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Abstract: Background: Understanding the molecular mechanisms driving oncogenic processes in
glioma is important in order to develop efficient treatments. Recent studies have proposed gasdermin
D (GSDMD) as a newly discovered pyroptosis executive protein associated with tumorigenesis.
However, the precise effect of GSDMD on glioma progression remains unknown. Methods: The
expression levels of GSDMD in 931 glioma and 1157 normal control tissues were collected. A series
of bioinformatic approaches and in vivo and in vitro experiments were used to investigate the roles
and mechanisms of GDSMD in glioma. Results: Significant upregulation of GSDMD was detected in
glioma tissues compared to normal brain tissues. Patients with glioma and higher GSDMD levels had
shorter overall survival, and the Cox regression analysis revealed that GSDMD was an independent
risk factor. In addition, upregulation of GSDMD was associated with higher tumor mutation burden
and PD-1/PD-L1 expression. Immune infiltration and single-cell analyses indicated that GSDMD
was positively associated with an immunosuppressive microenvironment with more infiltrated
macrophages and cancer-associated fibroblasts. Furthermore, the in vitro and in vivo experiments
revealed that GSDMD knockdown inhibited glioma proliferation, migration, and growth in vivo.
Conclusion: Our analyses revealed a relatively comprehensive understanding of the oncogenic
role of GSDMD in glioma. GSDMD is a promising prognostic biomarker and a potential target for
glioma treatment.
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1. Introduction

Glioma is the most common malignant tumor of the central nervous system with high
invasiveness and lethality, accounting for approximately 70% of intracranial tumors [1].
Based on the degrees of cellular malignancy, glioma is also categorized into four grades
(I, II, III, and IV) by the World Health Organization (WHO) [2], while glioma with grades
I-III is also termed low-grade glioma (LGG). Despite the advancement of comprehensive
treatment, such as surgery, chemotherapy, and radiotherapy, the prognosis of patients
with glioma remains poor [3]. For example, glioblastoma multiform (GBM) is the most
frequent and highly malignant intracranial tumor, and patients with GBM regularly have a
median survival of fewer than 15 months [4]. In addition, cytological and gene expression
variety makes it more difficult to develop precision treatments. Thus, it is imperative to
explore underlying molecular mechanisms and find novel biomarkers for prognosis and
target therapy.

Gasdermin D (GSDMD), a member of the gasdermin family, has been identified
as a key factor in the genesis of pyroptosis [5] and secretion of several inflammatory
mediators, such as IL-18 and IL-1β [6]. The inflammatory factors released during the
process of pyroptosis will lead to the development of inflammation [7,8]. Over the past few
years, the effects of molecules, inflammasomes, gasdermins, and inflammatory products
during pyroptosis on tumorigenesis have been well investigated, but the conclusions are
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controversial [9,10]. Previous studies have found that targeting GSDMD can effectively
prevent pyroptosis and inflammation and suppress tumorigenesis in lung cancer [10,11].
However, the roles of GSDMD in glioma genesis and progression have not been elucidated.

In recent years, advances in multicolor flow cytometry and single-cell sequencing tech-
nology have made it possible to analyze tumor microenvironmental components [12,13].
Researchers have noted that the tumor microenvironment (TME) is an inherent component
of the tumor and plays a key role in tumor progression [14]. Some immune cells, such as
CD8+ T cells, dendritic cells (DCs), and natural killer (NK) cells, mainly exert anti-tumor ef-
fects [15]. In addition, the anti-tumor effects can be restrained by some immunosuppressive
cells, such as cancer-associated fibroblasts (CAFs), M2-type macrophages, regulatory T cells
(Tregs), and myeloid-derived suppressor cells (MDSCs), which can induce a chronic in-
flammatory microenvironment and promote tumor proliferation and angiogenesis [16–18].
Moreover, the components of TME immune cells are in dynamic states and can be regulated.
For example, an inhibitor to immune checkpoint PD-1 can induce an increase in anti-tumor
immune cells to suppress tumor growth, which has succeeded in treating glioma clini-
cally [19]. Therefore, exploring the characteristics of the TME of glioma and factors that
influence the dynamic changes of the immune microenvironment contributes to a better
understanding of glioma and finding novel targets to improve the patient’s prognosis.

Herein, we not only identified GSDMD as a prognostic biomarker for patients with
glioma but also revealed the significant effects of GSDMD on remodeling the tumor immune
microenvironment. Furthermore, we performed in vivo and in vitro experiments that
revealed knocking down GSDMD is a novel target in glioma treatment.

2. Methods
2.1. Patient Cohorts and Data Acquisition

A total of 931 glioma patients (LGG and GBM) with RNA-sequencing expression
profiles, corresponding clinical and follow-up information from the TCGA (https://portal.
gdc.cancer.gov/, accessed on 5 March 2022) and GEO (https://www.ncbi.nlm.nih.gov/
geo/, accessed on 5 March 2022) databases, and 1157 normal brain tissues from the GTEx
(https://gtexportal.org/, accessed on 5 March 2022) database were included in this study.
A single-cell expression matrix with 33,685 genes on 20,278 cells was also downloaded
from the GEO database (GSE138794). The cohort of 667 glioma patients, including 508 LGG
and 159 GBM, from TCGA was used for differential expression analysis of GSDMD and
almost all subsequent mechanistic analyses, because the data in this cohort are more
comprehensive. Gene expression profiles were downloaded from the UCSC (http://
genome.ucsc.edu, accessed on 5 March 2022) database. The fragments per kilobase million
(FPKM) values of gene expression were used for all gene-related analyses. The GEO cohort
(GSE16011) was used for the validation of expressed differences of GSDMD in normal and
glioma tissues and its capacity to predict prognosis.

2.2. Cell Culture and siRNA Transfection

The human glioma cell lines U87 and A172 were obtained from the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China). The cells were cultured in DMEM (MAC-
GENE, Beijing, China) culture medium supplemented with 1% penicillin/streptomycin and
10% fetal bovine serum (FBS). GSDMD siRNAs (Sequences: si-1, S: 5′-GCCAUCUGAGCCA
GAAGAATT-3′; AS: 5′-UUCUUCUGGCUCAGAUGGCTT-3′. si-2, S: 5′-GACACAGAAGG
AGGUGGAATT-3′; AS: 5′-UUCCACCUCCUUCUGUGUCTT-3′. NC, S: 5′-UUCUCCGAAC
GUGUCACGUTT-3′; AS: 5′-ACGUGACACGUUCGGAGAATT-3′.) were purchased from
GenePharma company (Hangzhou, China) and the transfection assays were performed
with lipo2000 (Invitrogen, Carlsbad, CA, USA) according to their protocol. All cells were
maintained at 37 ◦C with 5% CO2.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://gtexportal.org/
http://genome.ucsc.edu
http://genome.ucsc.edu
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2.3. qRT-PCR

A PrimeScript™ RT reagent Kit (Perfect Real Time) (TAKARA, RR037A) was used for
mRNA cDNA synthesis. Subsequently, the expression levels of GSDMD were measured
using qRT-PCR with SYBR II Premix Taq (Abclone). 2 µL of cDNA was used as the template
for each PCR reaction. GAPDH was used as the internal control. The fold-expression levels
of GSDMD were calculated using the 2−∆∆CT method. All experiments were carried out in
triplicate. The primer sequences were as follows: F: GTGTGTCAACCTGTCTATCAAGG;
R: CATGGCATCGTAGAAGTGGAAG.

2.4. Western Blot

Equal amounts of protein were separated using 12% SDS-PAGE and then transferred
to PVDF membranes (Millipore, Billerica, MA, USA). The membranes were blocked using
5% non-fat milk in Tris-buffered saline with Tween-20 (TBS-T). The blots were incubated
with GSDMD (1:1000, Proteintech, Rosemont, IL, USA) and actin (1:3000, Proteintech,
Rosemont, IL, USA) antibodies overnight at 4 ◦C. After washing the membranes with TBS-
T 3 times (10 min/wash), we incubated them with IRDye 800CW goat anti-mouse (LI-COR
Biosciences, #926-32210, Lincoln, NE, USA) and donkey anti-rabbit (LI-COR Biosciences,
#926-32213) secondary antibodies at 37 ◦C for 1 h. We repeated the washing step with TBS-T
and the protein signals were analyzed using an Odyssey CLx imager (LICOR Odyssey,
Lincoln, NE, USA).

2.5. CCK-8 and Colony Formation Assay

U87 cells were seeded into a 96-well plate at a density of 2000 cells/well. After adding
10 µL Cell Counting Kit-8 (CCK-8) (Dojindo, Kumamoto, Japan) into each well at 4, 24, 48,
and 72 h, the absorbance values (OD) of transfected cells at 450 nm were measured using a
microplate reader (Thermo Fisher Scientific, Waltham, MA, USA). For colony formation
assay, U87 cells were seeded into a 24-well plate at a density of 1000 cells/well. The number
of cell colonies was counted after 7 days and analyzed using ImageJ software (version
2.0.0). Each experiment was performed in triplicate.

2.6. Transwell Assay

Transwell chambers with an 8-µmol/L pore size (Corning, Toledo, OH, USA) were
used to detect the invasive capability of the glioma cells. After transfection for 24 h,
approximately 5 × 103 transfected U87 cells were transferred into the upper chamber and
cultured with serum-free medium, while F12K medium (HyClone) with 20% FBS was
added into the bottom chamber. Subsequently, the cells were cultured for 24 h. Then, 4%
paraformaldehyde was used to fix the invasive cells, and thereby 0.5% crystal violet dye
solution was utilized to stain-fix these cells. Invasive cell numbers were photographed and
counted using an optical microscope.

2.7. Animal Experiments

Female nude mice (5–6 weeks) purchased from Peking University Health Science
Center were raised under specific pathogen-free (SPF) conditions. The Animal Care and
Use Committee of Peking University Third Hospital approved all animal experimentation
before implementation. For subcutaneous transplantation, 1 × 107 U87 cells were sub-
cutaneously injected into the back of the right forelimb. Subsequently, the body weight
and tumor volume were measured at two-day intervals. Seven days after transplanta-
tion, the tumor nodules were palpable. The tumor volume was calculated as follows:
length × width2 × 0.5. When the tumor volume exceeded 1000 mm3, the mice were con-
sidered death [20]. After 21 days following transplantation, the mice were sacrificed by
cervical dislocation and tumor samples were collected.
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2.8. Immunohistochemistry (IHC)

To evaluate the expression levels of GSDMD protein, IHC results of GSDMD protein
expression in glial cells of normal cerebral cortex tissues and glioma cells were obtained
from the Human Protein Atlas (HPA, http://www.proteinatlas.org/, accessed on 6 March
2022) database and analyzed.

2.9. Pathway Correlation Analysis

To analyze the effects of GSDMD on glioma development and progression, we used
the R software (version 4.1.0) GSVA package to evaluate the correlation between GSDMD
levels and pathway scores of tumor proliferation and angiogenesis and tumor mutation
burden (TMB). The parameter of the method was set to ‘ssgsea’.

2.10. Survival Analysis

The Overall Survival (OS) and GSDMD expression levels of LGG and GBM patients
were downloaded from the TCGA database (https://portal.gdc.cancer.gov/, accessed on
5 March 2022). The median GSDMD expression was used as the cut-off value to divide
the samples into GSDMD low-expression (GSDMD_low) and GSDMD high-expression
(GSDMD_high) groups. Survival curves were plotted using the Kaplan–Meier method, and
differences were evaluated using the log-rank test. The Cox regression analysis was used
for evaluating mortality risks.

2.11. Genetic Alteration Analysis

Among these included patients, genetic alteration data of 655 glioma patients are
available. The data on the mutation type, alteration frequency, copy number alteration
(CNA), and mutated site information of the glioma cells were collected. The chi-square test
was used to analyze the difference in genetic alterations between the GSDMD_low and
GSDMD_high groups. OS was compared for glioma with or without genetic alterations.

2.12. GO/KEGG Enrichment Analyses and Gene Set Enrichment Analysis (GSEA)

The differentially expressed genes (DEGs) between GSDMD_low and GSDMD_high
patients were performed using the R package limma. The Gene Ontology (GO)-based en-
richment analysis of DEGs was achieved by the topGO R packages to better understand the
gene category and function. In addition, The Kyoto Encyclopedia of Genes and Genomes
(KEGG) [21] is a database for determining the path of the gene cluster and correlated func-
tions (http://www.genome.jp/kegg/, accessed on 5 March 2022). The KEGG enrichment
analysis was performed using the Kobas database (http://kobas.cbi.pku.edu.cn/genelist/,
accessed on 5 March 2022) [22] to identify signaling pathways related to the DEGs in
KEGG pathways.

To further evaluate the differences in enriched gene sets between the GSDMD_low
and GSDMD_high groups, GSEA [23] was carried out using GSEA software (version 4.1.0)
(http://software.broadinstitute.org/gsea/index.jsp, accessed on 5 March 2022).

2.13. Immune Infiltration Analysis and Single-cell Analysis

The correlation between GSDMD expression and immune infiltration in glioma was
analyzed using R package IOBP. Based on the global gene expression of patients, infiltrating
scores of B cells, CD4+ T cells, CD8+ T cells, macrophages, natural killer (NK) cells,
endothelial cells, cancer-associated fibroblasts (CAFs), and other cells in each tumor were
calculated using the ‘deconvo_epic’ method.

The cell types of each sample and GSDMD expression in different glioma cells were
analyzed by the 10X genomics single-cell and analysis on 10 glioma (GBM) samples.
Related information and data were downloaded from the GEO database (GSE138794). All
samples were untreated human gliomas. The cells were profiled using 10X Genomics and
mapped to human genome reference sequence version 38 (hg38), R package Seurat was
used for the analysis PCA, and UMAP analyses were performed using the “RunPCA”

http://www.proteinatlas.org/
https://portal.gdc.cancer.gov/
http://www.genome.jp/kegg/
http://kobas.cbi.pku.edu.cn/genelist/
http://software.broadinstitute.org/gsea/index.jsp
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and “RunUMAP” methods. After calculating the proportion of each cell type for each
sample, the association between different cell types was analyzed using the Pearson method.
Cellular communication was analyzed using the “CellPhoneDB” function.

2.14. Statistical Analysis

Statistical analyses and figure plots were completed using the SPSS Statistics 25 (IBM
Corp., Armonk, NY, USA), R software (version 4.1.0, http://www.r-project.org, accessed
on 5 March 2022) and GraphPad Prism 8.0 (GraphPad Software Inc, San Diego, CA, USA)
software. The Mann–Whitney U test package was used to identify DEGs. Chi-square tests
were performed to analyze the categorical variables. The Cox regression analysis was
carried out by SPSS software (version 25). All statistical tests were two-sided, and statistical
significance was set at * p < 0.05.

3. Results
3.1. GSDMD Is Highly Expressed in Glioma Tissues

Based on the WHO classification, gliomas are divided into LGG and GBM [2,24]. In
this study, we first analyzed the expression levels of GSDMD mRNA in 1157 normal brain
tissues, 159 GBM tissues, and 508 LGG tissues. As shown in Figure 1A, the expression levels
of GSDMD are significantly upregulated in the glioma tissues compared to the normal
control group (p < 0.0001). Then, we also compared GSDMD at a protein level in normal
glial cells and glioma cells using IHC. The results revealed that GSDMD was not detected
in the normal glial cells, but glioma tissues were detected with medium or low staining
(Figure 1B,C). In addition, it is well known that methylation is an important regulatory
factor in gene expression [25]. Then, we further analyzed the GSDMD methylation in
GBM primary tumors and normal tissues from the TCGA database, while data for LGG are
not available. The results A) showed that the GSDMD methylation profile in glioma was
lower than that of the control subjects (p = 0.215). In addition, after analyzing the signaling
pathways using an R software GSVA package, the association between GSDMD expression
levels and pathway scores were estimated by Spearman correlation. We also found that the
activity of tumor proliferation signature and angiogenesis pathways was upregulated with
the increase in GSDMD expression (p < 0.0001, Figure 1D,E).

These results demonstrated that GSDMD was highly expressed in glioma tissues both
at mRNA and protein levels, and upregulated GSDMD promotes glioma development
and progression.

3.2. High Levels of GSDMD Predict Poor Prognosis in Glioma Patients

To further investigate the relationship between GSDMD expression and clinical char-
acteristics, we divided the cancer cases into GSDMD high- and low-expression according
to the median expression of GSDMD and assessed the correlation of GSDMD expression
with the OS of glioma patients. As shown in Figure 2A, high levels of GSDMD expression
are linked to shorter OS for patients with glioma (p < 0.0001). In addition, we found
patients with GSDMD mutation had a longer OS compared to nonmutation (p = 0.012,
Supplementary Figure S1B). To further verify the cancer-promoting effects of GSDMD on
glioma, we evaluated GSDMD levels and correlation with prognosis in patients with glioma
in another cohort from GEO (GSE16011). Consistent with the results in the TCGA cohort,
GSDMD had a higher expression level in glioma tissues compared to the normal control
(p = 0.030, Figure 2B), and patients with high levels of GSDMD had shorter OS (p < 0.0001,
Figure 2C) in the GSE16011 cohort. Subsequently, a multivariate Cox regression of gender,
age, and GSDMD expression was performed. As shown in Supplementary Figure S2, GS-
DMD expression and age are independent prognostic factors for glioma patients (p < 0.0001,
Figure 3). The above findings suggest that GSDMD expression is associated with OS in
cancer cases with glioma.

http://www.r-project.org


Biomolecules 2023, 13, 904 6 of 17Biomolecules 2023, 13, x FOR PEER REVIEW 6 of 18 
 

 
Figure 1. Gasdermin D (GSDMD) is significantly highly expressed in glioma tissues. (A) GSDMD is 
highly expressed in glioma tissues (LGG: low-grade glioma; GBM: glioblastoma/high-grade glioma) 
compared to the normal control. (B) The immunohistochemistry (IHC) results for the GSDMD 
antibody in normal glial tissues. (C) The IHC results for the GSDMD antibody in glioma tissues. 
(D,E) The association between proliferation and angiogenesis pathway scores and GSDMD 
expression levels was analyzed by Spearman correlation. 

3.2. High Levels of GSDMD Predict Poor Prognosis in Glioma Patients 
To further investigate the relationship between GSDMD expression and clinical 

characteristics, we divided the cancer cases into GSDMD high- and low-expression 
according to the median expression of GSDMD and assessed the correlation of GSDMD 
expression with the OS of glioma patients. As shown in Figure 2A, high levels of GSDMD 
expression are linked to shorter OS for patients with glioma (p < 0.0001). In addition, we 
found patients with GSDMD mutation had a longer OS compared to nonmutation (p = 
0.012, Supplementary Figure S1B). To further verify the cancer-promoting effects of 
GSDMD on glioma, we evaluated GSDMD levels and correlation with prognosis in 
patients with glioma in another cohort from GEO (GSE16011). Consistent with the results 
in the TCGA cohort, GSDMD had a higher expression level in glioma tissues compared to 
the normal control (p = 0.030, Figure 2B), and patients with high levels of GSDMD had 
shorter OS (p < 0.0001, Figure 2C) in the GSE16011 cohort. Subsequently, a multivariate 
Cox regression of gender, age, and GSDMD expression was performed. As shown in 
Supplementary Figure S2, GSDMD expression and age are independent prognostic factors 
for glioma patients (p < 0.0001, Figure 3). The above findings suggest that GSDMD 
expression is associated with OS in cancer cases with glioma. 

Figure 1. Gasdermin D (GSDMD) is significantly highly expressed in glioma tissues. (A) GSDMD is
highly expressed in glioma tissues (LGG: low-grade glioma; GBM: glioblastoma/high-grade glioma)
compared to the normal control. (B) The immunohistochemistry (IHC) results for the GSDMD
antibody in normal glial tissues. (C) The IHC results for the GSDMD antibody in glioma tissues.
(D,E) The association between proliferation and angiogenesis pathway scores and GSDMD expression
levels was analyzed by Spearman correlation.
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expression and TMB scores based on ‘ssgsea’ analysis was observed in patients with glioma and
low-grade glioma (LGG) but not in glioblastoma (GBM). (C) The detailed information of the top
15 altered genes and variant classification associated with GSDMD expression. (D) The ratio of the top
10 altered genes that differ in the GSDMD low- and high-expression groups. (E) The protein–protein
interaction (PPI) network of GSDMD-expression-associated altered genes. ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.3. GSDMD-Expression-Related Genetic Alteration

Human tumorigenesis is usually caused by the accumulation of genetic mutations. Then,
we evaluated GSDMD levels and correlation with TMB scores using the R package GSVA
with the method “ssgsea”. A total of 655 samples were detected with genetic alterations. As
shown in Figure 3A–C, GSDMD expression had a positive association with TMB scores in
patients with glioma (p < 0.0001, Figure 3A) and LGG (p = 0.001, Figure 3B). Then, the genetic
alteration was compared in the GSDMD low- and high-expression groups and 31 genes
with differential alteration were identified (Supplementary Table S1). The top 10 mutated
genes included IDH1 (60.6%), TP53 (45.0%), ATRX (30.7%), CIC (16.9%), TTN (15.3%), EGFR
(12.1%), PTEN (11.1%), NF1 (7.2%), FUBP1 (7.0%), and NOTCH1 (5.5%) (Figure 3C,D). The
most frequent variant classification, variant type, and single nucleotide variant (SNV) class
were a missense mutation (Supplementary Figure S3A), single nucleotide polymorphism
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(SNP, Supplementary Figure S3B), and C > T (Supplementary Figure S3C), respectively. In
addition, the protein–protein interaction (PPI) network analysis was performed using the
String database (https://cn.stringdb.org/, accessed on 5 March 2022) and we found that
IDH1, PTEN, EGFR, and TP53 had widespread protein interactions, and other GSDMD-
related altered genes also had extensive connections (Figure 3E).

Furthermore, the correlation between the top 10 altered genes and the patients’ OS was
also analyzed. We found that six genes (IDH1, TP53, ARTX, CIC, FUBP1, and NOTCH1)
had a higher alteration rate in the GSDMD low-expression group. Prognostic analysis
revealed that patients with genetic alteration of the above six genes had a longer OS
compared to the unaltered group (p < 0.0001: IDH1, TP53, ARTX and CIC; p = 0.0042:
FUBP1; p = 0.0094: NOTCH1; Figure 4A). However, the other four genes (TTN, EGFR,
PTEN, and NF1) had a higher alteration rate in the GSDMD high-expression group and
patients with genetic alterations had a shorter OS (p < 0.0001: TTN, EGFR, PTEN and NF1;
Figure 4B). These results are consistent with the finding that patients with high levels of
GSDMD have a poor prognosis.
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Figure 4. The prognostic value of gasdermin D (GSDMD)-related genetic alteration. (A) Six altered
genes (IDH1, TP53, ARTX, CIC, FUBP1, and NOTCH1) negatively associated with GSDMD expression
had a longer OS in patients with a genetic alteration. (B) Four genes (TTN, EGFR, PTEN, and NF1)
positively associated with GSDMD expression had a longer OS in patients without genetic alteration.
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3.4. GSDMD Modulates Glioma Progression by Regulating the Immune Microenvironment

Alterations in the transcriptome also play a key role in the initiation and progression of
tumors. Then, the DEGs between the GSDMD low-expression and high-expression groups
were analyzed using the R package limma. A total of 731 DEGs (fold change >2.0 or <0.5; adj.
p-value < 0.01) were identified (Figure 5A). To understand the functions of these DEGs, GO
and KEGG functional enrichment analyses were performed using the Kobas database (http:
//kobas.cbi.pku.edu.cn/, accessed on 5 March 2022). The GO/KEGG enrichment analyses
revealed that these DEGs were enriched to many immune regulatory pathways, such as
inflammatory response, innate immune response, Th1 and Th2 cell differentiation, and
tumor necrosis factor (TNF) signaling pathways (Figure 5B,C). In addition, GSEA analysis
was also performed in the GSDMD low- and high-expression samples using GSEA software,
and 20 gene sets were significantly enriched in GSDMD high-expression patients at a normal
p-value < 0.01 (Supplementary Table S2). Of these, six immune-related gene sets were
identified, including primary immunodeficiency, leukocyte transendothelial migration,
and the intestinal immune network for IGA production (Supplementary Figure S4). These
findings indicate that GSDMD exerts oncogenic effects on glioma and may do so via
regulating the tumor immune microenvironment.
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3.5. GSDMD Induces Pro-Tumor Immune Cell Filtration

Considering the role of GSDMD in the modulation of immune-related signaling
pathways, we analyzed the relationship between GSDMD and the tumor immune microen-
vironment. Recently, PD-1 and PD-L1 cascade have been well studied and considered
as important representatives of the tumor immune microenvironment [26,27]. Then, we
first analyzed the expression levels of PD-1 and PD-L1 in the GSDMD low- and high-level

http://kobas.cbi.pku.edu.cn/
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glioma patients and found that both PD-1 and PD-L1 had significant upregulation in the
highly expressed GSDMD patients (p < 0.0001, Figure 6A). Subsequently, we applied EPIC
algorithms to evaluate the correlation between the GSDMD expression and infiltration
levels of different immune cells. As shown in Figure 6B, there was a significant differ-
ence in immune cell infiltration in the GSDMD low- and high-expression patients. In
patients with glioma, highly expressed GSDMD was negatively correlated with B cell
(p < 0.0001, Figure 6C) and CD4+ T cell (p < 0.0001, Figure 6D) infiltrations and posi-
tively correlated with cancer-associated fibroblasts (CAFs) (p < 0.0001, Figure 6E) and
macrophages (p < 0.0001, Figure 6F). Because B cells [28] and CD4+ T cells [29] usually
inhibit tumor growth while CAFs [30] and macrophages [30] promote tumor growth, it was
concluded that high levels of GSDMD induced an immunosuppressive microenvironment
and promoted glioma progression.
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Figure 6. Immune infiltration analyses. (A) The expression levels of PD-1 and PD-L1 in gasdermin D
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expression. (E,F) Cancer-associated fibroblasts and macrophages increased with increasing GSDMD
expression. * p < 0.05, ** p < 0.01, **** p < 0.0001.

3.6. Single-Cell Analysis

To further explore the correlation among GSDMD, CAFs, and macrophages in glioma,
we performed a single-cell analysis on 10 untreated glioma samples (Figure 7A). A total of
eight cell types (Figure 7B), including macrophages, monocytes, natural killer (NK) cells,
CAFs, endothelial cells, dendritic cells (DC), cells with colon mutation, and oligodendro-
cytes, were identified. Then, we analyzed GSDMD expression based on cell clusters and
found that GSDMD was mainly expressed in the CAF and macrophage clusters (Figure 7C),
which may be the potential molecular mechanism for increased CAFs and macrophages in
the GSDMD high-expression group. Then, we calculated the cell type composition of each
sample and revealed that CAFs and macrophages were the dominant immune components
with approximate 14% and 9% average ratios (Figure 7D), respectively. Furthermore, the
Pearson correlation analysis revealed that CAFs and AREG-type macrophages showed
significantly positive correlations (p < 0.01, Figure 7E). In addition, the results of cell com-
munication also confirmed the connection between CAFs and macrophages (Figure 7F).
Therefore, the single-cell analysis indicated that GSDMD promotes glioma progression by
regulating CAFs and macrophages.
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communication among the identified cells in glioma with more than 35 interaction strengths.

3.7. GSDMD Knockdown Inhibits the Proliferation and Migration of Glioma Cells

To further verify the role of GSDMD in glioma, two GSDMD knockdown glioma cell
lines were constructed. Then, the expression levels of GSDMD were detected and the results
showed significantly lower expression in U87 and A172 glioma cells treated with si-GSDMD
(Figure 8A, Supplementary Figure S5A), which was also confirmed by the WB assay
(Figure 8B). In addition, CCK-8, colony formation, and transwell assays were performed to
investigate the impact of GSDMD on glioma cells. The CCK-8 results showed that GSDMD
knockdown inhibited the proliferation (Figure 8C, Supplementary Figure S5B) of glioma
cells. The colony formation assays showed GSDMD knockdown decrease the number of
cell clones (Figure 8D). In addition, the transwell assays revealed that knocking down
GSDMD inhibited the migration (Figure 8E, Supplementary Figure S5C) of glioma cells.

To further verify the effects of GSDMD on glioma, we used NC and si-GSDMD
tumor-bearing nude mice, and five mice were used in each group. After 21 days of tumor
transplant, the mice were sacrificed to analyze the volume and weight of their tumor
nodules. The tumor volume was significantly smaller in the GSDMD knockdown group
than that in the NC group (Figure 8F, Supplementary Figure S5D). Furthermore, a lower
weight was also detected in the GSDMD knockdown group (Figure 8G). K-M survival
analysis showed that GSDMD knockdown tumor-bearing mice had prolonged survival
(Supplementary Figure S5E).

In addition, previous studies have revealed cell subtypes that are associated with
glioma progression [31,32], and EGFR, NF1, and PDGFRA/IDH1 are markers for the classi-
cal, mesenchymal, and proneural types, respectively. Then, we analyzed the correlation
of expression levels between GSDMD and these genes using linear regression analysis.
The result showed GSDMD levels were positively associated with EGFR, the marker gene
of the classical type (Supplementary Figure S6). Therefore, GSDMD also plays a role in
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regulating the cell states of glioma. These results confirmed the oncogenic role of GSDMD
in glioma and revealed that inhibiting GSDMD may be an effective strategy in the treatment
of glioma.
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Figure 8. In vitro and in vivo experiments revealed that gasdermin D (GSDMD) knockdown inhibited
glioma progression. (A,B) Lower expression levels of GSDMD mRNA and protein were detected in
glioma cells transfected with GSDMD siRNAs. (C) The CCK-8 assays found GSDMD knockdown
reduced cell viability in glioma. (D) Colony formation assays revealed that knocking down GSDMD
decreased the number of formed clones in the glioma cells. (E) The transwell assay results found that
fewer glioma cells transfected with GSDMD-siRNAs migrated from the transwell membrane than in
the NC group. (F,G) The xenograft tumorigenicity experiment revealed that GSDMD knockdown
suppressed tumor growth in vivo. * p < 0.05, ** p < 0.01.

3.8. Competing Endogenous RNA (ceRNA) Network Analysis

RNA post-transcriptional modification plays an important role in gene function and
the ceRNA regulatory network has been well understood over the past few years. We first
analyzed the differentially expressed miRNAs between the GSDMD low- and high-level
samples from the TCGA database using R package limma, and 351 miRNAs were identified
(** p < 0.01). Then, miRNAs with binding sites with GSDMD were identified using the
TargetScan v7.2 database (http://www.targetscan.org/vert_72/, accessed on 5 March 2022),
and the intersection with the above 351 miRNAs was screened (Supplementary Figure S6A).
As shown in Supplementary Figure S6B, 13 miRNAs with GSDMD targets were selected.
Similarly, we also identified the differentially expressed long non-coding RNAs (lncRNAs)

http://www.targetscan.org/vert_72/
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and integrated the lncRNA–miRNA regulatory interactions using the lncBase database
(https://diana.e-ce.uth.gr/lncbasev3, accessed on 5 March 2022). In addition, proteins that
interacted with the GSDMD mRNA were also predicted by the Starbase v2.0 database (https:
//starbase.sysu.edu.cn/starbase2, accessed on 5 March 2022). Finally, we summarized
the network of molecules that interacted with GSDMD in Figure 9, including the ceRNA
network, GSDMD mRNA-binding proteins (RBP), and GSDMD-related genetic alterations.
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4. Discussion

Previous studies have considered surgical resection with postoperative chemotherapy
and radiotherapy as a standard treatment modality for patients with glioma [33]. However,
glioma patients benefit little from standard therapy [34]. Therefore, there is an urgent
need to understand the molecular mechanisms of glioma genesis and search for more
efficacious biomarkers and treatment strategies for glioma diseases. In this study, we found
that the expression of GSDMD in glioma tissues is significantly higher than that in the
corresponding control tissues both at mRNA and protein levels. Moreover, the glioma
patients with high expression of GSDMD had shorter OS. In addition, we explored the
modulatory mechanisms of GSDMD in glioma progression. We found that GSDMD expres-
sion is related to genetic mutations in glioma, and highly expressed GSDMD indicated a
pro-tumor immune microenvironment with more infiltrated CAFs and macrophages. These
results suggest that GSDMD is a potential prognosis biomarker and therapeutic target for
glioma patients.

GSDMD is a precursor of a pore-forming protein that exerts important effects on
host defense against danger signals and pathogen infection [7,35]. The N-terminal moiety
of GSDMD can bind to membranes and form pores, triggering pyroptosis [5]. However,
the specific role of GSDMD in cancer initiation and development is still not clear. Gao
and coworkers found that GSDMD is highly expressed in non-small cell lung cancer
compared to matched adjacent tumor specimens and is associated with a poor prognosis,
whereas low-level expression of GSDMD in gastric cancer promotes tumor proliferation and
occurrence [36]. Moreover, GSDMD activation can exert anti-tumor effects on endometrial
cancer [37]. Thus, the precise roles and mechanisms of GSDMD in tumorigenesis remain
elusive [38,39].

In this study, we found that GSDMD played an oncogenic role in glioma and can
be used as an independent prognostic factor. A previous study confirmed that GSDMD
is highly expressed in non-small cell lung cancer (NSCLC), and the expression level of
GSDMD was associated with tumor size and stage [10]. Knockdown of GSDMD suppressed
tumor proliferation by promoting the mitochondrial apoptotic pathway and inhibiting the
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EGFR/Akt signaling pathway in NSCLC. Therefore, targeting GSDMD may be a novel
approach to the treatment of cancer. In this study, we constructed GSDMD knockdown
U87 and A172 glioma cells, and the functional experiment results showed GSDMD knock-
down inhibited the proliferation and migration of glioma cells in vitro. Furthermore, we
conducted experiments with nude mice bearing NC and si-GSDMD U87 glioma cells, and
further studies showed GSDMD knockdown suppressed tumor growth in vivo. Therefore,
GSDMD knockdown could inhibit glioma progression both in vitro and in vivo.

Previous studies have found that TMB, a genetic alteration at the whole genome level,
is related to tumor progression and the prognosis of patients with glioma [40,41]. In glioma,
high levels of TMB indicate a poor prognosis [40]. Then, we analyzed the correlation
between TMB and GSDMD expression, and the results exhibited a significantly positive
association. Furthermore, we also found that patients with GSDMD expression with posi-
tively associated genetic alterations had a shorter OS, while negatively associated genetic
alterations indicated a longer OS. These results suggested that highly expressed GSDMD
could regulate genetic alterations and increase TMB, thereby causing poor prognosis in
glioma patients.

Recently, targeting TME has attracted researchers’ interest in the treatment of tumors,
as well as the immune checkpoints [42]. The immune system exerts important effects on
tumor development and progression [43]. Immune cells can either promote tumor growth
and metastasis or inhibit tumor growth and facilitate its destruction [44–46]. In addition, the
balance between these two opposing roles is determined by a complex interplay between
different immune cells and molecules. Pro-tumor immune cells are typically cells that have
been co-opted by the tumor to promote its survival and growth, such as regulatory T cells,
myeloid-derived suppressor cells, and TAMs [46]. Anti-tumor immune cells are cells that
can recognize and attack cancer cells, such as CD8+ T cells and NK cells [13,47]. The
balance between pro-tumor and anti-tumor responses is also regulated by the release of
pro-inflammatory and anti-inflammatory molecules [48].

Moreover, the recent development of multi-color flow cytometry and single-cell se-
quencing technologies have enabled the analysis of tumor microenvironmental components
at a higher resolution [12,13]. Moreover, bioinformatic algorithms for analyzing immune
components in tumor tissues have also been developed, such as EPIC [49]. In the present
study, the functional analyses of DEGs in GSDMD low- and high-expression patients found
that many immune-related pathways were enriched. Thus, we speculated that GSDMD
regulated glioma progression by influencing the tumor immune microenvironment. Fur-
thermore, GSEA analysis confirmed the immunomodulatory effects of GSDMD on glioma
progression. Then, we performed EPIC analyses to characterize the immune composition
in GSDMD low- and high-expression glioma. The results showed that highly expressed
GSDMD induces an immunosuppressive microenvironment by increasing the ratio of
CAFs and macrophages but reducing CD4+ T cells and B cells. Furthermore, the results
of single-cell data in 10 glioma tissues confirmed the positive association among GSDMD
expression, CAFs, and macrophages. CAFs and macrophages in the TME of glioma also
had a positive regulatory correlation. Therefore, we summarized that GSDMD can pro-
mote glioma progression by increasing the ratio of CAFs and macrophages to induce an
immunosuppressive TME.

5. Conclusions

GSDMD was more highly expressed in glioma tissues compared to normal tissues,
and a higher level of GSDMD indicated a shorter OS in patients with glioma. Moreover,
GSDMD expression was significantly associated with tumor mutation burden, genetic
alterations, and immune cell infiltration. Highly expressed GSDMD promoted a permissive
microenvironment for tumor growth by upregulating the ratio of CAFs and macrophages
in the TME. GSDMD knock-down inhibited the progression of glioma both in vitro and
in vivo. Therefore, GSDMD is a promising prognostic biomarker and a novel therapeutic
target for patients with glioma.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom13060904/s1, Figure S1: (A) The promoter methyla-
tion level of GSDMD in glioblastoma (GBM). (B) Glioma patients with GSDMD mutation had longer
overall survival. Figure S2: The forest plot showed the results of the multivariate Cox regression
of age, gender, and GSDMD expression in glioma patients. Figure S3: The most frequent variant
classification, variant type, and single nucleotide variant (SNV) class were a missense mutation (A),
single nucleotide polymorphism (B), and C >T (C), respectively. Figure S4: Gene set enrichment
analyses (GSEA). Six immune-related gene sets were enriched in the GSDMD high-expression group.
Figure S5: (A) Lower expression levels of GSDMD mRNA were detected in glioma cells transfected
with GSDMD siRNAs. (B) The CCK-8 assays found GSDMD knockdown reduced cell viability.
(C) The transwell assay results found that fewer glioma cells transfected with GSDMD-siRNAs mi-
grated from the transwell membrane than in the NC group. (D) The tumor volume was significantly
smaller in the GSDMD knockdown group than that in the NC group. (E) The K-M survival analysis
showed that GSDMD knockdown tumor-bearing mice had prolonged survival. Figure S6: The
correlation of expression levels between GSDMD and EGFR, NF1, PDGFRA, and IDH1 using linear
regression analysis. Figure S7: (A) The intersection between differentially expressed miRNAs in
the GSDMD low- and high-expression groups and binding miRNAs predicted by the TargetScan
v7.2 database. (B) The heatmap of the 13 screened miRNAs targeting GSDMD. Table S1: 31 genes
with differential alteration were identified in the GSDMD low- and high-expression groups, Table S2:
20 gene sets were significantly enriched in GSDMD high-expression patients.
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