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Abstract: Proprioceptive impairments occur in ~50% of stroke survivors, with 20–40% still impaired
six months post-stroke. Early identification of those likely to have persistent impairments is key
to personalizing rehabilitation strategies and reducing long-term proprioceptive impairments. In
this study, clinical, neuroimaging and robotic measures were used to predict proprioceptive impair-
ments at six months post-stroke on a robotic assessment of proprioception. Clinical assessments,
neuroimaging, and a robotic arm position matching (APM) task were performed for 133 stroke
participants two weeks post-stroke (12.4 ± 8.4 days). The APM task was also performed six months
post-stroke (191.2 ± 18.0 days). Robotics allow more precise measurements of proprioception than
clinical assessments. Consequently, an overall APM Task Score was used as ground truth to classify
proprioceptive impairments at six months post-stroke. Other APM performance parameters from the
two-week assessment were used as predictive features. Clinical assessments included the Thumb
Localisation Test (TLT), Behavioural Inattention Test (BIT), Functional Independence Measure (FIM)
and demographic information (age, sex and affected arm). Logistic regression classifiers were trained
to predict proprioceptive impairments at six months post-stroke using data collected two weeks
post-stroke. Models containing robotic features, either alone or in conjunction with clinical and
neuroimaging features, had a greater area under the curve (AUC) and lower Akaike Information
Criterion (AIC) than models which only contained clinical or neuroimaging features. All models
performed similarly with regard to accuracy and F1-score (>70% accuracy). Robotic features were
also among the most important when all features were combined into a single model. Predicting
long-term proprioceptive impairments, using data collected as early as two weeks post-stroke, is
feasible. Identifying those at risk of long-term impairments is an important step towards improving
proprioceptive rehabilitation after a stroke.

Keywords: proprioception; stroke; prediction; robotics; modeling; stroke recovery; stroke outcomes

1. Introduction
1.1. Proprioception and Its Importance after Stroke

Proprioception, described by Sir Charles Sherrington [1], refers to the sense of limb
position and movement, originating from receptors within the muscles and joints them-
selves [2]. The proprioceptive sense is important in allowing us to move our limbs freely in
space and interact with our surroundings. Following stroke, proprioceptive impairments
are common, typically observed in approximately 50% of stroke survivors [3,4]. Propri-
oceptive impairments have been associated with a reduced ability to perform activities
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of daily living (ADLs) post-stroke, independent of motor deficits [5–8]. Mitigating these
impairments can be important for restoring independent quality of life. Recent studies
assessing proprioception using robotic technology have, however, demonstrated that im-
pairments are still apparent in 20–40% of stroke survivors six-months after stroke [9,10].
This is not necessarily surprising considering that evidence-based interventions for treating
proprioception post-stroke are lacking (for an in-depth review, see [11,12]). Unfortunately,
little is often done clinically to target proprioceptive recovery, and more than half of thera-
pists believe that current treatments for somatosensory impairment are ineffective, lacking
confidence in their ability to treat somatosensory deficits [13]. Early identification of indi-
viduals at high-risk of suffering chronic proprioceptive impairments is an important step
towards personalized approaches to rehabilitation. Doing so would highlight those who
would benefit from rehabilitation with some focus on restoring proprioception.

1.2. Predictors of Proprioceptive Impairment

Within stroke centres, clinical assessments and neuroimaging are a standard compo-
nent of patient care, and thus are readily available for use in predicting patient outcomes.
Previous literature has assessed the relationship of many clinical and neuroimaging mea-
sures with assessments of proprioception in the subacute stage post-stroke [7,14–18]. In par-
ticular, clinical measures of attention and activities of daily living, such as the Behavioural
Inattention Test (BIT) and Functional Independence Measure (FIM), have been closely asso-
ciated with measures of proprioception [7,14–18]. Furthermore, studies have investigated
the relationship between neuroimaging measures, such as lesion volume and region-specific
damage, and robotic assessments of proprioception [10,16,19–22]. Greater lesion volume
has been linked with a worse proprioceptive performance post-stroke [16,19–21], while
additional studies have used voxel-based lesion-symptom mapping (VLSM) to assess the
statistical relationships between lesioned brain regions and proprioceptive performance
after stroke [10,20–22]. In comparison to motor recovery, where many studies have tried
to identify early predictors of recovery [23–28], few have focused on predicting long-term
proprioceptive recovery [10,19,29].

1.3. Aims and Hypothesis

The utility of clinical, neuroimaging and robotic measures in predicting and classifying
long-term proprioceptive outcomes has been under-explored. The purpose of this study,
therefore, was to evaluate the ability of clinical, neuroimaging and robotic measures,
collected within the first two weeks post-stroke, to predict proprioceptive impairments six-
months post-stroke both independently of and in combination with each other. Considering
the previously established associations between clinical measures, neuroimaging and
proprioceptive measures, it was hypothesized that models containing just clinical or just
neuroimaging features would reasonably predict six-month proprioceptive impairments.
Furthermore, it was hypothesized that robotic features, alone and in conjunction with
clinical and neuroimaging features, would lead to superior predictions in terms of accuracy
and area under the receiver-operator characteristic (ROC) curve (AUC).

2. Materials and Methods
2.1. Participant Recruitment

Participants for the current study were recruited from a pool of participants taking
part in a larger, ongoing prospective cohort study called RESTART, which documents stroke
recovery using robotics and neuroimaging over the first six-month post-stroke.

2.1.1. Study Inclusion Criteria

Participant inclusion criteria for the current study was: (1) 18+ years of age, (2) first
time ischemic or hemorrhagic unilateral stroke, (3) could follow task instructions, (4) com-
pleted a robotic arm position matching (APM) task at both two weeks and six months
post-stroke, (5) had a clinical assessment collected at approximately two weeks post-stroke
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and (6) had clinical neuroimaging collected (Magnetic Resonance Imaging (MRI) or Com-
puted Tomography (CT)).

2.1.2. Study Exclusion Criteria

Participant exclusion criteria were: (1) apraxia [30], (2) contraindications to neuroimag-
ing, (3) other diagnosed neurological disorders (multiple sclerosis, Parkinson’s disease,
etc.), or (4) upper extremity orthopedic injury/pain that impacted their ability to perform
the robotic assessments.

2.2. Robotic Assessment of Proprioception

Proprioception was assessed in the current study, using a robotic APM task [3,7], at
two time points post-stroke, approximately two weeks (12.4 ± 8.4 days) and six months
(191.2 ± 18.0 days) post-stroke. The APM task was performed in a Kinarm Exoskeleton
robotic device (Kinarm., Kingston, ON, Canada). Participants sat in the wheelchair base of
the robotic device with their arms supported in the horizontal plane by custom-fitted arm-
troughs (Figure 1A). The linkages on the robot were then adjusted to fit each participant,
such that the length of the robotic arms matched those of the participant and the robotic
joints lined up with the participant’s shoulders and elbows. Once each participant was set
up, they were wheeled into the virtual reality environment, and vision of the arms was
occluded by an opaque shutter and bib.
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Figure 1. Robotic Assessment of Proprioception—(A) Kinarm Exoskeleton Lab (Kingston, ON,
Canada) used to perform the robotic assessment of proprioception (Arm Position Matching task).
(B) Exemplar Arm Position Matching task performance of an unimpaired stroke participant. The
robot moved the affected right arm. Closed symbols indicate the mean nine target positions where
the robot moved the participant’s hand. For illustrative purposes, the green line connects the
mean hand position of the eight outer targets. The participant matched with their unaffected left
arm. Open symbols indicate the mean, matched hand position of the unaffected arm. Again, for
illustrative purposes, the blue line connects the eight outer targets. Ellipsoids represent the variability
(one standard deviation) in matched position around each target. For illustrative purposes, the
participant’s matched positions have been reflected across the midline onto the robot moved arm.
The dashed grey line connects the reflected outer 8 targets. (C) Same format as B, except an exemplar
from a stroke participant with an impairment on the Arm Position Matching task is provided.
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The APM task began with the robot moving the participant’s affected arm to one of
nine-spatial targets. These targets were oriented in a 20 cm × 20 cm square, with eight outer
targets surrounding a central target. Once the robot had finished moving the participant’s
affected arm to the first target, they were instructed to attempt to mirror match the position
of the robot-moved (affected) arm, with their unaffected arm. Participants then verbalized
that they felt that they were in a matched position, and the robot operator cued the robot to
move the arm to the next target. The robot moved the participant’s arm between the nine
targets with a bell-shaped velocity profile and a maximum speed of 0.3–0.5 m/s. Each target
was assessed in a pseudorandomized order, once per block. Six blocks were performed, so
that there were 54 trials in the APM task. Exemplars of the APM task, from participants
with and without an APM task impairment, are shown in Figure 1B,C, respectively.

Robotic assessments allow for objective measures of sensorimotor function, compared
to standard clinical assessments [31]. As such, performance on the APM task was used as
the primary measure of proprioception, to classify participants to those with and without
impairments at six months post-stroke. Performance parameters from the APM task are
described in Section 2.3. The APM task parameters used as features in the predictive models
are described in Section 2.6.

2.3. Quantifying Proprioceptive Performance and Impairments

Performance on the APM task was quantified by a global measure called an APM
Task Score, which was used to infer the presence of proprioceptive impairments. The APM
Task Score is a composite measure, based on a number of parameters, each reflective of a
different component of APM task performance. These parameters include: (1) Absolute
Error, which quantifies the absolute distance in the mirror-matched position between the
robot-moved arm and the participant-moved arm, (2) Variability, which measures the
trial-to-trial variance in the participant’s ability to match limb position, (3) Contraction
Expansion, which describes the perception of the workspace in which the robot moved
their affected arm as either shrunken or enlarged, and (4) Shift, which captures a perceived
systematic shift of the robot moved arm. Each parameter was calculated in the x and y
directions. Further details on these parameters and how they are calculated have been
previously published [3,7,32].

Each parameter was first converted into a z-score based on a large normative data set,
composed of 2229 previously collected APM task assessments from 799 control participants
with no history of neurological disorders. For each parameter, data from the control set
was first converted to a normal distribution by Box-Cox transformation and outliers were
removed from the data that were outside ±3.29 SDs from the mean. Weighted linear
regression models were used to remove the influence of age, sex and handedness [32–34].
Parameter z-scores were then calculated, with a z-score of zero equal to the mean perfor-
mance of controls.

The next step was to convert these parameter z-scores into the APM Task Score.
Parameter z-scores were first transformed such that for any given parameter, the best score
was indicated by a score of zero and larger values indicative of worse performance [32–34].
Next, the root sum square (RSS) distance was calculated for each of these transformed
scores and converted into a z-score by the same transformations used to convert parameter
scores to z-scores. The final step in calculating the APM Task Score was to convert the
z-score of the RSS distance into a zeta-score using the zeta-transformation [32]. Robotic
analysis was performed using Dexterit-E version 3.9 (Kinarm, Kingston, ON, Canada).

The APM Task Score allows for comparisons in performance between stroke and
control participants to be made, accounting for each participant’s age, sex and handed-
ness [32]. Since the APM Task Score is a normative score, based on a large control dataset
(n = 799), it adopts the same features as a normal distribution. As such, 95% of healthy
control participants, of the same age, sex and handedness as any given participant, have an
APM Task Score less than 1.96 [32]. APM Task Scores greater than 1.96 indicated abnormal
performance on the APM task and was used to infer if a participant had a proprioceptive
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impairment at six months. While the APM Task Score was used to quantify the binary
proprioceptive outcome at six months, each of the parameter scores collected at two weeks
were used as predictive features in the models trained. Further details on the APM Task
Score, and each of these processes and calculations, have been extensively published and are
best described in [34]. Additional documentation outlining these details can be freely down-
loaded at (https://kinarm.com/download/kst-summary-analysis-version-3-9/; accessed
on 4 June 2022).

2.4. Clinical Assessment

Participants also completed a battery of clinical assessments two weeks post-stroke,
collected along with the initial robotic assessment. Clinical assessments included the:
Thumb Localization Test (TLT) [35], BIT [36] and FIM [37]. Scores from these clinical
assessments were also used as features to predict proprioceptive impairments on the APM
task at six months post-stroke, as described in Section 2.6.

The TLT was collected as a clinical measure of proprioception. In the TLT, with the
participant’s eyes closed, the clinician moves the affected arm to a fixed position and
asks the participant to try to pinch the thumb of that limb with the opposing limb. The
clinician gives a score ranging from zero to three (0 = quickly and accurately locates thumb,
1 = locates thumb with a minor corrective movement, 2 = locates thumb by chance or uses
hand or other fingers as a guide, and 3 = unable to locate thumb at all, or uses arm as a
guide). The BIT was collected due to the close association between hemispatial neglect
and proprioceptive impairment [15–18]. The conventional sub-tests of the BIT were used,
which included the following pencil and paper tasks: line bisection, line cancellation, letter
cancellation, star cancellation, shape copying, and figure drawing. Lower scores indicate
worse attentional deficits, with scores less than 130 indicative of hemispatial neglect. It
has been previously established that proprioceptive impairments are linked with reduced
participation in ADLs [5–7]. As such, the FIM was collected as a measure of ADLs and
indicative of overall stroke severity. The FIM measures the performance of ADLs across
18 items, including measures of self-care, locomotion, communication, and social cognition.

2.5. Neuroimaging

For all participants, clinical MRI or CT imaging was collected in accordance with the
acute stroke imaging procedure at the Foothill Medical Centre, Calgary, Alberta, Canada.
The mean time from stroke to image acquisition was 2.9 ± 4.3 days. MRI images were
collected on a 1.5 T or 3 T General Electric scanner. Acquisition sequences included fluid-
attenuated inversion recovery (FLAIR) and diffusion-weighted imaging (DWI). CT images
were collected on either a Siemens system or General Electric system.

Participants’ lesions were marked on the original FLAIR or CT image, and the marking
was verified by a stroke neurologist. The marked lesions were then normalized into
Montreal Neurological Institute (MNI) space using the clinical toolbox (https://www.
nitrc.org/projects/clinicaltbx; accessed on 13 January 2022) [38] in SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/; accessed on 13 January 2022). The normalized
lesions were checked for accuracy by ensuring the alignment of the ventricles, anterior
and posterior commissures and overall brain outline. Normalized lesions were then used
to generate two neuroimaging measures, pertaining to each specific lesion, that were
subsequently used as features in the prediction models.

Neuroimaging Measures

The first neuroimaging measure used was a simple calculation of lesion volume for
each participant’s lesion. A second neuroimaging measure was derived from Voxel-Based
Lesion Symptom Mapping (VLSM) methodology [39]. Participants lesions and APM Task
Scores, at two weeks post-stroke, were subject to an initial VLSM analysis. The VLSM
analysis was performed using the NiiStat Toolbox (https://www.nitrc.org/projects/niistat;
accessed 13 January 2019) in Matlab 2020a (Mathworks, Natick, MA, USA). At each voxel,

https://kinarm.com/download/kst-summary-analysis-version-3-9/
https://www.nitrc.org/projects/clinicaltbx
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participants were separated into those with and without lesions at that voxel. The voxel-
wise significance was then determined for the difference in APM Task Scores between
those with and without lesions to that voxel. To ensure statistical power, only voxels with
minimum overlap of 5% (seven participants) were tested, which is an accepted threshold
in the VLSM literature [20,40,41]. The result is a map where each voxel was assigned to a
z-score from the corresponding statistical test. Next, to determine the structure-function
relationship with respect to the APM Task Score, the mean z-score associated with all the
voxels of each participant’s lesion was calculated (VLSM mean Z). Therefore, for each
participant, the VLSM mean Z score is a scalar metric, weighted to the relative importance
of all the lesioned voxels to the APM Task Score.

2.6. Statistical Analysis

The purpose of this study was to assess the utility of clinical, neuroimaging and robotic
measures, collected two weeks post-stroke, in predicting proprioceptive impairment on a
robotic APM task six months post-stroke.

To first validate the linear relationships between each clinical, neuroimaging and
robotic measure collected at two weeks and six-month APM Task Scores, simple linear
regressions were conducted. For the TLT, Spearman’s rank correlation coefficient was
performed. Additionally, the relationship between demographic information (age, sex,
affected side) was also assessed. For age, linear regression was also performed, whereas two
sample t-tests were adopted for sex and affected side, assessing for differences in six-month
APM Task Scores between males and females and left and right affected participants.

Next, participants were split into two groups, those impaired on the APM Task
at six months (APM Task Score < 1.96) and those unimpaired on the APM task (APM
Task Score > 1.96). For each clinical, robotic and neuroimaging measure, separate Mann–
Whitney-U tests were conducted to test if group-level differences existed for each measure,
between the impaired and unimpaired groups. To correct for multiple comparisons, a
Bonferroni adjusted critical alpha of 0.00357 (14 comparisons) was used to infer significance.

Finally, to assess the utility of clinical, neuroimaging and robotic measures for pre-
dicting six-month proprioceptive outcomes (impaired vs. unimpaired), logistic regression
classifiers were trained. Firstly, a Basic model containing demographic information was
trained, which formed the basis for each subsequent model. Then, to assess the predictive
utility of each individual modality, models containing only clinical, neuroimaging or robotic
features were trained (Clinical model, Imaging model, Robotic model). All the features were also
combined into an Augmented model, to assess whether the addition of specialized robotic
measures would improve the prediction of impairments over current clinically available
information such as clinical assessments and neuroimaging. Within the Augmented model,
coefficients from the logistic regression were used to determine the relative importance of
each feature towards aiding the prediction. The features included in each model are pre-
sented in Table 1. Classification models were trained using the Scikit toolbox (version 1.1.3)
in Python (version 3.9.13) and were cross validated using stratified 10-fold cross validation.

The performance of each classification model was evaluated by calculating the classifi-
cation accuracy, F1-score (to account for imbalances between the number of participants
with and without impairments), area under the receiver-operator characteristic (ROC) curve
(AUC), sensitivity, and specificity. It was anticipated that the Augmented model would yield
more accurate predictions and reduce prediction error. To evaluate whether the potential
benefits in prediction accuracy outweighed the cost of including additional features, Akaike
information criterion (AIC) was also used to compare models, penalizing models with
more features.
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Table 1. Model variables—Features entered into each predictive model. TLT = Thumb Localisation
Task, BIT = Behavioural Inattention Test, FIM = Functional Independence Measure, VLSM = Voxel-
based Lesion Symptom Mapping.

Model Measures Included

Basic model Age, Sex, Affected Arm
Clinical model Age, Sex, Affected Arm, TLT, BIT, FIM
Imaging model Age, Sex, Affected Arm, VLSM mean Z, Lesion Volume

Robotic model Age, Sex, Affected Arm, Absolute Error X, Absolute Error Y, Variability X, Variability Y, Contraction
Expansion X, Contraction Expansion Y, Shift X, Shift Y

Augmented model Age, Sex, Affected Arm, TLT, BIT, FIM, VLSM mean Z, Lesion Volume, Absolute Error X, Absolute Error Y,
Variability X, Variability Y, Contraction Expansion X, Contraction Expansion Y, Shift X, Shift Y

3. Results
3.1. Participant Demographics and Other Predictors

A total of 133 participants were included in the current study (females = 42; Left
affected arm = 78). Participant demographics are presented in Table 2. Participants were
60.2 ± 13.0 years of age. By six months post-stroke, 48 participants still had impairments
on the APM task (36.1%). As such, a classification model that predicted every participant
as impaired or unimpaired at six months (i.e., a single class/chance model), would have
been 36.1% or 63.9% accurate, respectively. Lesion overlaps for participants impaired and
unimpaired at six months are presented in Figure 2. At two weeks post-stroke, 26 partici-
pants had neglect (BIT scores < 130); however, only four participants still had neglect by
six months, alleviating concerns that impairments on the APM task at six months could be
due to participants still having neglect (Supplemental Figure S1).

Table 2. Demographics—Participant demographics. For Age, Lesion Volume, VLSM mean Z, Ab-
solute Error, Variability, Contraction Expansion, Shift and six-month APM Task Score, values are
presented as the mean ± standard deviation. For the BIT and FIM, values presented are the me-
dian with the range presented in parentheses. BIT = Behavioural Inattention Test, FIM = Func-
tional Independence Measure, TLT = Thumb Localisation Task, APM = Arm Position Matching,
VLSM = Voxel-based Lesion Symptom Mapping.

Age 60.2 ± 13.0
Sex Males = 91, Females = 42

Affected Arm Right = 55, Left = 78
TLT 0 = 50, 1 = 36, 2 = 33, 3 = 14
BIT 141 (58–146)
FIM 102 (35–126)

Lesion Volume (cc) 35.1 ± 53.5
VLSM Mean Z 1.652 ± 1.223

Absolute Error X (z-score) 1.42 ± 1.30
Absolute Error Y (z-score) 1.49 ± 1.28

Variability X (z-score) 2.15 ± 1.93
Variability Y (z-score) 2.67 ± 2.12

Contraction Expansion X −1.71 ± 2.20
Contraction Expansion Y −2.27 ± 3.77

Shift X −0.40 ± 1.78
Shift Y −0.64 ± 1.98

APM Task Score (six months) 1.90 ± 1.55

3.2. Examining the Linear Relationships between Clinical, Neuroimaging and Robotic Features and
Six-Month APM Task Scores

First, the linear relationships between each feature collected at two weeks post-
stroke and six-month APM Task Scores were independently validated (Supplemental
Figures S2–S4). All clinical features collected two weeks post-stroke were significantly asso-
ciated with six-month APM Task Scores (Supplemental Figure S2). For the TLT (rho = 0.499,
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p = 9.92 × 10−10), higher scores (worse performance) were associated with higher APM
Task Scores (worse performance). For the BIT (R2 = 0.253, p = 4.12 × 10−10) and FIM
(R2 = 0.239, p = 1.39 × 10−9), lower clinical scores (worse performance) were associated
with higher APM Task Scores (worse performance). Additionally, both neuroimaging
features were significantly associated with six-month APM Task Scores (Supplemental
Figure S2). Greater lesion volumes (R2 = 0.169, p = 5.29 × 10−7) and VLSM mean Z scores
(R2 = 0.205, p = 2.78 × 10−8) were also all significantly associated with higher APM Task
Scores (worse performance). Of the robotic features collected two weeks post-stroke, signif-
icant associations with six-month APM Task Scores were observed for Absolute Error X
(R2 = 0.300, p = 5.46 × 10−12), Absolute Error Y (R2 = 0.447, p = 9.21 × 10−19),Variability
X (R2 = 0.325, p = 4.64 × 10−13), Variability Y (R2 = 0.423, p = 1.49 × 10−17), Contraction
Expansion X (R2 = 0.313, p = 1.58 × 10−12) and Contraction Expansion Y (R2 = 0.382,
p = 1.44 × 10−15) (Supplemental Figure S3). There were no significant associations between
two-week Shift X and Shift Y scores and six-month APM Task Scores.
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Figure 2. Lesion Overlaps—Lesion overlaps for (A) Participants impaired on the APM Task at six
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with lesions at each voxel. Axial slices (from left to right), z = −2, 10, 22, 34, 46, 58, 64.

For the demographic features, six-month APM Task Scores were significantly greater in
left affected individuals than right affected individuals (t = 3.284, p = 0.0013) (Supplemental
Figure S4). There were no differences between males and females (t = 1.815, p = 0.0718), nor
a significant relationship with age (R2 = −0.00596, p = 0.641) (Supplemental Figure S4).

3.3. Examining Differences in Clinical, Robotic and Neuroimaging Features between Those
Impaired and Unimpaired on the APM Task Score

The second analysis assessed whether there were differences in clinical, neuroimaging
and robotic features, collected two weeks post-stroke, between participants with and with-
out APM task impairments (APM Task Scores > 1.96) at six months post-stroke. With the
exception of age (p = 0.974), Shift X (p = 0.294) and Shift Y (p = 0.944), significant differences
were observed for all measures (all p-values < 0.0005) between those with and without
impairments on the APM task (Figure 3). For those with impairments, all measures were
significantly higher (worse performance), except for BIT, FIM and Contraction Expansion
X and Y, which were significantly lower (worse performance—in the case of Contraction
Expansion, lower values indicate more contraction).
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Figure 3. Group Level Differences in Clinical, Neuroimaging and Robotic Featuress Between Those
Impaired and Unimpaired on the Arm Position Matching Task—Boxplots presenting features collected
at two weeks post-stroke, for those impaired on the APM task (green) and those unimpaired (grey) at
six months post-stroke. Given the varied scales each feature is scored on, scores are presented as z-
scores for illustrative purposes. Boxes represent the median (centre line), 25th percentile (bottom line)
and 75th percentile (top line), respectively. Whiskers extend to the highest and lowest data points,
within 1.5 times the interquartile range from the top or bottom of the box. Individual data points
displayed outside of this range signify outliers. Mann–Whitney U tests were conducted on the raw
scores for each measure, between groups. * below each label indicates that feature had a significant
difference between the impaired and unimpaired groups (p < 0.0005). Abs. Error = Absolute Error,
Var = Variability, Con. Exp = Contraction Expansion.

3.4. Classification Models
3.4.1. Single Modality Models

Performance metrics of each classification model are presented in Table 3, with ROC
curves for each model presented in Figure 4. When classifying impairments at six months
post-stroke, using data collected two weeks post-stroke, all models containing single modal-
ity features (e.g., Clinical, Imaging and Robotic models) performed reasonably well (Table 3),
with the exception of the Basic model. The most accurate model was the Clinical model (Accu-
racy = 78.95%, F1-score = 0.78), closely followed by the Robotic model (Accuracy = 77.44%,
F1-score = 0.77) and then the Imaging model (Accuracy = 72.18%, F1-score = 0.71). With
regard to the AUC metric, the highest performing single modality model was the Robotic
model (AUC = 0.84), followed by the Clinical model (AUC = 0.79) and then the Imaging model
(AUC = 0.74). The Robotic model also had the lowest AIC value (AIC = 120.07), compared
with the Clinical model (AIC = 146.96) and Imaging model (148.43). The Basic model performed
poorly on all metrics, except for specificity (Table 3). The highest contributing features
for each model are presented in Supplemental Table S1. For the Clinical model, TLT scores
(0.9513) and Affected arm (−0.6551) were the most important features of the model. For
the Imaging model, Affected Arm (−0.7606) and VLSM mean Z (0.6665) were most impor-
tant. For the Robotic model, the prediction was mostly driven by Affected Arm (−0.9762),
Variability Y (0.8015) and Absolute Error X (0.4643).
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Table 3. Predictive model performance—Performance metrics for each of the predictive models
trained. For accuracy, sensitivity and specificity, values presented are percentages. * indicates
the model(s) with the best performance for each given metric. For all metrics, except AIC, higher
values indicate better performance. AUC = Area under the Receiver-Operator Characteristic curve,
AIC = Akaike Information Criterion.

Accuracy F1-Score AUC Sensitivity Specificity AIC

Basic Model 63.16 0.49 0.45 0.00 98.82 * 176.94
Clinical model 78.95 * 0.78 * 0.79 62.50 88.24 146.96
Imaging model 72.18 0.71 0.74 47.92 85.88 148.43
Robotic model 77.44 0.77 0.84 68.75* 82.35 120.07 *

Augmented
model 76.69 0.77 0.86* 64.58 83.53 126.07
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Figure 4. Receiver Operator Characteristic Curves (ROC curves)—Receiver Operator Characteristic
(ROC) curves for the models predicting APM Task impairments at six months post-stroke. Each line
represents the ROC curve for an individual model. Blue line = Basic model, orange line = Clinical
model, green line = Imaging model, red line = Robotic model, purple line = Augmented model. Area
under each curve (AUC) is reported in the figure legend. Dashed red line represents an AUC of 0.5
and a model that performs at random.

3.4.2. Augmented Model

When combining all demographic, clinical, neuroimaging and robotic features, the
Augmented model also performed well, with an accuracy of 76.69%, F1-score of 0.77 and
an AUC of 0.86. Of all the models trained, the Augmented model had the highest AUC
(Table 3). With the exception of the Robotic model, the Augmented model also had a lower
AIC than all other models. Upon closer inspection of the model coefficients (Figure 5,
Supplemental Table S1), there were five features, in particular, that contributed the most
towards the Augmented model predictions. The largest contributors to the model prediction
were: Affected Arm (−0.857), Variability Y (0.755), Absolute Error X (0.441), VLSM mean Z
(0.333) and Variability X (−0.330) (Figure 5, Supplemental Table S1). Contraction Expansion
Y (−0.245) and TLT scores (0.233) were also relatively important features.
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Figure 5. Augmented Model Feature Importance—Feature coefficients presented for the Augmented
model. Features are ranked in order of absolute coefficient value. TLT = Thumb Localisation Task,
BIT = Behavioural Inattention Test, FIM = Functional Independence Measure, VLSM = Voxel-based
Lesion Symptom Mapping.

4. Discussion

The idea of predicting functional outcomes after a stroke is not new, as many studies
have focused on predicting motor recovery and ADLs post-stroke [42–47]. Much less atten-
tion, however, has been placed on predicting sensory and proprioceptive recovery. This
study demonstrated the utility of clinical, neuroimaging, and robotic measures, collected
two weeks post-stroke, for predicting proprioceptive outcomes at six months post-stroke.
Models which only contained a single modality of features (e.g., only clinical, neuroimaging
or robotic features) resulted in prediction accuracies for long-term impairment that were
greater than a model performing at chance, ranging from 72 to 79% (Table 3). Surprisingly,
however, the combination of robotic features with clinical and neuroimaging features did
not improve prediction accuracy or F1-score over the single modality models. When evalu-
ating model performance based on AUC and AIC, there was, however, a clear advantage
for models that utilized robotic features over those without (Table 3, Figure 4). The higher
AUC, along with a relatively low AIC value, validates the use of models that are rich in
features derived from robotic assessments when predicting long-term proprioceptive out-
comes. Overall, this study advances our understanding of the predictors of proprioceptive
recovery, something which has recently been called for in stroke recovery research [29].
Developing this understanding is important for identifying individuals who are at risk of
long-term impairment, who could benefit from additional proprioceptive rehabilitation in
the first six months post-stroke.

Independent of clinical and neuroimaging features, the use of robotic features resulted
in a prediction accuracy of 77.44%. Although the accuracy and F1-score of the models
containing robotic features were similar to those containing just clinical or neuroimaging
features, the Robotic and Augmented models outperformed the Clinical and Imaging models in
terms of AUC and AIC metrics. The relatively higher AUC suggests a greater ability of the
models containing robotic features to separate those with proprioceptive impairments at
six months from those without. Additionally, the lower AIC supports the use of the extra
robotic features in these models. The improvements observed in AUC but not in accuracy
are likely a reflection of what each metric measures. While accuracy is simply the proportion
of correct predictions at a single model threshold, AUC measures the relationship between
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the True Positive Rate (Sensitivity) and the False Positive Rate (1-Specificity) at different
threshold values. AUC is also biased towards the positive class (in this case, the impaired
class). As seen in Figure 4, the Robotic and Augmented model’s performance separates from
the Clinical and Imaging models as the True Positive Rate exceeds 0.7 (i.e., a higher True
Positive Rate/Sensitivity for a lower False Positive Rate), suggesting the greater ability for
the models containing robotic features to correctly identify the impaired participants across
a wide range of threshold values.

To date, the literature is limited when predicting and classifying sensory outcomes after
stroke. Other classification studies have, however, attempted to predict functional outcomes
post-stroke [42,43,45,46,48] based on the Modified Rankin Scale or Barthel Index. Many of
these have been deemed successful, reporting accuracies in the range of 56–85% [43,45]
and AUC values in the range of 0.76–0.91 [42,48–50]. The Clinical, Robotic and Augmented
models in the current study had comparable accuracies and AUC values, ranging between
76.69–79.95% and 0.79–0.86, respectively. Furthermore, in contrast to proprioception, there
is a far deeper body of the literature aimed at predicting upper limb motor recovery, with
a particular focus on clinical and physical markers such as finger extension and shoulder
abduction, neurophysiological markers such as the presence of motor evoked potentials and
neuroimaging markers such as corticospinal tract integrity [51–53] (for a comprehensive
review of the literature, see [54]). That said, similarities are shared with those in the motor
literature, whereby clinical and neuroimaging features contributed to successful prediction
of proprioceptive outcomes in this study. In order to fully critique the performance of the
models trained in this study, further research is required that attempts to predict sensory
outcomes post-stroke. Doing so would allow the effectiveness of the models trained in
this study to be compared with other suitable literature. As the body of literature grows
surrounding sensory outcome prediction post-stroke, more tailored models can be trained
that utilize a growing wealth of knowledge.

The present study has strong implications for stroke rehabilitation and promoting a
more routine use of, and investments in, robotic technology in clinical practice. Being able
to accurately assess proprioception and predict the likelihood of long-term impairments is
an integral step towards developing better treatment plans for patients identified at risk of
long-term impairments, who would otherwise have reduced independence in daily living
and quality of life [7,55]. Robotics may be an important tool in improving both sensory
prediction and assessment post-stroke.

Importantly, within the Robotic and Augmented models, this work has identified key
components from a robotic assessment of proprioception that, when collected early post-
stroke, are indicative of long-term proprioceptive problems for patients. In addition to the
successful performance of the Robotic model, there were key features of the Augmented model,
derived from robotic assessments, that were major contributors to predicting outcomes, for
example, Variability Y, Absolute Error X and Variability X (Figure 5, Supplemental Table S1).
This is of particular importance as rehabilitation looks towards a personalized medicine
approach. Since robotics can identify key areas that predict long-term impairments, they
have the capacity to inform the rehabilitation process by aiding the design of targeted
interventions for these specific areas and mitigating long-term impairments. Robotics are
advantageous for assessing proprioception as they provide an abundance of information
about someone’s performance and are far more precise than clinical assessments [31],
collecting data every millisecond (in the case of the Kinarm Exoskeleton used in this
study). As such, robotics are optimally suited to provide additional details about a person’s
particular proprioceptive impairment. Additionally, compared to the clinical assessments
performed in this study (TLT, BIT and FIM), which can take up to 30 min to perform
and require a trained clinician/rater, the APM task provides plentiful data in under four
minutes of assessment time. Taken together, the present findings support the use of
robotics to inform and improve the prediction of long-term patient outcomes, as well as
inform rehabilitation.
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Despite limited clinical uptake for the treatment of post-stroke proprioception, some
potentially promising evidence comes from experimental interventions [12]. These studies,
which are limited and only conducted in small samples, have been shown to increase
proprioceptive acuity following stroke using a variety of treatment methods [56–65]. Many
of these studies have utilized alternative treatments such as robotic therapy [57,59,60,63]
including robotic mirror therapy [65] and assisted movement with enhanced sensation [58]
but have also included more traditional tactile and proprioceptive discrimination train-
ing [56]. Interestingly, robotic therapy has also been proven to be beneficial for treating
motor function after a stroke [66,67]. Given the capability of robotics to facilitate prediction
of proprioceptive impairment, either alone or in conjunction with clinical assessments, the
use of robotics in clinical settings in addition to their apparent benefit for proprioceptive
rehabilitation should continue to be explored and considered.

It has previously been demonstrated that the ability to predict functional outcomes
post-stroke, using clinical measures alone, hits a ceiling of prediction accuracy at around
80% [43,45], with the addition of specialized features (such as neuroimaging or robotics)
potentially required to facilitate improvements in model performance [43]. Although it was
anticipated that robotic features would result in higher prediction accuracy than clinical or
neuroimaging features, unfortunately this was not found to be the case, with the Robotic
and Augmented models performing similarly to the Clinical and Imaging models.

It must be noted, however, that the Clinical model still performed well, even in the
absence of more specialized features such as neuroimaging or robotics. Within this model,
TLT scores and the affected arm were the most informative features (Supplemental Table S1).
The TLT was also amongst the more informative features of the Augmented model (Figure 5,
Supplemental Table S1). The relative success of using clinical measures for long-term
prediction corroborates the findings of Reid et al. [42], who demonstrated that outcome
predictions, based on the Modified Rankin Scale, were just as good using simple clinical
measures compared to more complex models which utilized neuroimaging measures. The
ability of the clinical measures used in the current study to predict proprioceptive outcome
also may not be surprising, considering the close associations that have previously been
described between attentional deficits, the ability to perform ADLs and proprioception
post-stroke [7,15,18]. The high prediction accuracy in this study may therefore reflect these
tight relationships between clinical and robotic measures of proprioception (Supplemental
Figure S2). While robotics provide distinct advantages over clinical assessments [31], they
are not common in clinical sites. In sites where robotics are not accessible, it is important
that clinicians recognize the associations between these types of clinical measures and
the likelihood of long-term proprioceptive difficulties in their patients, when performing
assessments early after stroke and prescribing rehabilitation.

Finally, within the Augmented model, the affected arm and VLSM mean Z also con-
tributed to the model prediction (Figure 5, Supplemental Table S1). There is a growing body
of evidence that suggests that proprioception is lateralized to the right hemisphere, with a
distributed network of brain regions likely responsible for proprioception [16,68–76]. With
APM Task Scores greater (worse) in left-arm affected individuals (Supplemental Figure S4)
and greater VLSM mean Z scores in those with impairments at six months, the relative
importance of these measures as predictors of long-term impairment likely reflects this
lateralized neuroanatomy for proprioception.

Limitations

Like all studies, the current study has limitations. Given the size of the dataset, models
were both trained and tested within samples and the test data were not necessarily unseen.
While it is suggested that using the same data to train and test models might be useful
from the standpoint of exploring potential predictive measures [77–79], in an ideal scenario
a vastly larger dataset would be available, allowing these findings to be generalized to a
wider sample. In this study stratified 10-fold cross-validation was used, which can protect
against these biases. It must also be noted that there were slight imbalances in the number
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of participants with and without impairments in the sample (approximately 60–40% split),
something which was maintained through each cross-validation sample. This imbalance
may have the potential to bias the current findings and distort the perceived performance
of each model trained. That said, all the models outperformed a single class model by
10–15% accuracy.

5. Conclusions

Predicting proprioceptive impairments out to six months post-stroke using clinical,
neuroimaging and robotic measures, collected within the first two weeks post-stroke, is
feasible. Considering the current clinical standard of care often does not focus on treating
proprioceptive impairments, identifying those likely to have long-lasting impairments is
a key step towards personalized approaches in the treatment of proprioception. Further
studies are, however, needed to refine predictive models and increase the prediction
accuracy of proprioceptive recovery post-stroke.
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//www.mdpi.com/article/10.3390/brainsci13060953/s1, Supplementary Figure S1: Relationship
between six-month BIT scores and APM Task Scores; Supplementary Figure S2: Examining the
relationships between two-week clinical and neuroimaging measures and six-month Arm Position
Matching Task Scores; Supplementary Figure S3: Examining the relationships between two-week
robotic measures and six-month Arm Position Matching Task Scores; Supplementary Figure S4:
Examining the relationships between demographic measures and six-month Arm Position Matching
Task Scores; Supplementary Table S1: Predictive model coefficients.
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