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The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular

metabolism and is involved in physiological processes such as protein and lipid

synthesis and calcium ion transport. Recently, the abnormal function of the ER

has also been reported to be involved in the progression of kidney disease,

especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER

and summarized the regulation of homeostasis through the UPR and ER-phagy.

Then, we also reviewed the role of abnormal ER homeostasis in residential renal

cells in DN. Finally, some ER stress activators and inhibitors were also

summarized, and the possibility of maintaining ER homeostasis as a potential

therapeutic target for DN was discussed.
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1 Introduction

Diabetes is a serious disease that endangers human health, and long-term

hyperglycemia can cause a variety of microvascular complications, including diabetic

nephropathy (DN) (1). With the increasing number of patients with diabetes, DN has

gradually become one of the main causes of end-stage renal disease (ESRD) (2, 3).

However, symptomatic treatment is still the main treatment for diabetic nephropathy in

clinical practice, and there is a lack of effective early diagnosis and treatment measures for

DN. Therefore, in-depth elucidation of the molecular mechanism of DN is conducive to the

development of DN treatment drugs.

The endoplasmic reticulum (ER) is one of the most metabolically active organelles

involved in many cellular life processes. ER homeostasis is conducive to maintaining a

relatively stable state of metabolic processes in cells, while ER dysfunction has also been

shown to be closely related to the occurrence and development of a variety of diseases, such

as liver disease (4), neurological diseases (5), diabetes (6) and cardiovascular disease (7).

The role of ER in the pathogenesis of DN has also been partially revealed. In this review, we
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briefly describe the dysfunction of the ER in the intrinsic cells of the

kidney in DN, and summarize some current stimulants and

inhibitors of ER stress to maintain endoplasmic reticulum

homeostasis as a potential therapeutic target for DN.
2 Function of the ER

In cells, the ER is classified as rough ER or smooth ER based on

whether it is accompanied by ribosomes. The rough ER is mainly

responsible for protein synthesis, while the smooth ER is the main

site for lipid synthesis (8, 9). In fact, the most important and best-

known functions of the ER is to participate in protein synthesis. In

cells, the ER is required for more than one-third of protein

synthesis, folding and structural maturation (10). Moreover,

almost all proteins distributed in the ER, plasma membrane,

Golgi apparatus, and lysosomes are translated on ER membrane-

bound ribosomes (11). After the protein translation process is

completed, different protein structures need to be formed through

folding. In addition, the protein also needs to undergo

posttranslational modifications, such as glycosylation, disulfide

bond formation and oligomerization (12–14). These processes

occur in the ER and are catalyzed by a large number of ER-

resident enzymes, such as chaperones, glycosylases, and

oxidoreductases (15, 16). When some proteins do not reach their

native functional form once they are misfolded or improperly

aggregated, these proteins need to be identified in a timely

manner to avoid affecting cell function. In the ER, these

misfolded proteins can be removed by the ER-associated

degradation (ERAD) pathway to ensure cell function (17, 18). In

the body, different tissues or cells have different abilities to

synthesize and secrete proteins. For example, each beta cell of the

pancreas can synthesize and secrete up to 1 million molecules of

insulin per minute (19) and plasma cells can secrete their own body

weight of antibodies every day (20). In general, cells with endocrine

functions had a more active ER.

In addition to protein synthesis and folding, the ER is also involved

in lipid synthesis. In fact, the ER is a core regulator of intracellular lipid

levels. The ER can synthesize membrane lipids, including

phosphatidylcholine (PtdCho) and phosphatidylethanolamine

(PtdEtn). The ER is also rich in enzymes that synthesize cholesterol,

as well as triglycerides (TAGs) for energy storage (21). Moreover, the

ER is also involved in the process of lipid droplet formation (22, 23). In

addition to its functions in protein and lipid synthesis, the ER is also

essential for maintaining intracellular calcium homeostasis. The

concentration of Ca2+ in the cytoplasm of cells is generally ~100 nM,

while the concentration of Ca2+ in the lumen of the ER can reach 100-

800 mM (24, 25). As a widespread signaling molecule in cells, Ca2+

affects a variety of biological processes including protein localization

and function. When cytosolic Ca2+ levels are low, the ER maintains

intracellular Ca2+ homeostasis by releasing Ca2+ through several Ca2+

channels, including ryanodine receptor and inositol 1,4,5-triphosphate

receptor (IP3R) (26–28).

Thus, a properly functioning ER is essential for maintaining

cellular homeostasis. However, ER dysfunction causes tissue and

cell abnormalities and is closely related to the occurrence and
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development of a variety of diseases. The ER has corresponding

self-regulation in response to changes in external stimuli.
3 Self-regulation of ER

3.1 The unfolded protein reaction

As mentioned earlier, the ER is involved in the proper folding

process of proteins. However, under certain conditions of external

stimulation, the cell is overloaded by protein synthesis. Thus, the

workload of ER folding exceeds its capacity, and this state is known

as ER stress (29). Persistent ER stress leads to the accumulation of

misfolded proteins, which eventually leads to cell death (30–32). In

response, cells have developed a system to monitor misfolded

proteins at all times. When too much misfolded protein

accumulates in the ER, the cell initiates a signal transduction

pathway called the UPR in an attempt to correct the situation

(17, 33). Briefly, UPR signaling is initiated by three ER

transmembrane proteins: inositol-requiring enzyme 1a (IRE1a),
pancreatic endoplasmic reticulum kinase (PERK), and activating

transcription factor 6 (ATF6) (34). All of these proteins sense

misfolded proteins directly or indirectly through an ER cavity

domain, and the specific molecular mechanism was described in

detail in our previous review (35). When there are too many

misfolded proteins in the ER, they attempt to rebalance the need

and capacity for protein folding through signaling pathways to

maintain cellular homeostasis. UPR signaling expands the ER by

increasing ER components (proteins and lipids) and upregulates the

expression of chaperones to increase the protein folding capacity.

The UPR also promotes the expression of certain genes to remove

misfolded proteins in a timely manner. However, when ER stress is

persistent, the UPR cannot reverse cellular homeostasis and will

instead activate downstream molecules to promote cell death.
3.2 ER-phagy

Autophagy refers to the sequestration of misfolded proteins,

damaged or aged organelles, and mutated proteins through the

formation of autophagosomes, which eventually fuse into lysosomes

to mediate the degradation of sequestered components (36). Macro-

autophagy, micro-autophagy, and chaperone-mediated autophagy

are three distinct forms of autophagy (37–39). Moreover, according

to the different contents of degradation, macro-autophagy is also

divided into mitophagy (40), ER-phagy (41), lipophagy (42) and so

on. ER-phagy has been proposed as a novel way to regulate cellular

ER homeostasis (41). At present, a variety of proteins (FAM134B,

RTN3L, SEC62, CCPG1, ATL3 and TEX264) have been found to

mediate ER-phagy. Their common feature is that they are located in

the ER and can directly bind to LC3 through their LC3-interacting

region (LIR) under specific conditions to mediate ER-phagy (35).

Multiple cellular stresses, including starvation, the accumulation of

misfolded proteins, and the imbalance of luminal calcium, can

induce the occurrence of ER-phagy (35). In the presence of

persistent ER stress, the UPR is overactivated and then activates
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the downstream proapoptotic signaling pathways, and the timely

activation of ER-phagy can prevent the abnormal ER from further

damaging the cells. The study of ER-phagy is still in its infancy, and

the current view is that ER-phagy plays a protective role in ER

quality control and that its effect is independent of the UPR

pathway (41).
4 Abnormal ER function in DN

The role of ER homeostasis in the occurrence and development

of DN has attracted increasing attention. A surprising study has

shown that in humans, the fractional rate of renal protein synthesis

is estimated to be approximately 42% of the total daily load, which is

the highest of any organ. This implies that renal cells may be highly

sensitive to changes in ER homeostasis (43). With the deepening of

the research on the pathogenesis of DN, abnormalities in ER

homeostasis accelerate the progression of DN through different

pathways (Figure 1), and some compounds or drugs may delay the

progression of DN by maintaining ER homeostasis. Here, we will

review in detail the indispensable role of ER homeostasis in

DN progression.
4.1 ER stress

A number of studies have reported that there is excessive

activation of ER stress in the kidney in DN. In the state of

diabetes, the body engages a long-term chronic stress response

process. At this time, ER stress is overactivated, which impairs the

normal function of the kidney. Multiple factors have been reported

to be involved in ER stress in DN. It was reported that prolonged

exposure to high glucose directly activates IRE1, a key molecule of

ER stress, thereby promoting the occurrence of ER stress (44).

Moreover, advanced glycation end products (AGEs) are one of the

typical pathogenic factors of DN (45, 46), and studies have shown

that AGEs are also involved in the occurrence of ER stress in DN.

Mechanistically, AGEs activate nicotinamide adenine dinucleotide
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phosphate (NADPH) oxidase (Nox) through receptor for AGEs

(RAGE), leading to ROS generation, which subsequently leads to

oxidative stress, ER stress and UPR accumulation (47). In addition,

angiotensin II receptor, free fatty acids (FFAs) and oxidative stress

have also been shown to be involved in the pathogenesis of ER stress

in DN (48). Moreover, in the kidney, different cells have different

responses to ER stress.

4.1.1 ER stress in proximal tubular cells
Pathologically, the main manifestations of DN are glomerular

sclerosis, tubular atrophy and renal interstitial fibrosis. It has been

previously believed that glomerular damage is the basis of DN.

However, with the in-depth study of the pathogenesis of DN, renal

tubular damage seems to occur preferentially to glomerular damage

(49). Bader et al. reported that there is a certain correlation between

the vascular index and relative cortical interstitial volume and

serum creatinine, and if there is little renal interstitial fibrosis,

even severe glomerular pathological changes can manifest as

normal creatinine levels. Conversely, patients with severe

interstitial fibrosis, even mild glomerular changes, often have

elevated serum creatinine levels (50). The main function of renal

tubular cells is to reabsorb glucose and protein in urine. In diabetes,

the ultrafiltration of the kidney causes the renal tubular cells to be

overload (49). In turn, the ER of proximal tubular epithelial cells

needs to synthesize more proteins to maintain renal function.

Several studies have reported the activation of ER stress in

tubular cells in DN.

Jiang et al. demonstrated enhanced ER stress, impaired

autophagy and mitochondrial dysfunction in the kidneys of db/db

mice (a commonly used mouse model of DN), accompanied by the

upregulation of soluble epoxide hydrolase (sEH) expression. The

specific inhibition of sEH expression by t-AUCB can significantly

inhibit the level of ER stress and kidney injury in DN (51).

Moreover, in cultured mouse proximal tubular epithelial cells,

AGEs could upregulate the expression of RAGE, GRP78 and p21

in a dose- and time-dependent manner, accompanied by premature

aging in DN. Further studies showed that AGE-induced premature

aging could be mimicked by using an ER stress inducer or RAGE
FIGURE 1

Maintaining ER homeostasis delays kidney damage in DN. In the diabetic state, high glucose can not only directly induce ER stress, but also activate
it through lipotoxicity, oxidative stress and inflammation. Persistent ER stress can lead to ER dysfunction, thus causing downstream apoptosis and
fibrosis and finally aggravating renal injury in DN.
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overexpression. However, this was significantly inhibited by p21

gene silencing, and inhibiting RAGE attenuated high glucose-

induced ER stress and premature aging (52). In addition,

dapagliflozin is a new type 2 diabetes drug that can reduce blood

glucose levels and body weight by inhibiting sodium-glucose

transporter 2 (SGLT2) in proximal tubular cells (53, 54).

Moreover, it has also been shown to have renoprotective effects.

Shibusawa et al. reported that it reduces the reabsorption of glucose

into renal tubular cells, thereby regulating metabolic conditions that

cause cellular ER stress. Mechanistically, it plays an anti-ER stress

role by regulating the elf2a-ATF4-CHOP pathway (55). In

addition, our previous study also showed the decreased

expression of DsbA-L and the activation of ER stress in renal

tubular cells of mice with STZ-induced DN. However, the

overexpression of DsbA-L inhibited ER stress, and knockout of

DsbA-L aggravated ER stress (56). These studies suggest that ER

stress is overactivated in tubular cells of DN and that inhibition of

ER stress can alleviate tubular injury in DN.

4.1.2 ER stress in podocytes
Abnormalities in the glomerular filtration barrier maintained by

podocytes are also involved in the progression of DN. In patients with

diabetes, podocytes are susceptible to apoptosis by stimulation, and

the massive loss of podocytes leads to the pathological development

of proteinuria, mesangial expansion, and glomerulosclerosis (57–59).

High glucose levels can further increase ER stress, podocyte

phenotype switching and podocyte loss in rat kidneys, and these

adverse effects can be inhibited by exogenous ER molecular

chaperones (60). In addition, overactivated ER stress induces

podocyte apoptosis. In podocytes treated with high glucose, the

expression of ER stress markers, such as GRP78, was significantly

increased, and the apoptosis of podocytes was induced (61). Recently,

RTN1A-mediated ER stress has also been found to be involved in

podocyte injury in DN. RTN1 belongs to the RTN protein family and

was originally described as an ER-forming protein in neuroendocrine

cells, where it mainly localizes to the ER membrane (62, 63).

Subsequent studies found that only RTN1A expression was

increased among three RTN1 isoforms (RTN1A, RTN1B, and

RTN1C) and was associated with ER stress in human and mouse

models of kidney disease (64). Fan et al. demonstrated that in

podocytes, high glucose levels significantly upregulate the

expression of RTN1A and ER stress levels. In addition, the

overexpression of RTN1A in podocytes can also cause ER stress,

while the inhibition of RTN1A expression notably attenuated the ER

stress induced by high glucose (65). Further studies revealed that the

N-terminal and C-terminal domains of RTN1A interact with PERK,

which may be critical for its induction of ER stress (65). In general,

ER-induced podocyte injury is critical for DN. However, the stimuli

and mechanisms of ER stress in podocytes in the state of DN are

largely unknown and require further investigation.

4.1.3 ER stress in mesangial cells
Mesangial cells are important cells of the glomerulus, and their

dysfunction is also involved in the occurrence and development of

DN. Fatty acid binding protein 4 (FABP4) is a carrier protein of
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fatty acids (66). In the kidney, FABP4 was mainly expressed in

glomerular mesangial cells in renal biopsy tissues, and its expression

was significantly upregulated in renal biopsy tissues of patients with

DN compared with control patients (67). A similar result was also

observed that the expression of FABP4 is increased in mesangial

cells treated with high glucose, accompanied by the upregulation of

ER stress and apoptosis (67). However, treatment with the FABP4

inhibitor BMS309403 or siRNA reversed the adverse changes in ER

stress and apoptosis caused by high glucose (67). This implies that

FABP4-mediated ER stress is involved in the pathogenesis of DN.

Moreover, the inhibition of ER stress by some compounds can

alleviate mesangial cell injury in DN. Zhang et al. showed that ER

stress and apoptosis were upregulated in the kidneys of DN mice

and high glucose-treated mesangial cells, while thalidomide

treatment notably inhibited ER stress and apoptosis (68).

In general, the presence of ER stress may have a certain

protective effect in the early stage of the disease, which is

beneficial for the timely cells to detection and adjustment of the

abnormal intracellular protein synthesis in cells. However, as a

chronic metabolic disease, long-term ER stress can aggravate cell

damage and eventually lead to cell apoptosis, thereby accelerating

the progression of DN. Therefore, the search for ER stress specific

inhibitors may be a potential direction for drug development in DN.
4.2 ER calcium homeostasis and DN

The SERCA family mediates the uptake of Ca2+ from the

cytoplasm by the ER, which drives Ca2+ across the membrane

resistant to electrochemical gradients by consuming large amounts

of ATP (69, 70). Guo et al. demonstrated that SERCA2 activity and

expression were significantly reduced in the renal cortex of db/db

mice, which led to Ca2+ depletion in the ER and ultimately induced

ER stress and mitochondria-mediated apoptosis (71). Furthermore,

treatment with astragaloside IV dose-dependently upregulated the

expression and activity of SERCA2, restored intracellular Ca2+

homeostasis, and alleviated ER stress and cell apoptosis in

podocytes stimulated with palmitic acid (71). Apart from Ca2+

homeostasis, the ER can also affect other organelle functions by

controlling Ca2+ transport. The newly discovered mitochondria-

associated ER membrane (MAM) is a subdomain of the ER (72,

73). MAMs are composed of parts of the ER, adjacent outer

mitochondrial membranes, and proteins. One of its major

functions is to mediate calcium transport from the ER to

mitochondria (74, 75). In the presence of certain stimuli, the ER

mediates calcium transfer from mitochondria through the IP3R/

VDAC1 protein channel. An appropriate increase in mitochondrial

Ca2+ concentration will increase ATP synthesis, thus making it

more powerful to resist external adverse factors. However, when the

calcium concentration in mitochondria exceeds a certain level, it

will lead to mitochondrial calcium overload and eventually cause

mitochondria-mediated apoptosis (76, 77). Our previous study

showed that disrupted MAM integrity was observed in renal

biopsy tissues from patients with DN, STZ-induced DN mice and

HK-2 cells treated with high glucose, and restoring MAM integrity
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was beneficial in protecting against apoptosis induced by high

glucose (56). Although increasing attention has been given to the

role of ER-mediated calcium homeostasis in metabolic diseases, the

molecular mechanism of ER-mediated calcium homeostasis and its

role in the progression of DN still need to be further studied.
4.3 ER-phagy and DN

ER-phagy, as a selective autophagy, can remove ER stress in time

to prevent further cell damage. During ER stress, misfolded proteins

accumulate in the ER, most of which can be degraded through the

ERAD pathway, but some that are not in the ERAD pathway can be

degraded through the ER-phagy pathway. A fraction of misfolded

peptides that fail the ERAD pathway are sequestered into dedicated

ER subdomains by ER-resident chaperones, and they engage

specialized ER autophagy receptors. Therefore, vesiculation of this

portion of the ER and its subsequent lysosomal degradation are

promoted (78). Previous studies have shown that when the mouse

liver lacks the ER-phagy receptor FAM134B-2, a large amount of

abnormally secreted proteins accumulate in mouse hepatocytes (79).

Aberrant ER-phagy has been shown to be involved in the

pathogenesis of nervous system diseases, tumors and infectious

diseases (35), but unfortunately, the study of ER-phagy in kidney

diseases has not been carried out. However, given the importance of

ER-phagy in the maintenance of ER homeostasis, its role in DN needs

to be further explored in future studies.
5 ER stress inhibitor

Reducing ER stress and maintaining ER homeostasis is a

direction of targeted ER therapy for DN. At present, some

compounds have been identified to inhibit ER stress and slow the

progression of DN.
5.1 TUDCA

Taurine deoxycholic acid (TUDCA) is a naturally occurring

hydrophilic bile acid that is the taurine conjugate of

ursodeoxycholic acid (UDCA). It has been approved by the Food

and Drug Administration (FDA) for the treatment of primary biliary

cholangitis (80). In-depth studies have shown that it also plays a

protective role in diseases such as diabetes (81), obesity (82) and

cardiovascular disease (83). In terms of molecular mechanisms, it acts

as a chaperone to inhibit ER stress. TUDCA has also shown

protective effects in a DN model. Zhang et al. demonstrated that

the blood glucose, proteinuria, renal pathological damage, ER stress

and apoptosis levels were lower in intraperitoneal TUDAC-treated

db/db mice than in control mice (84). Similar results were also

observed that in ERp44-deficient db/db mice, which exhibited more

severe ER stress, glomerular basement membrane thickening and

proteinuria, and ERp44-depleted DN symptoms were ameliorated by

TUDCA treatment (85). Moreover, Chen et al. found that TUDCA

inhibited the AGE-induced expression of glucose regulated protein
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78 (GRP78, an ER stress marker protein) and inhibited apoptosis in a

dose-dependent manner in podocytes of DN mice (86). The

molecular mechanism by which TUDCA alleviates ER stress is still

unclear. As a molecular chaperone, TUDCA may alleviate ER stress

by stabilizing misfolded proteins, stimulating chaperones to transport

proteins more efficiently, and reducing protein aggregation (80).
5.2 4-phenylbutyric acid

In addition to TUDCA, 4-PBA is another commonly used ER

stress inhibitor. It is an orally bioavailable low molecular weight

fatty acid that has been clinically approved by the FDA for the

treatment of urea cycle disorders and hyperammonemia (87). The

molecular mechanism by which it inhibits ER stress is that its

hydrophobic domain interacts with the exposed hydrophobic

fragments of unfolded proteins, which promotes protein folding

and prevents protein aggregation (88). The study showed that

compared with control mice, db/db mice treated with 4-PBA

showed less proteinuria and reduced glomerular mesangial

expansion. Moreover, 4-PBA inhibited the expression of ER

stress-related proteins, such as BiP, phospho-IRE1a, phospho-
eIF2a and CHOP, and reduced renal cell apoptosis (61). A

similar result was also observed in which 4-PBA alleviated ER

stress, renal inflammation and renal injury in rats (89).
5.3 Aliskiren

Aliskiren is the first direct renin inhibitor that is effective orally.

In the DN state, the activation of the renin system is an important

aggravating factor in the progression of DN, and inhibiting its

activation has also been shown to be effective in delaying the

progression of DN (90, 91). The protective effect of aliskiren in

DN has also been partially revealed. Mahfoz et al. demonstrated that

aliskiren treatment restored blood glucose levels, increased insulin

levels, protected kidney functions and relieved renal pathological

injury in diabetic rats (92). Similarly, aliskiren could increase insulin

levels by increasing glucose transport in the liver and muscles. In

addition, aliskiren inhibits the synthesis of profibrotic and

proinflammatory cytokines, thus slowing the renal fibrosis of DN

(93). Interestingly, the mechanism of renal protection of aliskiren in

the DN state is not achieved by lowering blood pressure. After 6

months of follow-up, aliskiren was found to reduce albuminuria

levels in DN patients, but did not change the glomerular filtration

rate or blood pressure (94). Studies have shown that the inhibition

of ER stress may be one of its molecular mechanisms. Aliskiren

intervention significantly inhibited the level of ER stress in renal

tubule cells induced by palmitic acid (95, 96), and aliskiren

combined with chymostatin further inhibited the endoplasmic

ER, thus alleviating kidney injury (95). Similar results were also

observed in another study. Aliskiren notably inhibited the level of

ER stress and simultaneously inhibited the expression of profibrotic

growth factors and proinflammatory cytokines, thereby

ameliorating the renal injury in DN mice (97). These results

suggest that aliskiren may be an effective inhibitor of ER stress.
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5.4 Valsartan

Valsartan is also a class of angiotensin II receptor antagonists

commonly used clinically, and its role in delaying the progression of

diabetic nephropathy has also been verified. Moreover, it has also

been identified as a potent ER stress inhibitor. It was reported that

valsartan could delay the progression of diabetic cardiomyopathy by

blocking the activation of the CHOP/Puma signaling pathway to

inhibit ER stress (98). Similarly, valsartan can inhibit ER stress

induced by autoantibodies against the angiotensin II type 1 receptor

(AT1-AA) and thus reduce cell apoptosis (99). In addition, LCZ696

is a 1:1 combination of valsartan and AHU377 (sacubitril), which is

synthesized through a complex chemical reaction (100). Belali et al.

showed that LCZ696 could effectively restore the mRNA and

protein levels of ER stress marker proteins in myocardial cells

under diabetic conditions (101). In addition, sacubitril/valsartan

intervention can significantly downregulate adriamycin-induced

cardiotoxicity in rat models and H9c2 cardiomyocytes, and these

protective effects may be achieved by inhibiting ER stress (102).

Similarly, LCZ696 can improve chemotherapy-induced testicular

atrophy by inhibiting ER stress and apoptosis (103). These results

suggest that valsartan may ameliorate renal injury in DN by

inhibiting ER stress.
5.5 Others

In addition to the drugs mentioned above, some herbals and

their extracts have also been found to inhibit ER stress and relieve
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disease progression. Quercetin is a common flavonoid that is

abundant in fruits and vegetables consumed daily (104).

Moreover, it is also a strong antioxidant and an ER stress

inhibitor. Quercetin can activate the SIRT1/AMPK signaling

pathway to inhibit ER stress, thus alleviating osteoarthritis (105)

and sepsis-induced acute lung injury (106). Moreover, its

glycosylated derivative quercetin 3-O-xyloside also inhibits ER

stress by inhibiting the production of ROS in cells (107). In

addition, Lycium barbarum polysaccharide, an extract from

Lycium barbarum, has also been found to inhibit ER stress and

thus improve nerve injury (108) and skin injury (109). Here, we

summarize some of the agonists and inhibitors of ER

stress (Table 1).
6 Conclusion and perspectives

The ER plays an integral role in protein synthesis, lipid

metabolism, and Ca2+ homeostasis and abnormal ER homeostasis

aggravates the progression of DN. Here, we review the role that the

ER plays in cellular life activities, and we also describe the

maintenance of ER homeostasis by ER stress and ER-phagy.

Subsequently, the roles of ER abnormalities in the pathogenesis of

DN were also summarized. Finally, we also summarize some ER

stress inhibitors identified thus far. The dysregulation of ER

homeostasis is involved in the pathogenesis of DN. There are still

many problems that must be solved. What is the mechanism by

which ER stress is activated in DN? What role does ER-phagy play

in the pathogenesis of DN? Dose mutual regulation occur between
TABLE 1 Inhibitors and activators of ER stress.

Compounds Targets Clinical trials Effects on ER stress Ref

TUDCA All Yes Inhibitor (110, 111)

4-PBA All Yes Inhibitor (112)

Omega-3 PUFAs All Yes Inhibitor (113)

Cerebral dopamine neurotrophic factor (CDNF)
ATF6
IRE1a

Yes Inhibitor (114)

Aliskiren All Yes Inhibitor (95)

Valsartan All Yes Inhibitor (99)

sc-222227 PERK No Inhibitor (115)

Febuxostat GRP78 Yes Inhibitor (116, 117)

L-F001 All No Inhibitor (118)

Memantine All No Inhibitor (119)

Trierixin XBP1 No Inhibitor (120)

BMS309403 All No Inhibitor (121)

Oprozomib PERK, ATF6 Yes Activator (122)

Curcumin XBP-1, IRE1a Yes Activator (123)

Lobaplatin PERK Yes Activator (124)

Delanzomib PERK Yes Activator (125)
fro
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ER-phagy and ER stress? Which renal cell in the kidney is most

affected by ER stress? These questions need to be answered in the

future. Moreover, the discovered ER stress compounds or drugs

often have other biological effects while inhibiting ER stress.

Therefore, it is urgent to develop new drugs targeting ER stress.

In the acute state, the occurrence of ER stress often contributes to

the homeostasis of ER, while the persistent ER stress will aggravate

the injury. Therefore, how to maintain the balance of ER stress is

also a problem that needs to be paid attention to. In summary, the

ER is one of the most metabolically active organelles in the cell, and

thus, maintaining ER homeostasis is a potential target for the

treatment of DN.
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