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Simple Summary: There is a need to identify new translational prognostic biomarkers in head and
neck cancer. Metabolomics, the study of small molecules resulting from cellular metabolism, is an
emerging and promising field regarding head and neck cancer. We performed metabolomics on
patients’ blood prior to treatment and found that it can divide patients into high-risk and low-risk
groups based on their cancer progression and survival. We believe our study provides compelling
results to consider metabolomics as a translational prognostic biomarker and that it may offer
novel information for patient risk stratification. With continued research, we hope to gain a fuller
understanding of how metabolomics may aid in the early detection, prognosis, treatment monitoring,
and targeted therapies of head and neck cancer.

Abstract: There is growing evidence that the metabolism is deeply intertwined with head and neck
squamous cell carcinoma (HNSCC) progression and survival but little is known about circulating
metabolite patterns and their clinical potential. We performed unsupervised hierarchical clustering
of 209 HNSCC patients via pre-treatment plasma metabolomics to identify metabolic subtypes.
We annotated the subtypes via pathway enrichment analysis and investigated their association
with overall and progression-free survival. We stratified the survival analyses by smoking history.
High-resolution metabolomics extracted 186 laboratory-confirmed metabolites. The optimal model
created two patient clusters, of subtypes A and B, corresponding to 41% and 59% of the study
population, respectively. Fatty acid biosynthesis, acetyl-CoA transport, arginine and proline, as well
as the galactose metabolism pathways differentiated the subtypes. Relative to subtype B, subtype
A patients experienced significantly worse overall and progression-free survival but only among
ever-smokers. The estimated three-year overall survival was 61% for subtype A and 86% for subtype
B; log-rank p = 0.001. The association with survival was independent of HPV status and other
HNSCC risk factors (adjusted hazard ratio = 3.58, 95% CI: 1.46, 8.78). Our findings suggest that a
non-invasive metabolomic biomarker would add crucial information to clinical risk stratification and
raise translational research questions about testing such a biomarker in clinical trials.

Keywords: metabolomics; head and neck cancer; biomarkers; survival; clustering; fatty acids;
smoking; human papillomavirus; arginine and proline; galactose
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1. Introduction

Recent treatment advances for head and neck squamous cell carcinoma (HNSCC) have
improved patients’ survival but at a large cost to their quality of life [1]. The recommended
regimen of chemoradiotherapy causes up to 80% of HNSCC patients to experience debilitat-
ing side effects such as mucositis, dysphagia, malnutrition, speech problems, lymphedema,
and cognitive decline [2–7]. Additionally, more than 50% of these patients remain afflicted
years after treatment [8]. This suffering has motivated prognostic biomarker research to
help expedite clinical trials of less toxic targeted therapies (e.g., epidermal growth factor
receptor inhibitors) and de-escalated standard therapies (e.g., lower doses of radiation) [9].

Human papillomavirus (HPV), and to a lesser extent, tobacco use, are the most widely
translated prognostic markers in HNSCC. In 2010, Ang et al. proved that HPV status,
when combined with smoking pack-years, could stratify oropharyngeal SCC patients into
low, intermediate, and high-risk groups with three-year survivals of 93%, 71%, and 46%,
respectively [10]. Their findings spawned a decade of de-escalated therapeutic research to
determine if patients deemed low-risk—those who are HPV-positive with a minimal history
of tobacco use—could be spared the long-term toxicity of standard treatment. Despite
recent setbacks [11,12], this remains an active area of research [13,14]. More recently,
circulating HPV DNA has garnered interest as a non-invasive biomarker of post-treatment
surveillance, since it can accurately predict tumor recurrence [15]. However, its clinical
utility would be limited to HPV-positive oropharyngeal SCC—approximately 30% of the
total HNSCC patient population [16].

Other HNSCC prognostic markers being studied include genetic mutations, molecular
variations, immunologic signaling, and tumor imaging, but while this is promising, none
have been proven to optimize therapy. Functional loss of p53, a tumor suppressor gene, is
associated with poor prognosis [17]; however, its high frequency of mutation—upwards of
85% in HPV-unrelated HNSCC [18]—raises questions about its discriminating specificity.
Overexpression of the epidermal growth factor receptor (EGFR), a well-studied tyrosine
kinase receptor, has shown a prognostic ability, however, similar to the loss of p53, it is
also quite common (~90%) in HNSCC [19]. Furthermore, there is no standardized antibody
or staining protocol to measure EGFR, and overexpression of EGFR is not consistently
associated with a response to EGFR-targeted therapies (e.g., cetuximab) [20], raising addi-
tional concerns about its future clinical use. The immunosuppressive nature of the HNSCC
microenvironment, relative to cancers at other tissue sites, makes immunologic biomarkers
interesting targets. Programmed cell death-1 (PD-1) and its primary ligand (PD-L1) are
transmembrane signaling receptors that negatively regulate the adaptive immune response
(e.g., cytotoxic T cells). PD-1 and PD-L1 are checkpoint inhibitors being studied as targeted
HNSCC immunotherapy after the failure of standard therapy [21,22]. Upregulated PD-L1
is associated with a worse prognosis but more evidence is needed to predict which patients
will respond to anti-PD-1 monoclonal antibody immunotherapy [23]. Non-specific im-
munosuppressive cytokines and chemokines (e.g., IL-10 and TGF-beta) show some ability
as prognostic biomarkers of tumor-mediated immunomodulatory signaling but results
remain inconsistent [24]. Lastly, cross-sectional tumor imaging via magnetic resonance
imaging (MRI), computed tomography (CT), or positron emission tomography/computed
tomography (PET/CT), plays an important role in the diagnosis and clinical management of
HNSCC. The imaging of HNSCC often provides crucial information for TNM staging [25].
Outside of staging, functional imaging by 18-fluorodexyglucose PET/CT provides a highly
sensitive measure of tumor metabolic activity via glucose uptake. Patients whose tumors
show higher levels of metabolic activity tend to have a worse prognosis [26], but questions
remain about quantifiability and low specificity since non-cancerous tissue and immune
cells in the microenvironment also have a high glucose uptake.

Metabolic biomarkers have, in general, been overlooked in HNSCC translational re-
search compared to their genomic, molecular, immunologic, and imaging counterparts.
There is, however, growing evidence that the metabolism plays an outsized role in acti-
vating the host’s immune response [27] and that it is deeply intertwined with HNSCC
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progression and survival [28]. In 2020, five independent studies found differential expres-
sion of metabolic genes to be prognostic of patient survival [29–33]. While promising,
translating a gene-based metabolic biomarker poses some challenges. First, the within-
tumor metabolic heterogeneity of HNSCC is extreme, [34] amplifying the probability of
sampling bias; moreover, direct sampling of the tumor is costly, invasive, and burdensome
on the patient [35,36]. Second, since most metabolic regulation occurs downstream of
the genome, [37] a gene-based biomarker is prone to miss vital metabolic transitions and
patterns. A non-invasive alternative is to measure circulating metabolites in patients’ blood.
Recent advances in high-resolution metabolomics allow for comprehensive quantification
of the host’s metabolism and systemic metabolic signaling. However, as an emerging
field, little is known about circulating metabolite patterns in HNSCC patients and their
clinical potential. In the following study, we used multivariate unsupervised hierarchical
clustering of plasma metabolomics to discover metabolic subtypes from a heterogeneous
group of 209 HNSCC patients. We sought to answer three questions: (1) Are there circu-
lating metabolic differences in HNSCC patients? Secondly, (2) if so, are those metabolic
differences prognostic of outcomes, namely survival? Lastly, (3) what are the implications
for a potential non-invasive metabolomic biomarker in HNSCC?

2. Materials and Methods
2.1. Study Cohort

This was a prospective cohort of 209 HNSCC patients recruited from 2013 to 2016 at
radiation oncology clinics affiliated with Emory University Hospital before undergoing
intensity-modulated radiation therapy (IMRT) or IMRT with concurrent platinum-based
chemotherapy [38]. The inclusion criteria were histological HNSCC with no distant metas-
tasis, ≥21 years of age, and no evidence of uncontrolled metabolic, hematologic, cardiovas-
cular, renal, hepatic, or neurologic disease. Patients with simultaneous primaries or major
psychiatric disorders were excluded. Demographic and clinical variables were collected
through chart review and standardized questionnaires at study entry. Prior to IMRT, blood
was collected into chilled EDTA tubes for the immediate isolation of plasma. Plasma was
separated by centrifugation at 1000× g for 10 min at 4 ◦C, then aliquoted into siliconized
polypropylene tubes and stored at −80 ◦C.

2.2. Overall and Progression-Free Survival

Vital status and disease progression were ascertained by linking our patient cohort
to the Georgia Comprehensive Cancer Registry maintained at Emory University. Overall
survival was defined as the time from study entry to death by any cause. Progression-free
survival was defined as the time from study entry to HNSCC progression noted in the
medical chart or death. Patients who did not experience the outcome were censored at the
last date of contact up to June 2022. We were unable to follow 20 subjects and they were
excluded from the survival analyses.

2.3. High-Resolution Untargeted Metabolomics (HRM) of Blood Plasma

Our HRM approach used established liquid chromatography-mass spectrometry (LC-
MS) protocols developed at the Emory Clinical Biomarkers Laboratory [39,40]
(Supplementary File S1). Frozen aliquots were thawed and extracted with ice-cold ace-
tonitrile. Supernatants were added to a 4 ◦C autosampler in random order. Each sample
was divided and analyzed in triplicate (10 µL) using dual chromatography separation: hy-
drophilic interaction liquid chromatography (HILIC) with positive electrospray ionization
and 18-carbon (C18) with negative ionization. Analyte separation was achieved using a
2.1 mm × 100 mm × 2.6 µm Accucore column (Thermo Scientific, Norcross, GA, USA) and
a gradient elution of 2% of formic acid, water, and acetonitrile starting at 10%, 10%, and
80%, for 1.5 min with a linear increase to 10%, 80%, and 10% at 6 min and held for 4 min
per injection.



Cancers 2023, 15, 3184 4 of 18

The high-resolution Fourier transform Orbitrap mass spectrometer (Dionex Ultimate
3000, Q-Exactive HF, Thermo Scientific) operated in full scan mode at 120,000 resolution
and a mass-to-charge ratio (m/z) range of 85.0000–1275.0000. Probe temperature, capillary
temperature, sweep gas, and S-Lens RF levels were maintained at 200 ◦C, 300 ◦C, 1 arbitrary
unit (AU), and 45 AU, respectively. Positive tune settings for sheath gas, auxiliary gas,
sweep gas, and spray voltage settings were 45 AU, 25 AU, and 3.5 kV, respectively. Raw
data were extracted and aligned using apLCMS [41] and xMSanalyzer [42] separately
for the HILIC-positive and C18-negative chromatography runs. Mass, retention time,
and ion intensity were measured for each uniquely identified m/z spectral feature. The
m/z features with a median coefficient of variation (CV) within technical replicates ≥75%
were removed. The remaining feature intensities were median-summarized across sample
triplicates with the requirement that ≤1 replicate was imputed. Correction for batch effects
was performed using ComBat version: 3.38 [43]. Features missing in <20% of the samples
were imputed using k-nearest neighbors and features missing in >20% were removed; we
imputed less than 3% of the data points. The remaining features were log2-transformed and
Z-score standardized (i.e., subtracting the metabolite-specific population mean and dividing
by the metabolite-specific standard deviation). This was done to normalize the data and
pool the metabolites across the HILIC-positive and C18-negative chromatography runs.
We restricted our statistical investigation to the features that matched m/z within 10 ppm
and retention time within 30 s of metabolites that the Emory CBL previously identified
using accurate mass MS1 signal, coelution with authentic standard, and ion dissociation
spectra (MS2/MSn) matching the authentic standard [44]. Meaning, we believe each
analyzed metabolite met Level 1 identification according to the Metabolomics Standards
Initiative [45] and Schymanski et al. [46]. This left 125 HILIC-positive and 61 C18-negative
metabolites to be analyzed.

2.4. Statistical Analysis

Here, we summarize the steps we took to identify prognostic metabolic subtypes in
the HNSCC patient population. First, we identified metabolic clusters of HNSCC patients
using unsupervised hierarchical clustering of plasma metabolites, an approach that groups
HNSCC patients according to metabolite patterns agnostic to patient demographics, clinical
factors, or survival. Second, we determined the relative importance of each metabolite to the
clustering via post-hoc Wilcoxon rank sum tests. We inputted the meaningful metabolites
into pathway enrichment analysis to metabolically characterize the clusters. Third, we
examined if the metabolic subtypes were associated with baseline clinical factors (e.g., age,
sex, HPV status) and immune markers. Lastly, we modeled the metabolic subtypes with
overall and progression-free survival to determine their potential clinical utility.

The unsupervised hierarchical clustering used 186 lab-confirmed plasma metabolites
across 209 HNSCC patients. The patients were clustered using JASP version 0.14 according
to Euclidean distance and Ward.D linkage, two common algorithmic settings. We fit models
allowing for 2–6 patient clusters and chose the optimal model from a variety of clustering
metrics: the lowest Bayesian Information Criterion, the highest silhouette scores, the highest
Dunn index, the highest Calinski–Harabasz index, and the lowest model entropy. After
determining the optimal model, we performed post-hoc Wilcoxon rank sum tests to rank
each metabolite according to differential expression between the clusters.

We characterized each cluster via metabolic pathway enrichment analysis using
roughly the top 20% of differentially expressed metabolites (i.e., 38 metabolites that met a
Benjamini–Hochberg multiple testing adjusted p-value < 0.00001). Since we used differ-
ential expression as a post-hoc ranking tool, the top 20% cutoff is arbitrary. By limiting
the pathway analysis to the top 20% we can describe enriched pathways among the most
influential metabolites to the clustering. Changing this cutoff by making it higher or lower
may lead to different pathway enrichment findings. Pathway enrichment was performed
by Metabolanalyst using the Small Molecule Pathway Database (SMPDB) [47]. We calcu-
lated enrichment by comparing the number of pathway hits to the subset of differentially
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expressed metabolites relative to the expected number of pathway hits if 38 metabolites
were drawn at random from the 186 total using a chi-squared test statistic.

We tested the differences in proportions or means of many clinical factors across
the subtypes using chi-square or t-tests as appropriate. We also examined whether the
metabolic subtypes were associated with patient overall survival via Kaplan–Meier curves
and Cox models adjusted for age, sex, race, body mass index, marriage status, HPV status,
smoking history, tumor site and stage, treatment, Eastern Cooperative Oncology Group
(ECOG) performance, feeding tube, patient-reported prior comorbidities, and circulating
levels of albumin, hemoglobin, neutrophil-to-lymphocyte ratio (NLR) and platelet-to-
lymphocyte ratio (PLR). We tested the proportional hazards assumption by modeling a
subtype-with-time interaction term. We stratified our survival analyses and Kaplan–Meier
curves by whether subjects were never vs. ever smokers, then additionally by HPV status
(related vs. unrelated). We classified each subject as either alive or dead at three years of
follow-up, ran a logistic regression, and plotted a receiver operating characteristic (ROC)
curve of three-year survival against three models: an HPV status-only model, a metabolic
subtype-only model, and a model with HPV status and metabolic subtypes. Unless stated,
all analyses were conducted using R version 4.2.2 [48] and RStudio build 386 [49].

2.5. Sensitivity Analysis

To examine the robustness of our hierarchical clustering approach, we performed
two alternative clustering methods, K-means and random forest, and report those cluster
groupings with overall survival.

3. Results

Our study population compares favorably to HNSSC patients across the U.S. as
estimated by Surveillance, Epidemiology, and End Results (SEER) [50]. In our study, the
median age at diagnosis was 60 years old compared to 64 in SEER. A total of 75% of our
cases were men and 81% identified as white compared to 71% and 75%, respectively, in
SEER. SEER estimates that 67% of HNSCC patients in the U.S. are diagnosed with regional
lymph node or distant metastasis, and 68% of patients live longer than five years; our
proportions were slightly higher at 74% and 77%, respectively. In our data, the average
follow-up time for the subjects who died was 2.4 years compared to 5.3 years for those
who were censored; only 8% of the censored subjects had fewer than 3 years of follow-
up. Approximately 61% of our patients reported a current or former history of smoking,
and 48% were HPV-related. Half of the tumors occurred in the oropharynx. Across
many demographic and clinical characteristics, only age statistically differed between the
subtypes (Table 1 and Supplementary Figure S1).

A total of 186 lab-confirmed metabolites were used to cluster 209 HNSCC patients:
9 amines; 59 amino acids or amino acid-derivatives; 9 carbohydrates; 17 cholines, betaines,
carnitines, or Co-As; 31 lipids; 7 nucleic acids, nucleosides, or nucleotides; 31 simple
organic acid derivatives; 11 vitamins or cofactors; and 12 metabolites that do not fit those
categories (Supplementary Table S1). The metabolites covered 88 different human metabolic
pathways per the SPMDB reference database (Supplementary Table S2). Furthermore, the
median pair-wise Pearson correlation coefficient between metabolites was 0.04 with an
inter-quartile range from −0.03 to 0.12 (Supplementary Figure S2), suggesting robust
metabolite heterogeneity. Despite this heterogeneity, certain groups of metabolites, namely
fatty acids, were highly correlated (Supplementary Figure S3 and Supplementary Table S3).

The optimal model, according to five of six clustering metrics (Supplementary Table S4),
created two patient clusters, herein named metabolic subtypes A and B (Figure 1). We
refrain from further labeling the subtypes dues to the relative, not absolute, nature of the
metabolic differences. Subtypes A and B corresponded to 41% and 59% of our HNSCC
study population, respectively. In Wilcoxon rank sum tests, 38 of the 186 metabolites were
differentially expressed at a multiple testing adjusted p-value < 0.00001 (Supplementary
Table S1). From those 38, the top enriched metabolic pathways were fatty acid biosynthesis
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(four metabolites; p = 0.004), transfer of acetyl groups into mitochondria (three metabolites;
p = 0.03), arginine and proline metabolism (five metabolites; p = 0.06), and galactose
metabolism (three metabolites; p = 0.07) (Supplementary Table S2). To further explain
the enrichment calculation, among our 186 total metabolites, six mapped to the fatty acid
biosynthesis pathway. Among those six, four were ranked in the top 38, representing a
relatively rare event (χ2 = 8.15, df = 1, p = 0.004) if we drew 38 metabolites from the 186 at
random. The metabolite Z-scores suggest relatively higher levels of biosynthesis pathways
for fatty acids and amino acids, and glycolytic energy metabolism was found in samples
from patients in subtype A versus subtype B (Table 2).

Table 1. Descriptive table of 209 HNSCC patients stratified by metabolic subtypes A and B derived
from hierarchical clustering of 186 plasma metabolites.

All
(N = 209)

Subtype A
(N = 86)

Subtype B
(N = 123) p Value

Age mean (SD) 59.3 (10.1) 61.7 (10.3) 57.6 (9.7) 0.004
BMI mean (SD) 27.5 (5.2) 28.1 (5.8) 27.1 (4.7) 0.18
Sex Male 156 (75%) 65 (76%) 91 (74%) 0.92

Female 53 (25%) 21 (24%) 32 (26%)
Race White 170 (81%) 73 (85%) 97 (79%) 0.36

Black 39 (19%) 13 (15%) 26 (21%)
HPV status Negative 108 (52%) 43 (50%) 65 (53%) 0.79

Positive 101 (48%) 43 (50%) 58 (47%)
Smoking history Never 81 (39%) 33 (39%) 48 (39%) 0.83

Former 67 (33%) 29 (35%) 38 (31%)
Current 58 (28%) 22 (26%) 36 (30%)

Alcohol <1 drink/week 114 (55%) 47 (55%) 67 (55%) 0.99
1+ drink/week 92 (45%) 38 (45%) 54 (45%)

Marital status Married or partnered 148 (71%) 62 (72%) 86 (70%) 0.85
Single 61 (29%) 24 (28%) 37 (30%)

Tumor site Oropharynx 106 (51%) 45 (53%) 61 (50%) 0.56
Oral cavity 31 (15%) 12 (14%) 19 (15%)

Larynx 35 (17%) 11 (13%) 24 (20%)
Other 36 (17%) 17 (20%) 19 (15%)

Tumor stage * I 10 (5%) 5 (6%) 5 (4%) 0.77
II 16 (8%) 5 (6%) 11 (9%)
III 83 (40%) 36 (42%) 47 (39%)
IV 98 (47%) 40 (47%) 58 (48%)

T 1 37 (18%) 19 (22%) 18 (15%) 0.43
2 51 (25%) 20 (24%) 31 (26%)
3 47 (23%) 21 (25%) 26 (22%)
4 70 (34%) 25 (29%) 45 (37%)

N 0 46 (22%) 18 (21%) 28 (23%) 0.09
1 22 (11%) 4 (5%) 18 (15%)
2 130 (63%) 60 (70%) 70 (58%)
3 8 (4%) 4 (5%) 4 (3%)

Treatment Radiotherapy 45 (22%) 20 (23%) 25 (20%) 0.87
Chemoradiotherapy with

Cisplatin 118 (56%) 48 (56%) 70 (57%)

Chemoradiotherapy with
Carboplatin and Paclitaxel 46 (22%) 18 (21%) 28 (23%)

Feeding tube No 80 (40%) 35 (43%) 45 (39%) 0.60
Yes 118 (60%) 46 (57%) 72 (62%)

ECOG performance Active 100 (50%) 39 (48%) 61 (52%) 0.89
Restricted 73 (37%) 31 (38%) 42 (36%)

Non-working 26 (13%) 11 (14%) 15 (13%)
Prior comorbidity Yes 154 (75%) 66 (77%) 88 (73%) 0.69

No 52 (25%) 20 (23%) 32 (27%)
Albumin mean (SD) 3.95 (0.42) 3.97 (0.39) 3.94 (0.43) 0.60

Hemoglobin mean (SD) 13.18 (1.80) 13.22 (1.71) 13.15 (1.87) 0.80
Neutrophil-to-lymphocyte ratio mean (SD) 3.18 (2.07) 3.32 (1.98) 3.08 (2.13) 0.45

Platelet-to-lymphocyte ratio mean (SD) 170,347 (98,859) 161,891 (64,755) 176,207 (116,774) 0.35

HNSCC = head and neck squamous cell carcinoma, BMI = body mass index, HPV = human papillomavirus,
ECOG = Eastern Cooperative Oncology Group, SD = standard deviation. * Using the 8th edition of the American
Joint Committee on Cancer Tumor Staging by Site.
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Figure 1. Dendrogram showing two metabolic subtypes, A (red) and B (teal), identified from an
unsupervised hierarchical clustering analysis of 209 head and neck cancer patients using 186 lab-
confirmed plasma metabolites. Subtype A, the high-risk type showing relatively higher amounts of
fatty acid, acetyl Co-A, and amino acid biosynthesis as well as glycolytic metabolism, represents 41%
of the sample population and subtype B, the remaining 59%.

Table 2. Fourteen lab-confirmed metabolites that comprised the enriched metabolic pathways that
differentiated subtypes A and B.

Name mz rt ESI Adduct HMDB# Z-Score * A Z-Score * B p-Value **

Fatty acid biosynthesis (p = 0.004)
Acetoacetate 101.0244 25 C18- (M − H) HMDB0000060 0.53 −0.37 2.0 × 10−9

β-hydroxybutyrate 103.0401 22 C18- (M − H) HMDB0000357 0.43 −0.30 4.3 × 10−6

FA 16:0 (Palmitate) 255.2329 231 C18- (M − H) HMDB00220 0.38 −0.27 4.6 × 10−6

FA 14:0 (Myristate) 227.2016 212 C18- (M − H) HMDB00806 0.38 −0.27 7.1 × 10−6

Transfer of acetyl groups into the mitochondria (p = 0.03)
Glucose 215.0328 21 C18- (M + Cl) HMDB0000122 0.40 −0.28 3.1 × 10−6

Citric acid 191.0197 19 C18- (M − H) HMDB0000094 0.41 −0.28 7.5 × 10−6

Malic acid 133.0143 20 C18- (M − H) HMDB0000156 0.37 −0.26 7.6 × 10−6

Arginine and Proline metabolism (p = 0.06)
S-adenosylmethionine 399.1445 162 HILIC+ (M + H) HMDB0001185 0.47 −0.33 1.6 × 10−9

Proline 116.0706 87 HILIC+ (M + H) HMDB0000162 0.49 −0.35 8.3 × 10−8

Ornithine 133.0972 125 HILIC+ (M + H) HMDB0000214 0.45 −0.32 5.1 × 10−7

Citrulline 176.103 109 HILIC+ (M + H) HMDB0000904 0.40 −0.28 8.4 × 10−7

Guanidinoacetate 118.0617 89 HILIC+ (M + H) HMDB0000128 0.41 −0.29 8.8 × 10−7

Galactose metabolism (p = 0.07)
Fructose 219.0265 73 HILIC+ (M + K) HMDB0000660 0.60 −0.42 3.6 × 10−11

Galactose 203.0526 71 HILIC+ (M + Na) HMDB0000143 0.59 −0.41 3.6 × 10−11

Glucose 215.0328 21 C18- (M + Cl) HMDB0000122 0.40 −0.28 3.1 × 10−6

The mz = mass-to-charge ratio, rt = retention time, ESI = electrospray ionization method, FA = fatty acid, HMDB
= human metabolome database. * Z-scores were calculated by subtracting the metabolite-specific population
mean and dividing by the standard deviation. ** Wilcoxon rank sum p-values adjusted for multiple testing via the
Benjamini–Hochberg method.

Relative to subtype B, subtype A patients experienced significantly worse overall and
progression-free survival. The estimated 3-year overall survival was 73.3% for subtype
A patients and 88.3% for subtype B; log-rank p = 0.003 (Figure 2a). The estimated 3-year
progression-free survival was 68.2% for subtype A patients and 79.4% for subtype B;
log-rank p = 0.05 (Supplementary Figure S4a). However, the survival pattern varied by
smoking history. Among never smokers, overall and progression-free survival did not
differ by subtype—the 3-year overall survival was 93.1% for subtype A patients and 91.3%
for subtype B; log-rank p = 0.46 (Figures 2b and S4b). In contrast, among ever smokers,
subtype A had significantly worse survival compared to subtype B—the 3-year overall
survival was 61.0% for subtype A patients and 86.3% for subtype B; log-rank p = 0.001
(Figures 2c and S4c). Further stratifying the ever smoker population by HPV status showed
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that the metabolic subtype remained significantly associated with overall and progression-
free survival regardless of HPV status (Figures 2d and S4d). Among HPV-unrelated
smokers, the estimated 3-year overall survival was 50.7% for subtype A patients and
80.9% for subtype B (p = 0.03). Among HPV-related smokers, the estimated 3-year overall
survival was 77.4% for subtype A patients and 95.8% for subtype B (p = 0.008). Thus,
the association with survival was dependent on smoking history but indifferent to HPV
status. Intriguingly, despite the importance of having a smoking history, the smoking-
related metabolites nicotine (Wilcoxon rank sum p = 0.94) and cotinine (Wilcoxon rank sum
p = 0.06) played almost no role in classifying a patient as subtype A or B (Supplementary
Table S1).
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the full population (N = 47 deaths) in which the estimated 3-year survival is 73.3% for Subtype A Figure 2. (a–d). Kaplan–Meier overall survival curves by Metabolic Subtypes A and B. (a) is among
the full population (N = 47 deaths) in which the estimated 3-year survival is 73.3% for Subtype A
(dark red) and 88.3% for Subtype B (light red); the curves are statistically significant with a log-rank
p-value = 0.003. (b) shows the metabolic subtype overall survival curves (A vs. B) amongst never
smokers (N = 10 deaths). The estimated 3-year survival is 93.1% for subtype A (dark red), and 91.3%
for subtype B (light red); p = 0.46. (c) shows the metabolic subtype overall survival curves (A vs.
B) amongst ever smokers (N = 37 deaths). The estimated 3-year survival is 61.0% for subtype A
(dark red), and 86.3% for subtype B (light red); p = 0.001. (d) further stratifies the survival curves
by HPV status (unrelated and related) amongst ever smokers (N = 37 deaths). The estimated 3-year
survival for the four groups is 50.7% for Subtype A, HPV-unrelated (dark red); 80.9% for Subtype B,
HPV-unrelated (light red); 77.4% for subtype A, HPV-related (dark blue); and 95.8% for subtype B,
HPV-related (light blue).

The association of the metabolic subtypes with overall survival did not meaningfully
change after adjustment by other factors (Table 3). The overall (p = 0.58) and progression-
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free (p = 0.37) cox models met the proportional hazards’ assumption testing a subtype by
the time interaction term. In age, sex, HPV, and smoking-adjusted Cox models subtype A
patients had three times the risk of mortality of subtype B (hazard ratio = 2.98, 95% CI: 1.48,
5.99) among current and former smokers. Further adjustment for race, body mass index,
alcohol consumption, marital status, tumor site and stage, treatment, ECOG performance,
gastronomy tube, prior comorbidities, and circulating immune markers NLR and PLR
only strengthened the point estimates (HR = 3.58, 95% CI: 1.46, 8.78). Given how balanced
the risk factors were between the subtypes, as shown in Table 1, it is unsurprising that
covariate adjustment did not impact the association between subtype and survival. Similar
to the Kaplan–Meier results, we observed no significant associations among never smokers
and saw no pattern that would suggest a larger sample size would produce a significant
association. The progression-free survival results followed the same pattern as the overall
survival results but were slightly attenuated (Table 4). Of note, subtype A had nine times
the mortality of subtype B (HR = 9.24, 95% CI: 1.64, 52.1) in age and sex-adjusted models
among HPV-related smokers; however, we believe this may be better interpreted as a
preliminary finding due to the small number of deaths (N = 9) in this sub-stratum.

Table 3. Estimated associations of metabolic subtypes A vs. B (referent) with patient overall survival
via Cox models among the full HNSCC population and stratified by smoking status.

HR 95% CI p Value

Full Population (N = 189, Ndeaths = 47)
Unadjusted model 2.33 (1.30, 4.16) 0.004
Age, sex, HPV, smoking adjusted model 2.38 (1.30, 4.33) 0.005
Fully adjusted model a 2.76 (1.32, 5.77) 0.007
Among Ever Smokers (N = 113, Ndeaths = 37)
Unadjusted model 2.91 (1.47, 5.78) 0.002
Age, sex, HPV adjusted model 2.98 (1.48, 5.99) 0.002
Fully adjusted model a 3.58 (1.46, 8.78) 0.005
Among Never Smokers (N = 76, Ndeaths = 10)
Unadjusted model 1.60 (0.46, 5.51) 0.46
Age, sex, HPV adjusted model 1.13 (0.30, 4.24) 0.85
Fully adjusted model a 0.92 (0.06, 15.3) 0.95

a Further adjusted for race, body mass index, alcohol history, marital status, tumor site and stage, treatment,
Eastern Cooperative Oncology Group (ECOG) performance, gastronomy tube, prior comorbidities, albumin,
hemoglobin, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio; 40 subjects (25 ever, and 15 never
smokers), including 5 deaths (4 ever, and 1 never smokers), were removed due to missing covariates. HNSCC
= head and neck cancer squamous cell carcinoma, HR = hazard ratio, CI = confidence interval, HPV = human
papillomavirus.

Table 4. Estimated associations of metabolic subtypes A vs. B (referent) with progression-free survival
via Cox models among the full HNSCC population and stratified by smoking status.

HR 95% CI p Value

Full Population (Nevents = 62)
Unadjusted model 1.62 (0.98, 2.67) 0.06
Age, sex, HPV, smoking adjusted model 1.65 (0.99, 2.75) 0.06
Fully adjusted model a 1.70 (0.93, 3.11) 0.08
Among Ever Smokers (Nevents = 47)
Unadjusted model 2.06 (1.14, 3.71) 0.02
Age, sex, HPV adjusted model 2.13 (1.17, 3.89) 0.01
Fully adjusted model a 2.11 (1.03, 4.32) 0.04
Among Never Smokers (Nevents = 15)
Unadjusted model 1.00 (0.35, 2.80) 0.99
Age, sex, HPV adjusted model 0.80 (0.27, 2.37) 0.68
Fully adjusted model a 0.48 (0.08, 3.03) 0.44

a Further adjusted for race, body mass index, alcohol history, marital status, tumor site and stage, treatment,
Eastern Cooperative Oncology Group (ECOG) performance, gastronomy tube, prior comorbidities, albumin,
hemoglobin, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio; 40 subjects (25 ever and 15 never
smokers), including 5 events (4 ever and 2 never smokers), were removed due to missing covariates. HNSCC
= head and neck cancer squamous cell carcinoma, HR = hazard ratio, CI = confidence interval, HPV = human
papillomavirus.
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We used logistic regression and a ROC curve to compare the ability of three models
(HPV-only model vs. metabolic subtype-only model vs. HPV-plus metabolic subtype
model) to predict 3-year overall survival in HNSCC patients with a history of smoking.
The ROC curves in Figure 3 show that, in our data, adding pretreatment metabolic sub-
types to the clinically accepted model—a model that uses only HPV—would improve the
model’s classification of high-risk/low-risk by 20% (AUC of the model with metabolic
subtypes = 0.73 vs. AUC of the model with HPV alone = 0.61).
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Figure 3. Receiver Operating Characteristic (ROC) curves showing the ability of three logistic
regression models to classify death within three years of follow-up for head and neck cancer patients
with a prior smoking history. The first model (black line) uses only HPV status. The second model
(red line) uses only the pretreatment plasma metabolomic subtype biomarker. The third model (green
line) adds the metabolomic subtype to a model of HPV status. Comparing the area under the curve
(AUC) of the first and third models indicates a 20% relative increase in predictive ability when the
metabolomic subtype biomarker is added to a model of HPV status (0.73/0.61 = 1.197).

In the sensitivity analyses (Supplementary Table S5), the random forest clustering
showed a similar pattern to the hierarchical clustering, classifying 46% of the HNSCC
population into a high-risk group and 54% into a low-risk group. Compared to the low-risk
group, the high-risk group had a statistically significant risk of death among HNSCC
ever smokers (fully adjusted Cox model HR = 6.75, 95% CI: 2.24, 20.3). The K-means
clustering classified 42% into a high-risk group and 58% into a low-risk group. It also found
a statistically significant risk of death among HNSCC current and former smokers (fully
adjusted Cox model HR = 2.75, 95% CI: 1.09, 6.95).

4. Discussion

Using 186 lab-confirmed plasma metabolites, unsupervised hierarchical clustering
parsed 209 HNSCC patients into two metabolic subtypes differentiated by the fatty acid,
Co-A, amino acid, and galactose metabolism pathways. The subtypes were associated with
a high-risk and low-risk of cancer progression and mortality but only among current and
former smokers. Though our results should be replicated, our data suggest that a systemic
metabolomic biomarker would be independent of other risk factors, most importantly
HPV status, and may add crucial information to risk stratification for either HPV-related or
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HPV-unrelated HNSCC patients with a history of smoking. Our findings raise relevant and
timely research questions about adding a non-invasive metabolomic blood biomarker as
translational research in HNSCC clinical trials.

We believe this is the first study to cluster HNSCC patients by metabolites and in-
vestigate survival, complicating the task of comparing our results to the prior literature.
A total of eleven HNSCC studies have investigated metabolomics in patient blood: six
comparing cancer vs. controls [51–56], four comparing pre- vs. post-treatment [57–60],
and one comparing extranodal extension [61], but none investigated survival. Despite
the differences in approach, we see similarities between our findings and those of prior
research in relation to sugar metabolism (glucose, galactose, fructose), amino acids (proline),
acetyl CoA transport (citrate), and fatty acid biosynthesis (acetoacetate, β-hydroxybutyrate).
Notably, Li et al.’s metabolic pathway analysis found enrichment in arginine and proline
metabolism and CoA biosynthesis [56], matching our enrichment findings. In addition,
Rodríguez-Tomàs et al. found advanced prognosis to be associated with pre-treatment
plasma β-hydroxybutyrate [58]—an epigenetic signaling metabolite that we found crucial
to our clustering.

The enriched metabolic pathways that differentiated the subtypes centered around
fatty acid and amino acid biosynthesis and glycolytic metabolism. However, since indi-
vidual metabolites are often linked to multiple pathways these differences likely represent
broader generalities. Our strongest findings were fatty acid biosynthesis and its precursor
pathway as well as the transfer of acetyl-CoA to the mitochondria—a vital pathway in
the tricarboxylic acid (TCA) cycle. Fatty acid synthesis is an energy storage pathway in
which carbons are added to acetyl-CoA via the enzyme fatty acid synthase (FAS) to create
longer chain fatty acids necessary for cellular proliferation. In HNSCC, upregulation of FAS
and its regulator, epidermal growth factor receptor (EGFR), is positively associated with
HPV-negative tumor progression and metastasis [62]. Moreover, FAS and EGFR inhibitors
are under active investigation as targets for HNSCC treatment and resistance [63,64]. Like-
wise, the arginine and proline pathway is central to the biosynthesis of key amino acids
for proliferation. Li and colleagues found arginine biosynthesis and other amino acid
pathways positively associated with HNSCC compared to controls [55]. Additionally,
two arginine and proline pathway metabolites we observed, S-adenosylmethionine and
guanidinoacetate, are the metabolic precursors to creatine and phosphocreatine, which are
inversely associated with pathological extranodal extension, an adverse prognostic factor
in HPV-negative HNSCC [61]. Galactose metabolism, via the Leloir pathway, converts
galactose to glucose 1-phosphate to undergo glycolysis, an energy expenditure pathway
that is perhaps the most studied metabolic pathway in HNSCC [65]. Wu and colleagues
found galactose metabolism positively associated with HNSCC prognosis [29], and in prior
research, we found it associated with HPV status and survival [66]. Uptake of glucose
is also a prognostic marker in HNSCC imaging [26], and there is considerable interest in
targeting or inhibiting glycolysis to improve HNSCC response to radiotherapy [67,68].

An intriguing yet unexplained finding was the prognostic dependency of the subtypes
on a prior smoking history. Since the subtypes had similar proportions of current, former,
and never smokers, this means their association with survival was dependent on but not
confounded by smoking. Unfortunately, the questionnaires implemented by the parent
study did not collect data to investigate interaction across pack-years but we note that levels
of the smoking-related metabolites nicotine and cotinine did not play a role in subtype
clustering and were not associated with survival. We do not yet have a biological rationale
for this finding. However, in a somewhat parallel finding, Gutkind et al.’s phase II trial
reported a successful histological response to the metabolic diabetes drug metformin only
among current and former smokers [69]. Gutkind and colleagues showed that the response
was linked to suppression of the mammalian target of the rapamycin (mTOR) pathway, a
proliferative pathway that regulates fatty acid biosynthesis [70] and acetyl-CoA [71] but
is also regulated by arginine metabolism [72]. There are ongoing and recently completed
phase II clinical trials investigating the safety and efficacy of adding metformin to improve
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HNSCC patient response to standard chemoradiotherapy or immunotherapy [73,74]. For
those trials, and future HNSCC clinical trials of metformin or other mTOR inhibitors, we
believe a metabolomic biomarker would be a valuable translational addition.

The prognostic ability of the metabolic subtypes was independent of HPV status,
and this may be particularly pertinent to HPV-related HNSCC patients with an extensive
smoking history. HPV-related HNSCC smokers are an intermediate-risk group whose
prognosis appears too uncertain to test de-escalated treatment [10,75]. Among this group
of patients, metabolic subtype A showed a nearly ten-fold change in survival relative to
subtype B. Though our analysis does not disentangle why smoking contributes to worse
outcomes in HPV-related disease, it does suggest that a metabolomic biomarker might aid
clinical risk stratification for this varied patient group.

A specific limitation of the study was the inability to assess disease-induced cachexia,
muscle loss, or another abnormal nutritional state that may cause metabolic dysregulation.
We did not have information on muscle mass, nor did we have information on weight
loss prior to study entry; however, the average body mass index between the metabolic
subtypes was similar at baseline and that similarity did not change during the first year of
follow-up. Additionally, patients were not instructed to fast before blood collection, and we
had limited hematological variables from which to assess anemia or nutrition deficiency;
we did not have serum hematocrit, bilirubin, iron, ferritin, lactate dehydrogenase, or
aminotransaminases. The estimated prevalence of pretreatment cachexia in HNSCC is
upwards of 20% and it is associated with poor prognosis and mortality [76], making it a
potential confounder. We attempted to mitigate this confounding by adjusting the survival
models by factors correlated with a patient’s nutritional state, such as body mass index,
albumin and hemoglobin levels, as well as the presence of a gastronomy tube but we
cannot rule out residual confounding. Metabolomics may be intimately involved with
cancer patient cachexia. In a very small number of HNSCC patients, Boguszewicz et al.
showed evidence that increased serum levels of ketone bodies (β-hydroxybutyrate, acetone,
and acetoacetate) along with decreased serum glucose may provide a real-time signal of
treatment-related toxicity and future cachexia [77]. Though we used pretreatment LC-MS
metabolomics and Boguszewicz et al. used posttreatment 1H NMR metabolomics, the
similarities between our two findings warrant further investigation.

Other limitations include a relatively small sample size, the lack of external validation,
and the inability to link our plasma results with a tumor. Though a sample size of 200
is not particularly small, the stability and reproducibility of unsupervised clustering are
improved with larger numbers and multiple datasets. Unfortunately, unlike genomics
datasets, metabolomics datasets are scarce and not publicly available. Our results need to be
validated, and we are actively working to do so. However, since we were analyzing relative
intensity rather than metabolite concentration further standardization would be required
before pooling data with another study. The recruitment protocol of the parent study
limited our metabolomics analyses to patient plasma. Without paired tumor specimens,
we cannot investigate tumor characteristics such as p53 or Ki67 staining. We also cannot
directly compare our circulating metabolic subtypes to tumor genomic subtypes found
in the prior literature. Moreover, we cannot be sure circulating metabolites adequately
represent the metabolism occurring within the tumor and its microenvironment. Therefore,
our study is more akin to biomarker discovery from systemic metabolic signals rather
than the metabolic classification of HNSCC. However, it is noteworthy that the metabolic
pathways we found in patient plasma were also found in tumor genomic subtypes in prior
research [78]. Limiting our analysis to lab-confirmed metabolites mitigated issues with
metabolite annotation but opens the possibility of missing important metabolic signals.
Still, with 186 confirmed metabolites clustering 209 patients, there is a potential issue of
high dimensional data making the clusters less reproducible. We explored reproducibility
using alternative clustering algorithms, random forest and k means clustering, and we
found similar results in both to our primary findings.
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5. Conclusions

In a first-of-its-kind investigation, we believe our study provides compelling results
to consider metabolomics as a translational prognostic biomarker of HPV-related and
HPV-unrelated HNSCC tobacco users. However, there are still pressing research gaps
to fill regarding independent validation, integration with other omics data, metabolic
interventions, and incorporation into clinical trials before the potential for metabolomics is
fully recognized. Addressing these gaps is crucial to gain a fuller understanding of how
metabolomics may aid in the early detection, prognosis, treatment monitoring, and targeted
therapies of HNSCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15123184/s1, File S1: Standard operating procedure for
high-resolution metabolomics. Table S1: List of 186 lab-confirmed metabolites used in the hierarchical
clustering. Table S2: list of metabolic pathways tested for enrichment. Table S3: Pearson’s correlations
of 186 metabolites. Table S4: clustering metrics used to determine the optimal number of patient
clusters in the model. Table S5: random Forest and K-means clustering with estimated associations of
overall survival. Figure S1: a stratified boxplot of the age distribution by metabolic subtype. Figure S2:
a histogram of pair-wise Pearson correlation coefficients between the 186 plasma metabolites used for
hierarchical clustering. Figure S3: a clustered heatmap of pair-wise metabolite correlations. Figure S4:
progression-free Kaplan–Meier survival curves by metabolic subtypes. References [79–82] are cited
in Supplementary Materials.
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