormal expression of drug
transport proteins can lead to the reduction of drug concentration in tumor cells [47]; (4) ab-
normal expression or defective function of apoptosis-related proteins can lead to apoptosis
resistance in tumor cells, which in turn leads to chemoresistance [48].

Fortunately, it has been demonstrated that, through their complex underlying regu-
latory mechanisms, many miRNAs play important roles in the development of chemore-
sistance (Figure 3). MiR-149 resensitizes drug-resistant NSCLC cells to CP by targeting
ERCC1, which is a key gene that promotes abnormal DNA damage repair [49]. MiR-488
induces CP resistance in NSCLC cells by promoting XPC expression through regulation
of the elF3a/NER pathway [50]. MiRNAs can also mediate cellular drug resistance by
regulating key genes or signaling pathways in autophagy. MiR-23a effectively reverses
drug resistance in NSCLC by targeting AKT to inhibit autophagy and induce apoptosis [51].
In addition, miR-138-5P inhibits the extension of autophagosomes to reverse chemotherapy
resistance [52]. MiR-124 and miR-142 enhance the sensitivity of NSCLC cells to CP by
targeting SIRT1 to inhibit autophagy [53]. Conversely, miR-1269b enhances the cleavage of
the autophagosome through the regulation of the PTEN/PI3K/AKT signaling pathway,
leading to CP resistance [54]. Furthermore, miRNAs can modulate the expression of various
transporter proteins, thereby reversing CP resistance in NSCLC cells. For instance, hsa-
miR-98-5p inhibits the expression of copper transporter 1 (CTR1) to reverse CP resistance
in NSCLC [55]. By targeting the miR-361-3p/ABCC1 axis, circ0058357 inhibition reduces
the proliferation and metastasis of NSCLC cells and partially sensitizes them to CP [56].
In addition, miR-1914-3p can also reverse chemoresistance by regulating yes-associated
protein (YAP) [57]. A variety of abnormally expressed miRNAs in NSCLC cells have been
shown to be associated with escape from cell death. MiR-137 increases reactive oxygen
species (ROS) production, reduces GSH and SOD levels, and leads to apoptosis in NSCLC
cells [58]. Exosome-transmitted circVMP1 promotes NSCLC progression and CP resistance
by targeting the miR-524-5p-METTL3/SOX2 axis [59]. MiR-125b-5p increases CP resistance



Biomolecules 2023, 13, 877 6 of 23

in NSCLC in vivo and in vitro by targeting CREB1 to inhibit apoptosis [60]. In addition,
miR-744-5p/miR-615-3p inhibit GPX4-mediated iron death and reverse CP resistance in
NSCLC [61]. Furthermore, miRNAs such as miR-4333, miR-522, and miR-362-3 can also
regulate ferroptosis to influence chemoresistance [62–64] (Figure 3).
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Figure 3. MiRNAs and chemotherapy. The mechanisms of chemotherapy resistance in tumors:
(A) Abnormal DNA damage repair; (B) Removal of damaged organelles by autophagy; (C) Abnormal
expression of drug transport proteins and consequently reduction of drug concentration; (D) Blocking
apoptosis and ferroptosis. MiRNAs can cause or reverse chemotherapy resistance through the
mechanisms described above.

Furthermore, oncogenic miRNAs trigger CP resistance in NSCLC cells by targeting
various pathways, such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. MiR-181a
induces lung cancer cells to acquire CP resistance by increasing PD-L1 expression [65].
MiR-1269b targets PTEN to modulate the PI3K/AKT signaling pathway and drives CP
resistance in human NSCLC cells [54]. MiR-324-5p enhances resistance to CP by targeting
FBXO11 in NSCLC cells [66]. In contrast, tumor suppressor miRNAs inhibit oncogene
pathways such as STAT3, LRP8, and TACC1 to suppress CP resistance. MiR-200c-3p
and miR-485-5p were both downregulated and targeted RRM2 in CP-resistant NSCLC
tissues and cells. Overexpressing miR-200c-3p or miR-485-5p suppressed the CP resistance
and malignant behaviors of NSCLC cells [67]. MiR-526b-3p activated CD8+ T cells in a
STAT3/PD-L1-dependent manner, reversed CP resistance, and suppressed metastasis in
NSCLC cells [68]. MiR-30b-5p resensitized NSCLC cells to CP by targeting LRP8, and cell
viability, migration, invasiveness, and tumorigenesis were significantly diminished after
miR-30b-5p overexpression, while cell apoptosis rates were increased [69]. A recent study
showed that miR-193a in exosomes suppressed colony formation, invasion, migration,
and proliferation as well as increased apoptosis of NSCLC CP-resistant cells by targeting
LRRC1 [70]. These studies suggest that miRNA regulation may overcome the increasingly
widespread mechanisms of drug resistance in the field of oncology and propose its use in
therapeutic approaches for targeting tumors with multi-drug resistance phenotypes.
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3.2. MiRNAs and Radiotherapy

Radiotherapy (RT) is an adjunct to surgery and is a therapeutic choice mainly for pa-
tients with regionally unresectable advanced lung cancer [71]. Although extensive technical
advancements in RT have been made in recent years, a significant proportion of patients
still present with tumor recurrence. Although the RT dose is well standardized among
patients, isolated local recurrences can occur; even in the modern era of dose escalation,
posttreatment biopsies show a 15–20% residual disease rate [72]. Ionizing radiation dam-
ages cells by producing intermediate ions and free radicals that cause DNA single-strand
breaks (SSBs) or double-strand breaks (DSBs), while DSBs are the more lethal type of injury.
Radiation-induced DSBs trigger a DNA damage response, comprising a network of proteins
affecting DNA repair and signaling [73]. Ionizing radiation-induced DNA damage triggers
signals that can eventually activate temporary checkpoints for gene repair or irreversible
growth arrest, leading to necrosis or apoptosis. Such checkpoint activation constitutes an
integrated response that involves sensor (RAD, BRCA, NBS1), transducer (ATM, CHK),
and effector (p53, p21, CDK) genes [74]. It has been shown that overexpression of miR-34
inhibits the efficiency of homologous recombination repair and induces DSBs through the
downregulation of RAD51 expression [75]. Similarly, miR-124 [76], miR-205-5p [77], and
miR-193a-3p [78] can also influence the efficacy of radiotherapy by affecting DNA repair.

Furthermore, MiRNAs can cause abnormalities in the cell cycle by regulating different
phases of the cell cycle, which in turn promotes or diminishes the efficacy of radiotherapy.
For example, miR-519a arrests the cell cycle in G0/G1 by inhibiting the expression of
the EphrinA2 receptor (EphA2) [79]. MiR-195-5p targets HOXA10, leading to G1 phase
block and apoptosis [80]. MiR-30a induces G2/M checkpoint block by targeting activating
transcription factor 1 (ATF1) [81]. In addition, miR-365 affected the entire cell cycle by
down-regulating CDC25A and increasing the sensitivity of NSCLCs to radiotherapy [82].
Hypoxia plays an important role in tumor resistance to radiotherapy by upregulating
hypoxia-inducible factors (HIFs) to stimulate enzymes responsible for cancer survival
under hypoxic stress [83]. MiR-18a-5p increases radiosensitivity in lung cancer cells and
CD133+ stem-like cells by downregulating ATM and HIF-1α expression [84]. In addition,
both miR-210 [85] and miR-199a-5p [86] can promote chemoresistance by affecting the
hypoxic environment induced by HIF-1 (Figure 4).

Xiao et al. found 12 differentially expressed miRNAs in radiotherapy-sensitive and
radiotherapy-resistant NSCLC patients, and these miRNAs may be used as candidate
markers for radiotherapy sensitivity. Compared with radiotherapy-resistant patients, five
miRNAs (miR-126, miR-let-7a, miR-495, miR-451, and miR-128b) were significantly upregu-
lated, and seven miRNAs (miR-130a, miR-106b, miR-19b, miR-22, miR-15b, miR-17-5p, and
miR-21) were greatly downregulated in the radiotherapy-sensitive group. Overexpression
of miR-126 increased the radiosensitivity of lung cancer cells through regulation of the PI3K-
AKT pathway [87]. MiR-296 expression levels decreased, while lncRNA AGAP2 antisense
RNA (AGAP2-AS1) expression levels increased in lung cancer cells and tissues. Moreover,
the M2 macrophage-derived exosome AGAP2-AS1 enhanced lung cancer radiotherapy
resistance by reducing miR-296 and elevating NOTCH2 [88]. MiR-219a-5p enhanced the
radiosensitivity of NSCLC cells by targeting CD164 [89]. Recent studies showed that miR-
20b-5p increased the sensitivity of lung cancer cells by targeting PD-1. In transplanted
tumor-bearing nude mice, either pembrolizumab, a humanized monoclonal anti-PD1 anti-
body, or miR-20b-5p overexpression enhanced the radiosensitivity of NSCLC cells [90]. In
addition, a clinical study showed that miRNAs may serve as valuable biomarkers to predict
patients who can benefit from high-dose RT [91]. With advances in the understanding of
miRNAs, miRNA-based therapy in conjunction with RT may be a promising strategy to
tailor personalized treatment. The ability to tailor miRNA-based applications in the clinical
arena brings great hope for radiation oncologists, and this approach can lead us toward
personalized lung cancer RT.
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3.3. MiRNA-Assisted Targeted Therapy

It is well known that conventional radiotherapy causes substantial physical, chemical,
and biological damage [92]. Compared to conventional radiotherapy, targeted therapy
targets tumor cells at the site of tumorigenesis with a precise and targeted attack, providing
greater specificity and efficiency in tumor treatment [93]. In NSCLC, common mutation
loci include EGFR [94], allogeneic lymphoma kinase (ALK) [95], mesenchymal-epithelial
transition factor (MET) [96], and Kirsten rat sarcoma (KRAS) [97]. The most frequent
mutation is in EGFR, and inhibitors targeting the structural domain of the EGFR kinase,
EGFR-TKIs, have been developed as the standard first-line treatment for patients with EGFR
mutations in advanced NSCLC, achieving excellent results in terms of progression-free
survival and OS [98].

However, most patients inevitably develop acquired resistance to targeted thera-
peutics, and the mechanisms of acquired resistance can be divided into four types: (1)
Alterations in EGFR signaling pathways—EGFR tertiary mutations [99] and amplification
leading to EGFR-TKI target failure [100]. Exosomal secretion of miR-7 alters the resis-
tance phenotype of gefitinib-resistant cells in vitro by targeting YAP and reversing drug
resistance [101]. MiR-34a reverses HGF-induced EGFR-TKI resistance in EGFR-mutated
NSCLC cells [102]. In addition, miR-34c, miR-183, and miR-210 are all altered in EGFR
mutations; however, the exact mechanism remains to be investigated [103]. (2) Activation
of aberrant bypass pathways—human epidermal growth factor receptor 2 (HER2) amplifi-
cation [104] and aberrant insulin-like growth factor 1 receptor (IGF-1R) activation, which
competes with EFGR-TKI for mutual exclusion and attenuates the sensitivity of EGFR-TKI
therapy [105]. MiR-4728 affects the efficacy of targeted therapy for HER2-amplified breast
cancer by targeting ESR1 and modulating ERα-mediated NOXA transcription to slow
apoptosis following treatment with the HER2 inhibitor lapatinib [106]. FOXO3a-miRNA
negative feedback inhibition loop affects targeted therapeutic resistance by inhibiting the
IGF2/IGF-1R/IRS1 signaling pathway [107]. MiR-30a-5p blocks the PI3K/AKT signaling
pathway through dual inhibition of EGFR and IGF-1R to increase targeted therapeutic



Biomolecules 2023, 13, 877 9 of 23

sensitivity [108]. (3) Activation of the downstream pathways RAS/RAF/MEK/ERK [109]
and PI3K/AKT/mTOR [110] reduces cellular sensitivity to EGFR-TKIs. Histone deacety-
lase (HDAC) inhibitor ITF2357 increases miR-130a-3p expression by inhibiting HDAC2.
Thereby, miR-130a-3p targets RAD51 to reduce resistance to pemetrexed in KRAS-mutated
NSCLC cells [111]. In addition, miR-202 [112], miR-200c [113], and miR-199a-3p/5p [114]
can affect RAS/RAF/MEK/ERK or PI3K/AKT/mTOR signaling pathways through the
corresponding target genes, affecting the efficacy of targeted therapies. Additionally, (4)
Histological/phenotypic transformation—SCLC transformation [115] and epithelial mes-
enchymal transition (EMT) [116]. Furthermore, overexpression of miR-625-3p reduced IC50
values in gefitinib-resistant cell lines (HCC827GR). HCC827GR cells transfected with miR-
625-3p showed increased expression of E-cadherin and decreased expression of N-cadherin
and vimentin. Mechanistically, miR-625-3p overexpression reversed TGF-β1-induced EMT
and enhanced gefitinib sensitivity by directly targeting receptor tyrosine kinase (AXL)
in lung cancer cells [117]. In addition, ectopic overexpression of miR-506-3p in erlotinib-
resistant cells targeted Sonic Hedgehog (SHH), increased E-cadherin expression, inhibited
vimentin expression, and reversed EMT to a mesenchymal phenotype epithelial-like trans-
formation, thereby counteracting EMT-mediated chemoresistance, increasing sensitivity to
apoptosis, decreasing cell stemness, reducing proliferation, and enhancing sensitivity to
erlotinib [118] (Figure 5).
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Figure 5. MiRNA-assisted targeted therapy. The mechanisms of targeted therapy resistance
in tumors: (A) Alterations in EGFR signaling pathways; (B) Activation of aberrant bypass
pathways—HER2 amplification and aberrant IGF-1R activation; (C) Downstream pathway activation—
RAS/RAF/MEK/ERK and PI3K/AKT/mTOR; (D) Histological/phenotypic transformation—SCLC
and EMT. MiRNAs can cause or reverse targeted therapy resistance through the mechanisms de-
scribed above.

Numerous studies have shown that multiple miRNAs are extensively involved in
EGFR-TKI regulation, suggesting that miRNAs may be new therapeutic molecules and
biomarkers for anti-EGFR therapy and have a positive role in reversing drug resistance
and improving sensitivity [119–121]. Alessandro et al. collected plasma samples from
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39 patients with advanced EGFR-mutated NSCLC treated with EGFR-TKIs, assessed the
expression levels of miRNAs and found that miR-21 could be a useful indicator to monitor
the effect of EGFR-TKI treatment [122]. In addition, Zhang et al. identified miR-608 and miR-
4513 single nucleotide polymorphisms as independent candidate biomarkers for predicting
survival in lung adenocarcinoma patients after EGFR-TKI treatment by systematically
screening the database of 1000 genomic projects in miRbase and obtaining data from
319 stage IIIB/IV patients treated with EGFR-TKI [123]. However, the development of
resistance, whether emerging or acquired, can limit the efficacy of EGFR-TKIs for long-term
use (less than one year). The expression levels of miRNAs upon EGFR-TKI treatment
have been reported to differ between drug-resistant and sensitive tumor cells and undergo
differential regulation; therefore, miRNA-based therapies may be a possible strategy to
reverse drug resistance and present a targeted therapy option for the adjuvant treatment
of cancer. For instance, the expression of miR-125a-5p, which exerts its antitumor effects
by targeting EGFR, is decreased in human tumor cells [124,125]. Jamal et al. found
that miR-125a-5p pretreatment synergistically increased the cytotoxic effects of erlotinib
(first-generation EGFR-TKI inhibitors) and decreased the IC50 values of tumor cells, and
miR-125a-5p significantly enhanced the apoptotic effects induced by erlotinib [13]. In
conclusion, miRNA-assisted targeted therapy to reverse drug resistance and enhance the
sensitivity of lung cancer cells to targeted therapies could be a promising treatment option.

3.4. MiRNA-Assisted Immunotherapy

The purpose of tumor immunotherapy is to activate the body’s immune system,
and it relies on autoimmunity to kill cancer cells and tumor tissues. Unlike surgical,
chemotherapy, radiotherapy, and targeted therapy strategies, immunotherapy does not
target tumor cells and tissues but instead targets the body’s immune system [126]. A
well-studied immune checkpoint is cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),
which primarily regulates T-cell activity in the early tumor microenvironment and has
a strong correlation with T cells in all cancer types [127,128]. In addition, PD-1 and its
ligands, PD-L1 and PD-L2, can limit T-cell activity in the late stages of tumor development
and thus exert an immunomodulatory function [129]. Inhibitors targeting the CTLA-4 and
PD-1/PD-L1 pathways have been developed to exert antitumor effects. However, immune
checkpoint inhibitors (ICIs) provide therapeutic benefits with some degree of resistance
and side effects, including cytokine storms, small bowel colitis, and hematologic immune-
related adverse events [130–133]. Therefore, the development of potential modulators
of immune checkpoint pathways is important to further enhance the effectiveness of
antitumor immunotherapy.

Furthermore, the altered expression of key molecules in a number of signaling path-
ways plays a key role in immunotherapy resistance in tumor cells. Overactivation of the
MAPK signaling pathway leads to the production of IL-8 and VEGF by tumor cells, promot-
ing tumor angiogenesis, growth, and metastasis and inhibiting T lymphocyte infiltration
into tumor tissue and resistance to immune checkpoint therapy [134,135]. In NSCLC cells,
the lncRNA FGD5-AS1 acts as a sponge for miR-454-3p to upregulate ZEB1 expression,
thereby increasing the expression of PD-L1 and VEGFA and promoting NSCLC angio-
genesis and immune evasion [136]. The EGFR-P38 MAPK axis can upregulate PD-L1 via
miR-675-5p, which enhances PD-L1 mRNA stability and leads to PD-L1 accumulation [137].
Loss of PTEN protein activity in NSCLC leads to increased PI3K activity, which reduces
the activity of cytotoxic T lymphocytes and limits their invasion into tumor tissue, in
addition to affecting the antitumor effect of INF-γ [138]. MiR-103a decreases PTEN levels
in tumor microenvironment monocytes by increasing the polarization of M2 macrophages,
which in turn promotes the activation of AKT and STAT3, leading to the development of
tumor immunosuppression [139]. In addition, both miR-425 and miR-576 can decrease the
activity of PTEN and exert immunosuppressive effects [140]. Overactivation of the Wnt
signaling pathway inhibits the production of MIP-1, thereby reducing the infiltration of
CD103+ dendritic cells (DCs) into the tumor tissue and thus affecting the tumor-killing
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effect of cytotoxic T lymphocytes [141]. Moreover, it has been shown that miR-18a leads to
reduced antigen presentation and thus immune escape in ER-positive breast cancer cells
through modulation of Wnt signaling [142]. Mutations of the JAK1/JAK2 gene, found
in tumor cells, promote excessive activation of the STAT family, leading to abnormal cell
surface IFN-γ receptors, which are insensitive to IFN-γ secreted by cytotoxic T cells [141].
Overexpression of miR-4458 inhibits tumor growth, decreases the proportion of PD-1+

T cells and the expression of PD-L1 and IL-10, and upregulates the proportion of CD4+

T and CD8+ T cells as well as the expression of IFN-γ and IL-2 [14]. In addition, both
miR-488 [143] and miR-181a-5p [144] can affect the JAK/STAT signaling pathway, but their
effects on immunotherapy need to be further explored (Figure 6).
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Figure 6. MiRNA-assisted immunotherapy. Alterations in intracellular-related signaling have four
main effects on immunotherapy resistance: (A) Excessive activation of intracellular MAPK kinase
pathway leads to IL-8 and VEGF production and inhibits T-lymphocyte infiltration into tumor tissue;
(B) Loss of activity of the PTEN protein pathway leads to increased PI3K activity and reduced
cytotoxic T-lymphocyte activity; (C) Over-activation of the Wnt signaling pathway leads to impaired
or even suppressed production of MIP-1, which reduces infiltration of CD103+ dendritic cells (DCs)
into tumor tissue; (D) Mutations in the JAK1/JAK2 gene promote the excessive activity of STATs
family proteins and consequently the appearance of abnormal forms of IFN-γ receptors on the surface
of tumor cells. MiRNAs can cause or reverse targeted therapy resistance through the mechanisms
described above.

Studies have shown that the function of miRNAs in lung cancer is closely related to the
expression of CTLA-4 and PD-1/PD-L1, while miRNAs play a regulatory role related to im-
mune checkpoints, thus participating in immune responses and immunotherapy [145–147].
One study showed that the expression of CD3/CTLA-4 was significantly higher in NSCLC
patients, which was positively correlated with miR-146a in patients with the CC geno-
type; thus, miR-146a could predict the treatment effect of ICIs in patients with advanced
NSCLC [148]. MiR-33a was inversely correlated with PD-L-1 and PD-L-1 expression, and
patients with high miR-33a/low PD-L-1 expression had a better prognosis, suggesting that
miR-33a could be used as a prognostic marker for PD-1 treatment response [149]. Let-7b
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post-transcriptionally suppressed PD-L1 and PD-1 expression in the tumor microenviron-
ment, and let-7b treatment reduced PD-1 expression in CD8+ T cells, decreased PD-L1
expression in lung cancer cells, and enhanced the function of antitumor CD8+ T cells [150].
In addition, studies have shown that traditional Chinese medicine and circular RNAs can
regulate the expression of miRNAs and the tumor immune response. The expression of
circHMGB2 was significantly upregulated in NSCLC tissues, and circHMGB2 relieved
the inhibition of downstream CARM1 by sponging miR-181a-5p, thus inactivating the
type 1 interferon response in NSCLC tissues. Upregulation of circHMGB2 expression
decreased STAT1 phosphorylation and inhibited IFN-γ signaling, driving immunosuppres-
sion and anti-PD-1 resistance in NSCLC. A previous study revealed that the combination
of CARM1 inhibitors and anti-PD-1 antibodies was a very promising treatment option for
NSCLC [144]. Moreover, nobiletin is a natural flavonoid isolated from the citrus peel that
has anti-inflammatory and anticancer functions. Nobiletin could inhibit PD-L1 expression
by regulating miR-197, thereby avoiding the occurrence of immune escape in NSCLC [151].

In all, the introduction of miRNA therapies, which have been combined with im-
munotherapy to modulate immune checkpoint expression and enhance T-cell sensitivity,
can further enhance the antitumor effect.

4. Clinical Trials Based on miRNAs

Let-7, the first human miRNA to be discovered, was shown to inhibit tumor growth
in a mouse model back in 2008 [10]. Over the following decade, an increasing number
of miRNAs have demonstrated their anti-NSCLC effects in animal studies, and delivery
systems have become more diverse. Delivery of miR-29b and miR-200c via liposomes
significantly inhibited the proliferation and increased radiosensitivity of NSCLCs [152,153].
Subsequent studies have also shown that nanodelivery of miR-34a and let-7b can inhibit
the growth of NSCLCs, and this combined delivery of miRNAs has also shown a better
survival advantage [28]. A recent study found that a 231-exosome loaded with miR-126
specifically identified NSCLCs in peripheral blood and blocked their proliferation and
metastasis [154]. This organotropism feature of exosomes may provide better safety and
efficacy when administered systemically. Meanwhile, loading miR-101 by extracellular
vesicle transfer also showed promising anti-tumor effects [155]. Ultrasound-targeted
microbubble destruction (UTMD) delivery of miR-21-5p inhibitors reduced the size of
xenograft tumors, and UTMD transfection was more effective than that of liposomes [156].
Although miRNAs have shown potent anti-NSCLC effects, most of the relevant studies are
still being conducted at the cellular level and in animal testing.

A clinical trial on the use of TargomiRs, which are composed of miR-16 mimics,
nanoparticles, and a targeting component, for the treatment of lung cancer has been com-
pleted (NCT02369198). The miR-16 family has been implicated as a tumor suppressor in
a range of cancer types. MiR-16 expression is reduced in lung cancer and regulates the
ERK/MAPK signaling pathway to inhibit proliferation and invasion by targeting MAPK
kinase 1 (MEK1) [157]. Additionally, miR-16 is a master regulator of the fibroblast secre-
tome, and its upregulation reduces HGF secretion by fibroblasts, impairing their capacity
to promote cancer cell migration [158]. MiR-16 directly targets the three KRAS downstream
effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring sensitivity to erlotinib in
KRAS-mutated NSCLC both in vitro and in vivo. This previous study also provided evi-
dence that the miR-16—erlotinib regimen is more effective than the selumetinib—erlotinib
combination in KRAS-mutated NSCLC [159]. The study enrolled 27 participants over 18
years of age with malignant pleural mesothelioma and non-small cell lung cancer. Patients
were given TargomiRs via 20 min intravenous infusion either once or twice a week (3 days
apart) in a traditional 3 + 3 dose-escalation design in five dose cohorts. Of the 22 patients
who were assessed for response by CT, one (5%) had a partial response, 15 (68%) had stable
disease, and six (27%) had progressive disease. The proportion of patients who achieved an
objective response was therefore one (5%) of 22, and the duration of the objective response
in that patient was 32 weeks. The median overall survival was 200 days (95% CI 94–358).
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During the trial, 21 deaths occurred, of which 20 were related to tumor progression and
one was due to bowel perforation [160].

A recent phase 1 study using liposomal miR-34a mimics in patients with advanced
solid tumors resulted in the deaths of four patients due to serious immune adverse events
and therefore ended the trial (NCT01829971). MiR-34 has been reported to be dysregulated
in various human cancers and is regarded as a tumor-suppressive miRNA because of its
synergistic effect with the well-known tumor suppressor p53 [161]. MiR-34a and miR-34c,
by targeting PDGFR-α and PDGFR-β, increase TRAIL-induced apoptosis and decrease
the invasiveness of lung cancer cells [162]. Hong et al. found that miR-34b-3p inhibits
lung cancer cell proliferation and is mediated by cell cycle arrest and apoptosis with CDK4
interference [163]. Andrea et al. examined the therapeutically resistant KrasLSL-G12D/+

and Trp53LSL-R172H/+ mouse lung cancer models and characterized tumor progression in
these mice following lung-specific transgene activation. They found tumors as early as
10 weeks postactivation and severe lung inflammation by 22 weeks. In the presence of
exogenous miR-34, epithelial cells derived from these tumors show reduced proliferation
and invasion. In vivo treatment with miR-34a prevented tumor formation and progression
in KrasLSL-G12D/+ and Trp53LSL-R172H/+ mice [164]. Furthermore, in situ hybridization
staining of pre- and posttreatment liver biopsies from patients with various tumor types
showed increased miR-34a in tumor tissues following MRX34 treatment, localized to
the cellular cytoplasm, verifying delivery of miR-34a to the tumor microenvironment.
However, this first-in-human clinical trial of a miRNA-based therapy was halted in 2016
due to unexpectedly severe immune-mediated toxicities, which resulted in four patient
deaths in expansion cohorts [12]. In conclusion, miRNAs have shown excellent modulation
of NSCLC pathogenesis in these clinical trials. However, the efficient and safe delivery of
nucleic acids remains the Achilles heel of gene therapy. Therefore, we need to continue to
explore the direction and method of using miRNAs to treat lung cancer (Table 2).

Table 2. MiRNA-based preclinical studies and clinical trials.

MiRNAs Target Delivery Vehicle Approach Tumor Type Results Ref.
Preclinical Trials

Let-7b Kras Adenovirus Intranasal NSCLC
66% reduction in orthotopic

tumor burden; Reduced
xenograft growth

[10]

MiR-29b CDK6 Cationic
lipoplexes Caudal NSCLC 60% xenograft growth

inhibition [152]

MiR-200c
PRDX2

GABP/Nrf2
SESN1

Amphoteric
liposome Subcutaneous NSCLC MiR-200c plus radiotherapy

delayed xenograft growth [153]

MiR-34a and
Let-7b

Kras
p53

Neutral lipid
emulsion Caudal NSCLC 40% increased survival with

combination or miR-34a alone [28]

MiR-126 PTEN/PI3K/AKT 231-Exosome Intravenous NSCLC Inhibit the formulation of lung
metastasis [154]

MiR-101 BCL6 AD-MSC-EVs Caudal Osteosarcoma Inhibit the formulation of lung
metastasis [155]

MiR-21-5p BTG2 UTMD Caudal NSCLC Reduced the size and volume
of xenograft growth [156]

Clinical Trials

MiR-16 EGFR EDVs Intravenous NSCLC
MPM

5 × 109 TargomiRs once
weekly was the maximum

tolerated dose.
[160]

MiR-34

Kras
P53

PDGFR
CDK4

etc.

Liposome Intravenous
Solid tumors
Hematologic
malignancies

Trial was closed early due to
serious immune-mediated AEs [12]
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5. Conclusions and Perspectives

Increased research on miRNAs, which have shown great potential in the diagnosis
and treatment of NSCLC, has contributed to the development of new therapies for NSCLC.
Due to the powerful regulatory functions of miRNAs, mimics, and inhibitors of miRNAs
play an important role in the treatment of NSCLC as well as other diseases. In addition,
miRNAs can also modulate key signaling pathways in NSCLC to reverse drug resistance
and improve drug sensitivity, thereby enhancing the efficacy of existing therapies, includ-
ing adjuvant conventional therapies as well as immunotherapy and targeted therapies.
Three studies using small interfering RNA (siRNA) and miRNA mimetic therapeutics
to target cancer-related genes have recently received approval from the Food and Drug
Administration [165].

Even though a growing number of studies have confirmed the great potential of
miRNAs in the treatment of NSCLC, it must be stated that there are still many challenges to
overcome before translating these studies into clinical applications (Figure 7). For instance,
the optimal selection of miRNAs is critical for the application of miRNA-based therapeutic
strategies in lung cancer. In the tumor microenvironment, there is heterogeneity in the
expression of miRNAs, leading to difficulties in the identification of target miRNAs [166].
Hypoxia and inflammation, for example, both lead to complex and regionally heteroge-
neous expression of miRNAs [167,168]. In our previous studies, we used the promoter of
TTF-1, the distinct biomarker for NSCLC, to enforce miR-7 expression to reduce the pro-
gression of NSCLC [169]. Moreover, optimization of the TTF-1 promoter more effectively
inhibited the growth of NSCLC through manipulation of miR-7 [170], indicating the value
of the specific promoter-operating expression in miRNA-based therapeutics. Even though
advanced technologies such as single-cell multiomics sequencing and high-resolution spa-
tialomics are still needed to be conducted in the future to further explore the heterogeneity
of miRNA expression in tumors, it will also be helpful to take multiple biopsies in the
progression of lung cancer.
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Furthermore, immunotoxic reactions and poor delivery systems are still issues that
need to be urgently addressed. Therefore, the development of new delivery strategies
is necessary for the drug development of miRNAs. Traditional local delivery systems
can inhibit tumor tissue with low toxicity, but because this strategy uses direct injection
or local delivery, it is not considered ideal for the treatment of advanced metastatic can-
cers [171]. Liposomes are one of the most commonly used methods of nonviral vector
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delivery systems, and a recent phase 1 study using liposomal miR-34a mimics in patients
with advanced solid tumors resulted in the deaths of four patients due to serious immune
adverse events and therefore ended the trial [12]. This result demonstrates the deficiencies
of conventional delivery systems leading to systemic immune activation and that effective
delivery remains an unresolved challenge. Recent studies have found that exosomes have
excellent biological properties, including biocompatibility, stability, low toxicity, and profi-
cient exchange of molecular cargo, making them prime candidates for drug delivery [172].
Newly developed exosome-/liposome-based nanovesicles are engineered exosome mimics
in which the desired components of a natural exosome are incorporated into synthetic
liposomes or nanoparticles and assembled using a controlled procedure [173]. Of note,
nanovesicles can encapsulate large plasmids or mRNA transcripts while retaining the
benefits of exosomes, such as biocompatibility and targeting ability, and can significantly
improve disease treatment. This could be a promising drug delivery approach for the
treatment of cancer, reducing toxicity and inhibiting metastasis mainly in the lungs [174].

Meanwhile, recent studies have found that the mechanisms of abnormal expression
and regulation of miRNAs in tumors also deserve attention. Abnormal expression of
miRNAs in tumor tissues in NSCLC might be associated with genomic mutations, DNA
methylation, RNA modification, etc. [175]. However, given the complexity of the tumor
microenvironment (TME), the exact mechanisms of different miRNAs in distinct types of
cells in the TME are still largely unknown. For instance, our previous studies have revealed
that the abnormality of miR-7 in NSCLC is related to site mutations in the promoter of
miR-7 [176]. However, in the T cell population, miR-7 expression is manipulated by the
transcriptional factor C/EBP [177], indicating the diversity of distinct miRNA expression
regulation in different cell populations. Therefore, further studies on the mechanisms of
abnormal expression of miRNAs in TME are valuable for the elucidation of the etiology of
lung cancer and the subsequent development of miRNA-based therapies.

In summary, advances in miRNA-based therapies hold great promise for individual-
ized NSCLC treatment in the future. Findings from these studies, including the mechanisms
of abnormal expression, the optimal selection of miRNAs, novel delivery systems, etc., will
facilitate the development of low-toxicity, highly effective, and highly targeted miRNA
therapies that exploit the powerful regulatory functions of miRNAs to suppress tumor
development and ultimately benefit the clinical outcome of NSCLC patients.
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Abbreviations

ASOs: anti-miRNA oligonucleotides; ALK: anaplastic lymphoma kinase; ABCC1: ATP-binding cas-
sette subfamily C member 1; Apaf-1: apoptotic protease activating factor-1; ATM: ataxia telangiectasia
mutated; ATF1: activating transcription factor 1; BRF2: TFIIB-related factor 2; ceRNAs: competitive
endogenous RNAs; CBS: cystathionide-β-synthase; CP: cisplatin; CTR1: copper transporter 1; CREB1:
cAMP response element-binding protein 1; CASP2: caspase 2, apoptosis-related cysteine peptidase;
CDC25A: cell division cycle 25 homolog A; CTLA-4: cytotoxic T lymphocyte-associated antigen-4;
CARM1: coactivator-associated arginine methyltransferase 1; CDK4: cyclin-dependent kinase 4;
DSBs: double-strand breaks; DCs: dendritic cells; EGFR: epidermal growth factor receptor; ELAVL1:
ELAV-like RNA-binding protein 1; ERCC1: excision repair cross-complementing rodent repair defi-
ciency, complementation group 1; eIF3a: eukaryotic translation initiation factor 3a; EphA2: EphrinA2
receptor; ESR1: Estrogen Receptor α; EMT: epithelial mesenchymal transition; FBXO11: F-box protein
11; GSH: glutathione; GPX4: glutathione peroxidase 4; HIFs: hypoxia-inducible factors; HER2: human
epidermal growth factor receptor 2; HDAC: histone deacetylases; ITGB3: integrin, β3; IGF-1R: insulin-
like growth factor 1 receptor; ICIs: immune checkpoint inhibitors; KRAS: Kirsten rat sarcoma; LRP8:
low density lipoprotein receptor-related protein 8; LRRC1: leucine rich repeat containing 1; MiRNA:
microRNA; MAPK: mitogen-activated protein kinase; MAP4K3: mitogen-activated protein kinase ki-
nase kinase kinase 3; MET: mesenchymalepithelial transition factor; METTL3: methyltransferase-like
protein 3; MIP-1: macrophage inflammatory protein-1; MEK1: MAPK kinase 1; NSCLC: non-small
cell lung cancer; NIRF: np95 icbp90 ring finger; NTRK: neurotrophin receptor kinase; NER: nucleotide
excision repair; NOTCH2: notch homolog protein 2; OS: overall survival; PDCD4: programmed
cell death protein 4; PTEN: phosphatase and tensin homolog; PD-1: programmed death-1; PD-L1:
programmed cell death-Ligand 1; PI3K: phosphatidylinositol-3-kinase; PDGFR: platelet-derived
growth factor receptor; RISC: RNA-induced silencing complex; ROS: reactive oxygen species; ROS1:
ROS proto-oncogene 1; receptor tyrosine kinase; RET: rearranged during transfection; RRM2: ribonu-
cleotide reductase regulatory subunit M2; RT: radiotherapy; siRNA: small interfering RNA; SCLC:
small-cell lung cancer; SIRT1: sirtuin 1; SOD: superoxide dismutase; SOX2: SRY-box transcription
factor 2; STAT3: signal transducer and activator of transcription 3; SSBs: single-strand breaks; SHH:
Sonic hedgehog; TKIs: tyrosine kinase inhibitors; TACC1: transforming, acidic coiled-coil-containing
protein 1; TRAIL: TNF-related apoptosis-inducing ligand; TTF-1: thyriod transcription factor-1;
UTMD: ultrasound-targeted microbubble destruction; VEGF: vascular endothelial growth factor;
XPC: xeroderma pigmentosum group C; YAP: yes-associated protein.
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