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Abstract: Background: Telomerase (human telomerase reverse transcriptase (hTERT) is considered
a hallmark of cancer, being active in cancer cells but repressed in human somatic cells. As such, it
has the potential to serve as a valid cancer biomarker. Exosomal hTERT mRNA can be detected
in the serum of patients with solid malignancies but not in healthy individuals. We sought to
evaluate the feasibility of measuring serum exosomal hTERT transcripts levels in patients with
lung cancer. Methods: A prospective analysis of exosomal hTERT mRNA levels was determined in
serum-derived exosomes from 76 patients with stage III–IV lung cancer (11 SCLC and 65 NSCLC).
An hTERT level above RQ = 1.2 was considered “detectable” according to a previous receiver
operating characteristic curve (ROC) curve. Sequential measurements were obtained in 33 patients.
Demographic and clinical data were collected retrospectively from patients’ charts. Data on response
to systemic therapy (chemotherapy, immunotherapy, and tyrosine kinase inhibitors) were collected
by the treating physicians. Results: hTERT was detected in 53% (40/76) of patients with lung cancer
(89% of SCLC and 46% of NSLCC). The mean hTERT levels were 3.7 in all 76 patients, 5.87 in SCLC
patients, and 3.62 in NSCLC patients. In total, 25 of 43 patients with sequential measurements had
detectable levels of hTERT. The sequential exosomal hTERT mRNA levels reflected the clinical course
in 23 of them. Decreases in hTERT levels were detected in 17 and 5 patients with partial and complete
response, respectively. Eleven patients with a progressive disease had an increase in the level of
exosomal hTERT, and seven with stable disease presented increases in its exosomal levels. Another
patient who progressed on the first line of treatment and had a partial response to the second line
of treatment exhibited an increase in exosomal hTERT mRNA levels during the progression and a
decrease during the response. Conclusions: Exosomal hTERT mRNA levels are elevated in over half
of patients with lung cancer. The potential association between hTERT levels and response to therapy
suggests its utility as a promising cancer biomarker for response to therapy. This issue should be
further explored in future studies.

Keywords: small-cell lung carcinoma (SCLC); non-small-cell lung carcinoma (NSCLC); hTERT; exosomes

1. Introduction

Lung cancer is the most often diagnosed malignancy in the world and the most
frequent cause of cancer death. About 2.2 million new cases of lung cancer were diagnosed
worldwide in 2021 [1]. It is estimated that 3 million patients with lung cancer will die by
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2035 [2,3]. The prognosis for lung cancer is relatively poor, with a 5-year survival rate
varying from 4% to 17%, depending on the stage of the disease at the time of diagnosis [3].
Unfortunately, 75% of patients are diagnosed at an advanced stage of the disease [4].
Although novel medications continue to improve outcome, prognosis remains poor, with a
median overall survival (OS) of less than 3 years in most subpopulations of patients with
advanced lung cancer [4]. The currently recommended screening for high-risk populations,
a low-dose CT scan, improved early detection rates; however, the majority of the patients
were still diagnosed with advanced disease [5]. Serum biomarkers have been investigated
in lung cancer for two main purposes: early detection (in adjunct to CT screening) or as
surrogate markers for response to therapy. The analysis of genomic epithelial serum tumor
markers such as squamous cell carcinoma antigen (SCCA), carcinoembryonic antigen
(CEA), or neuron-specific enolase (NSE) and cytokeratin 19 (CYFRA 21-1) [6], which have
been reported to be elevated, may detect the disease only at advanced stages [7,8]. Other
markers such as modulations of microsatellites, DNA hypermethylation in several genes
(BCAT1, CDO1, TRIM58, ZNF177, and CRYGD), the mutational status of the p53 and KRAS
gene, and the expression of microRNA may improve early-stage diagnosis, but they are still
under investigation [9]. Similarly, several other methods based on the analysis of volatile
organic compounds and exhaled breath condensation analysis were also studied but are
not yet implemented in clinical practice [10]. Due to these drawbacks, there is a need to
search for other markers for early diagnosis for the effective treatment of the disease.

Telomeres, repetitive sequences located at the two ends of chromosomes, protect
genome integrity by masking chromosomal ends from being recognized as double-strand
breaks that need to be repaired. Telomeres gradually shorten with repeated cycles of cell
division accompanied to DNA synthesis until they reach a threshold which signals the
cells to stop dividing, undergo senescence, and die [11,12]. Telomerase (human Telomerase
Reverse Transcriptase, hTERT) is a reverse transcriptase which maintains telomere lengths
and thus prevents cellular senescence and cell death due to telomere shortening. In this way,
telomerase provides dividing cells with a limitless lifespan. Because telomerase is absent in
almost all human somatic cells but is ubiquitously expressed in more than 90% of cancer
cells, it serves as an attractive biomarker that distinguishes normal and neoplastic cells [13].
Due to its specificity, mainly to cancer cells, and its essentiality for providing them with
limitless replicative potential, telomerase was defined as a hallmark of cancer [14]. The role
of telomerase activity and regulation was deeply studied in a plethora of cancers, and its
activity was mostly correlated with the aggressiveness of the studied malignancies [15].

Lung cancer cells have been shown by many reports to be heavily dependent on
telomerase activity both in vitro and ex vivo [16–32]. Moreover, similarly to other types
of cancers, a positive correlation was described between the levels of telomerase activity
or regulation and the aggressiveness of the disease [19–21]. Subsequently, studies were fo-
cused around using telomerase as a valid anti-cancer target in lung carcinoma. Importantly,
several inhibitors of the enzyme were developed and tested, showing that the inhibition of
the enzyme’s activity successfully eliminated lung cancer cells [32–51].

Telomerase activity is mainly regulated by the transcriptional level. In most studies
that aimed at deciphering the regulatory mechanism of telomerase in various settings, the
transcript of telomerase, hTERT, was found to be well correlated with the activity of the
enzyme; therefore, in most cases, its levels are considered to reflect its activity [39,52].

Detecting the hTERT transcript in cells derived from the lung is not feasible and
is only doable when biopsies are taken for clinical purposes. Therefore, non-invasive
blood-sample-based liquid biopsies seem like the preferable solution for this problem.

One use for liquid biopsies is the analysis of the content of exosomes that originate
from neoplastic cells and travel in the blood. There are three types of vesicles that are
shredded from cells and circulate in the blood: exosomes, microparticles, and apoptotic
bodies. In our study, we decided to use exosomes, the most investigated extracellular
vesicles, as a liquid-biopsy-related approach to identify hTERT. Carrying a molecular cargo
of various types of nucleic acids, proteins, and lipids, exosomes circulate in blood and
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other body fluids and may deliver their cargo to bystander cells [53]. Previously, we have
shown that various types of cancer cells secrete exosomes that carry the hTERT mRNA
transcript [54,55]. Whether the hTERT transcript is detected in exosomes from patients
with lung carcinoma is currently unknown. Our study addressed the possible future use of
exosomal hTERT as a diagnostic marker for lung carcinoma and for assessment response to
systemic therapy.

2. Materials and Methods
2.1. Patients’ Characteristics

The clinical characteristics of the patients and the corresponding levels of exosomal
hTERT mRNA are depicted in Table 1.

Table 1. Patients’ characteristics and the levels of exosomal hTERT mRNA.

Age Gender RQ

n Median Range F M Mean
RQ SEM Median Range Type Stage

positives 40 66.5 46–85 28 12 6.45 1.44 3.67 1.23–44.61 NSCLC-30,
SCLC-10

IIIa-2,
IIIb-3,
IV-35

negatives 36 67 38–88 22 14 0.36 0.05 0.33 0–1.18
NSCLC-30,

SCLC-3,
others-3

IIIb-10,
IV-26

Positives: exosomal hTERT levels ≥ 1.2; negatives: exosomal hTERT < 1.2, SEM—standard error mean, RQ—
relative quantitation of hTERT levels.

2.2. Study Population and Procedures

Patients with advanced lung cancer were enrolled prior to the initiation of anti-cancer
therapy at the Davidoff Cancer Center at the Rabin Medical Center, Beilinson campus. After
signing an informed consent form approved by the local IRB (Helsinki committee of Rabin
Medical Center), 10 mL of blood in a serum separation tube was obtained from 81 healthy
volunteers and 76 consecutive untreated cancer patients in the Davidoff Cancer Center. In
total, 44 patients were followed during treatment to observe the kinetics of exosomally
derived hTERT mRNA. The blood samples were centrifuged at 2500 R.P.M. for 10 min; the
serum was collected, divided into 1 mL aliquots, and kept in −20 ◦C for exosomes and
mRNA isolation. The hTERT levels obtained from 81 healthy volunteers served as controls.

Patients with more than one primary solid malignancy were excluded. Patients’ demo-
graphic and clinical data were extracted from the electronic medical records. The response
to systemic anti-cancer therapy was assessed and categorized as complete response, partial
response, stable disease, and progression of disease, as defined by the treating physicians.

2.3. Exosomes’ Purification

Exosomes were isolated from patients’ sera by using the Total Exosome Isolation Kit
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The purity
and concentration of exosomes were analyzed by using the NanoSight tracking device.

2.4. RNA Purification

RNA from exosomes was purified with a Total Exosome RNA and Protein Isolation
Kit (Invitrogen, Waltham, MA, USA) according to the provided manual.

2.5. cDNA Formation

mRNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions.
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2.6. hTERT Expression by Real-Time PCR

The expression of hTERT was measured relative to that of HPRT-1 as a reference gene.
Gene amplification was executed using the following sets of primers (HyLabs, Rehovot, Israel).

hTERT: Forward, 5′-GTACTTTGTCAAGGTGGATGTGA-3′

Reverse, 5′-GCTGGAGGTCTGTCAAGGTAGAG-3′.
HPRT-1: Forward, 5′-TCAGGCAGTATAATCCAAAGATGGT-3′

Reverse, 5′-CTTCGTGGGGTCCTTTTCAC-3′.

Polymerase chain reactions were prepared with the TaqMan fluorophore-labeled primers
(Applied Biosystems, Waltham, MA, USA) and run and analyzed on the Step One Detection
System (Applied Biosystems). Reactions were performed using 50 cycles; a normal value (no
expression of hTERT) was arbitrarily defined as 1 for further calculation purposes.

2.7. Statistical Analysis

The statistical analysis was generated using the SAS Software, Version 9.4, 2002–2012
(SAS Institute Inc., Cary, NC, USA). Continuous variables were presented as mean ± std
and median (minimum–maximum), and categorical variables were presented as (n, %). The
normality of distribution for the continuous variables was assessed graphically and using
a Kolmogorov–Smirnov test. If deemed normal, ANOVA (or t-test for two groups) was
used to compare the value of continuous variables between study groups; if not deemed
normal, Wilcoxon’s test was used. χ2 and/or Fisher’s exact test were used in the analysis
of categorical variables between study groups. Pearson’s correlation was used to assess
the association between continuous variables. Two-sided p-values <0.05 were considered
statistically significant.

3. Results
3.1. Patients

In total, 76 patients were enrolled, 65 with NSCLC and 11 with SCLC. Out of those,
49 patients had adenocarcinoma, 17 had squamous cell carcinoma and 10 had large-cell
carcinoma. Patients’ characteristics are presented in Table 1.

3.2. The Iolation of Exosomes

Basically, all living cells secrete vesicles, functioning as cell–cell communicators. There
are several types of extra vesicles, differing in their cellular origin and biogenesis, size, release
mechanism, molecular cargo, and function type. These include microvesicles (MVs), exosomes,
and apoptotic bodies [53]. To show that our isolated vesicles are exosomes, we used NanoSight
tracking analysis (NTA) and transmission electron microscopy (TEM). Based on Brownian
motion, NTA identifies the size and concentration of vesicles of interest. The NTA results showed
that a large concentration of the vesicles was at the expected size of exosomes (30–150 nm), and
the TEM image indicated a similar size (Supplementary Figure S1).

3.3. The Dynamics of hTERT at Time of Evaluation Regarding the Status of Metastasis

hTERT was hardly detected in the healthy control cohort (7.4%) but was detected in
53% (40/76) of patients with lung cancer (89% of SCLC and 46% of NSLCC). The difference
between the average values of the control group and those of the cancer patient group was
statistically significant (p = 2.2 × 10−5). The mean hTERT levels were 3.7 (±0.79) in all
76 patients, 5.87 (±1.6) in SCLC patients, and 3.62 (±0.29) in NSCLC with metastases
(METs), large-cell neuroendocrine carcinomas (LCNECs), or sarcomatoid patients (Table 1,
Figure 1). There were no differences between the NSCLC and the SCLC groups in this re-
gard. The difference between the average values of the exosome-derived hTERT transcripts
in patients with NSCLCs and those of patients with NSCLCs, LCNECs or sarcomatoids
was statistically significant (p = 0.003).
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No correlation was found between the extent of the disease and the levels of exosomal
hTERT (p = 0.68). This lack of correlation between metastatic and non-metastatic disease
suggests that the levels of exosomal hTERT cannot be differentiated between the two.

3.4. The Levels of Exosomal hTERT Transcript throughout Follow-Up of the Disease

We were able to follow 49 patients and measure the levels of exosomal hTERT tran-
scripts in more than one sample throughout their disease. The results of this analysis are
shown in Figure 2. As shown, the levels of the exosomal hTERT transcript decreased in
most patients during the follow-up measurement, and the differences between the first
measurement (at diagnosis) and the second one reached statistical significance (p = 0.047).
Interestingly, out of 32 patients of which we had the clinical details regarding their response
to treatment, in 23 of them (>72%), whether the patients were benefiting from therapy or
not, the clinical outcome was in line with the levels of exosomal hTERT., e.g., when the
response was defined as progressive disease, the levels of the exosomal hTERT transcript
were increased. Two cases in which the dynamics of the levels of the exosomal hTERT
transcript matched the clinical outcomes are presented in Figure 3.
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The correlation between response to treatment and values of the hTERT transcripts in
exosomes (Supplementary Table S1) approached clinical significance (p = 0.064).

4. Discussion

For the first time, our study shows the presence of the transcript of hTERT in exosomes
derived from the sera of patients with lung cancer. The use of exosomes as diagnostic markers
in early cancer detection, progression, response to treatment, and the identification of minimal
residual disease (MDR) has been highly expanded in recent years [56]. As in several other
types of malignancies, most patients diagnosed with primary lung carcinoma are already in
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the metastatic lethal stage of the disease upon the appearance of symptoms. Therefore, early
diagnosis and treatment are critical to improve the survival of these patients.

As mentioned above, the current methodology of low-dose spiral CT is associated with
a high rate of false positives and exposure to radiation and requires a solid biopsy of highly
heterogenous tumors. To circumvent these associated drawbacks, liquid biopsies have
been increasingly suggested as an alternative preferable diagnostic strategy, enabling the
accurate diagnosis of lung cancer, the identification of the specific type of the malignancy,
and the reveal of the mutational landscape of the tumor. Since multiple liquid biopsies can
be taken throughout the course of the disease, the treatment of which is stage-dependent,
patients’ stratification, the monitoring of responses to the disease treatments, and the
detection of minimal residual disease post treatment are also possible, thus addressing
precision oncology to improve clinical care [56].

The detection and analysis of circulating free DNA (cfDNA), circulating tumor cells
(CTCs), and exosomes are the strategies used in most studies of liquid biopsies in cancer [57,58].
Traveling in the blood, cfDNA refers to DNA derived from all cell origins, whereas ctDNA
only refers to DNA fragments originated from the tumor cells. As such, apart from DNA
of genomic origin, cfDNA includes mitochondrial, fetal, extrachromosomal circular, and
even microbial types of DNA ([56] and references therein). As the majority of cfDNA is of
hematopoietic origin, some of which may contain benign clonal hematopoietic mutations
which may be attributed to neoplastic cells, it is of high importance to differentiate between
the two, based on their inherent differences. In the light of the sensitivity of the analysis
of cfDNA, several studies reported impressive findings regarding the deciphering of the
mutational makeup of lung cancer patients.

Interestingly, cfDNA levels in NSCLC patients are higher than those in patients with
chronic respiratory inflammation or the healthy population, with very high specificity
(90% and 80.5%, [59]), especially in those with stage II–IV NSCLC. Several studies were
conducted comparing tissue to liquid-biopsy-derived analysis results. For example, a
study of the ctDNA of cancer patients to identify mutations for relevant treatment (the
TARGET study) demonstrated 78% similarity to mutations originated from the cognate
tissues [60]. The detection of the EGFR mutation status, the most frequent driver mutation
in NLSCS, using cfDNA analysis and the subsequent description of its positive association
with the aggressiveness of the disease has been reported recently [61]. A similar study
showed the relevance of this mutation upon the analysis of ctDNA [61,62]. In addition,
numerous lung-cancer-related mutations (e.g., in ALK, EGFR, and pmKRAS) as well as
the loss of heterozygosity, microsatellite instability, and gene methylation, are also readily
detected in these cfDNA [62,63]. The recurrence and prognosis of lung carcinoma was also
reported to be efficiently detected via cfDNA analysis, contributing to rationalized clinical
decisions [64]. Along these lines, the identification of non-invasive early lung cancer in most
pre-treated patients was achieved by using the deep sequencing of cfDNA, demonstrating
its validity as a diagnostic lung cancer marker. Moreover, the somatic mutations found
accurately reflected clonal hematopoiesis and were non-recurrent in these patients and
in risk-matched controls [65]. The authors further developed a machine-learning-based
platform for the accurate diagnosis of early-stage lung cancer using data obtained from
cfDNA analysis [66].

The identification of alternative mutations in the RGFR gene in response to treatment
was also reported (reviewed in ref. [56]). Other NSCLC-related mutations, including MET,
KRAS, RET, BRAF PI3K assessed in response to treatments, were also detected successfully
by analyzing cfDNA [67–69].

Another study successfully used a combination of both CTCs and cfDNA in the
diagnosis of NSCLC [70].

Still, most studies point to the need for highly sensitive and standardized detection
technologies for the valid widespread use of cfDNA analysis in clinical applications.

CTC counts correlated to tumor progression in patients with early lung adenocarcinoma
and successfully detected typical mutant genes (Notch1, IGF2, EGFR, and PTCH1) [71,72] and
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genes in smokers as predictive biomarkers [73]. The precision treatment of patients with lung
cancer was decided based on their tatus of the ALK gene mutation, detected via sequencing
of their cognate CTC DNA content [74,75].

As for the cfDNA methodology, CTC detection still requires more effective enrichment
and quantification methods.

As described in the introduction, exosome analysis has been reported as a diagnostic
liquid-biopsy-based tool for lung carcinoma [53–55]. Most studies identifying exosomal
cargo in plasma or sera derived from patients with lung carcinoma describe certain mi-
croRNA signatures as diagnostic markers [76–82]. All in all, the reported implication of
exosomal cargo in the aggressiveness of lung cancer suggests that the inhibition of exosome
formation and release may be a potential new strategy for the treatment of lung cancer [82].
Similarly to CTCs and cfDNA, the establishment and standardization of a reliable exosome
extraction method is still needed for their use in clinical applications [83].

In our study, the levels of the hTERT transcript significantly differed between all lung
cancer patients and the healthy control groups; however, a lack of correlation between
these levels and disease staging was observed, suggesting that they do not correlate with
the extent or burden.

These results are in contrast with other studies conducted in our laboratory showing
that the exosomal hTERT transcript may be defined as a diagnostic marker. For example, in
brain tumors, patients with glioblastoma multiforme (GBM) exhibited significantly higher
levels of hTERT transcripts compared to patients with meningiomas, non-malignant brain
tumors, or healthy controls (submitted). Likewise, the levels of the hTERT transcript were
correlated with levels of carcinoembryonic antigen (PSA) in patients with colorectal cancer
and significantly differed from those of patients with polyps that served as a control group.
In this study, we also measured the levels of the hTERT transcript in patients with Lynch
syndrome, which is associated with a predisposition to colorectal cancer, and found positive
levels of hTERT transcripts in several carriers [84].

Although they did not solely address the levels of hTERT exosomal transcripts in
lung cancer, a few recent studies demonstrated the use of lung-derived exosomal content
as diagnostic, prognostic, and potentially therapeutic agents [85,86]. A relevant study
demonstrated that tumor-associated exosomes promoted the aggressiveness of lung cancer
by increasing metastasis formation [87].

Of note, the engulfment of nucleic acids and other molecules in exosomes is actively
mediated, mainly by the endosomal sorting complex required for transport (ESCRT) protein
complex. This engulfment of certain molecules may affect their concentration in exosomes,
which may differ from their original expression in the mother cells [88]. This ESCRT-
mediated process is only partially elucidated [89] and may differ among individual patients,
affecting the expression of certain mRNAs such as the hTERT in exosomes. In addition, the
correlation between the activity of telomerase and the burden of disease in lung cancer is
controversial. Whereas many studies reported a positive correlation between the activity of
the enzyme and disease progression [32–51], one study showed the opposite: patients with
low telomerase activity in their mononuclear cells were at a significantly increased risk of
lung cancer compared to patients with high telomerase activity [90]. Another recent study
showed that liquid biopsies based on the detection of circulating tumor cells’ hTERT can
effectively diagnose pulmonary nodules to improve efficient CT diagnosis in patients with
lung cancer [91]. Telomerase-positive circulating tumor cells were shown to be associated
with poor prognosis in glioma [92].

We have shown that CTC capturing based on membranal telomerase-derived peptides
both in solid and hematological malignancies is feasible [93]. In another study, the inhibition
of telomerase in lung cancer cell lines suppressed their growth by negatively regulating
telomerase expression [94]. Along these lines, the ectopic expression of hTERT promoted
epithelial–mesenchymal transition in lung cancer cells [95].
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This study bears a major limitation, which is related to the number of analyzed patients.
Since this was a pilot study, the number of patients was not large enough to draw more
solid conclusions.

All in all, it seems that a differential expression of the transcript exists in different
pathological cases and biological setting. The combination assessments of other markers,
preferentially in exosomes representing efficient liquid biopsies, will probably shed more
light on defining valid diagnostic markers for upregulating the treatment of patients with
lung cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11061730/s1, Figure S1. Characterization of the
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concentrations. Right panel—electron microscopy image of the extravesicles’ sizes and shapes;
Table S1. Patients’ characteristics and the levels of exosomal hTERT mRNA.
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8. Wadowska, K.; Bil-Lula, I.; Trembecki, Ł.; Śliwińska-Mossoń, M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int. J.
Mol. Sci. 2020, 21, 4569. [CrossRef] [PubMed]

9. El-Zein, R.A.; Abdel-Rahman, S.; Santee, K.J.; Yu, R.; Shete, S. Identification of Small and Non-Small Cell Lung Cancer Markers in
Peripheral Blood Using Cytokinesis-Blocked Micronucleus and Spectral Karyotyping Assays. Cytogenet. Genome Res. 2017, 152,
122–131. [CrossRef]

10. Van Mastrigt, E.; De Jongste, J.C.; Pijnenburg, M.W. The analysis of volatile organic compounds in exhaled breath and biomarkers
in exhaled breath condensate in children—Clinical tools or scientific toys? Clin. Exp. Allergy 2015, 45, 1170–1188. [CrossRef]

11. Aksenova, A.Y.; Mirkin, S.M. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of
Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes 2019, 10, 118. [CrossRef]

12. Chan, S.R.W.L.; Blackburn, E.H. Telomeres and telomerase. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 109–122. [CrossRef]
13. Phatak, P.; Burger, A.M. Telomerase and its potential for therapeutic intervention. Br. J. Pharmacol. 2007, 152, 1003–1011. [CrossRef]

https://www.mdpi.com/article/10.3390/biomedicines11061730/s1
https://www.mdpi.com/article/10.3390/biomedicines11061730/s1
http://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf
https://doi.org/10.1007/s12272-022-01382-6
https://www.ncbi.nlm.nih.gov/pubmed/35449345
https://canceratlas.cancer.org/the-burden/lung-cancer/
https://canceratlas.cancer.org/the-burden/lung-cancer/
https://www.nccn.org/guidelines/category_1
https://doi.org/10.2147/CMAR.S187317
https://www.ncbi.nlm.nih.gov/pubmed/30718965
https://doi.org/10.1001/jama.2021.0377
https://www.ncbi.nlm.nih.gov/pubmed/33687468
https://www.ncbi.nlm.nih.gov/pubmed/32774997
https://doi.org/10.3390/ijms21134569
https://www.ncbi.nlm.nih.gov/pubmed/32604993
https://doi.org/10.1159/000479809
https://doi.org/10.1111/cea.12454
https://doi.org/10.3390/genes10020118
https://doi.org/10.1098/rstb.2003.1370
https://doi.org/10.1038/sj.bjp.0707374


Biomedicines 2023, 11, 1730 11 of 14

14. Low, K.C.; Tergaonkar, V. Telomerase: Central regulator of all of the hallmarks of cancer. Trends Biochem. Sci. 2013, 38, 426–434.
[CrossRef]

15. Lantuejoul, S.; Salon, C.; Soria, J.-C.; Brambilla, E. Telomerase expression in lung preneoplasia and neoplasia. Int. J. Cancer 2007,
120, 1835–1841. [CrossRef] [PubMed]

16. Kawai, T.; Hiroi, S.; Nakanishi, K.; Meeker, A.K. Telomere length and telomerase expression in atypical adenomatous hyperplasia
and small bronchioloalveolar carcinoma of the lung. Am. J. Clin. Pathol. 2007, 127, 254–262. [CrossRef] [PubMed]

17. Mavrogiannou, E.; Strati, A.; Stathopoulou, A.; Tsaroucha, E.G.; Kaklamanis, L.; Lianidou, E.S. Real-Time RT-PCR Quantification
of Human Telomerase Reverse Transcriptase Splice Variants in Tumor Cell Lines and Non–Small Cell Lung Cancer. Clin. Chem.
2007, 53, 53–61. [CrossRef]

18. Kumaki, F.; Kawai, T.; Hiroi, S.; Shinomiya, N.; Ozeki, Y.; Ferrans, V.J.; Torikata, C. Telomerase activity and expression of human
telomerase RNA component and human telomerase reverse transcriptase in lung carcinomas. Hum. Pathol. 2001, 32, 188–195.
[CrossRef]

19. Frías, C.; García-Aranda, C.; De Juan, C.; Morán, A.; Ortega, P.; Gómez, A.; Hernando, F.; López-Asenjo, J.-A.; Torres, A.-J.; Benito,
M.; et al. Telomere shortening is associated with poor prognosis and telomerase activity correlates with DNA repair impairment
in non-small cell lung cancer. Lung Cancer 2008, 60, 416–425. [CrossRef]

20. Fan, Y.-B.; Ye, L.; Wang, T.-Y.; Wu, G.-P. Correlation between morphology and human telomerase gene amplification in bronchial
brushing cells for the diagnosis of lung cancer. Diagn. Cytopathol. 2009, 38, 402–406. [CrossRef]

21. Hashim, M.; Sayed, M.; Samy, N.; Elshazly, S. Prognostic significance of telomerase activity and some tumor markers in non-small
cell lung cancer. Med. Oncol. 2010, 28, 322–330. [CrossRef] [PubMed]
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