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Abstract: Kidney disease is a significant health problem worldwide, affecting an estimated 10%
of the global population. Kidney disease encompasses a diverse group of disorders that vary in
their underlying pathophysiology, clinical presentation, and outcomes. These disorders include
acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome,
polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies,
these disorders share a common feature of immune system dysregulation and metabolic disturbances.
The immune system and metabolic pathways are intimately connected and interact to modulate
the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases
includes a complex interplay between various immune cell types, including resident and infiltrating
immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger
and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition,
metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose
and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing.
Dysregulation of these metabolic pathways contributes to the progression of kidney disease by
inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into
the intricate interplay between immune and metabolic pathways in kidney diseases, revealing
novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic
strategies include modulating immune responses through targeting key immune factors or inhibiting
pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-
sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the
interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic
implications of targeting these pathways.
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1. Introduction

Kidney disease is a significant health problem worldwide, affecting an estimated 10%
of the global population [1]. The most common forms of kidney disease include chronic
kidney disease (CKD) and acute kidney injury (AKI) [2]. However, kidney disease encom-
passes a diverse group of disorders that vary in their underlying pathophysiology, clinical
presentation, and outcomes. These disorders include tubulointerstitial, glomerulonephritis,
nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, vascular disease,
vasculitis, and congenital kidney disease, among others.

Despite significant advances in our understanding of the pathophysiology of kidney
disease, current therapies remain limited and often ineffective [3,4]. Thus, the need for
new therapeutic approaches to improve outcomes in patients with kidney disease is urgent.
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One promising area of research is the role of immunometabolism in the pathogenesis and
progression of kidney disease [5,6].

Immunometabolism refers to the interplay between immune and metabolic path-
ways, which are tightly regulated in normal physiological conditions [7–10]. In patho-
logical conditions, such as kidney disease, this delicate balance is disrupted, leading to
immunometabolic dysregulation. Immunometabolic dysregulation involves various cell
types, such as T cells, B cells, macrophages, and dendritic cells, as well as cytokines,
chemokines, and metabolic processes, such as oxidative stress, mitochondrial dysfunction,
and inflammation [8,11].

Recent studies have revealed a critical role for immunometabolic dysregulation in
the pathogenesis of kidney disease [6,12,13]. Dysregulated immune responses and altered
metabolic pathways interact in complex ways to contribute to the development and pro-
gression of kidney disease, regardless of the underlying etiology [8]. For instance, in CKD,
chronic inflammation, oxidative stress, and altered lipid metabolism contribute to tubu-
lointerstitial fibrosis and renal dysfunction [14–18]. Similarly, in diabetic kidney disease,
hyperglycemia and dyslipidemia promote mitochondrial dysfunction and inflammation,
leading to glomerular injury and renal fibrosis [19,20].

Given the profound impact of immunometabolic dysregulation on kidney disease
outcomes, identifying new therapeutic targets to modulate these pathways is critical. In
this review, we aim to provide a comprehensive overview of immunometabolic alterations
in kidney disease, highlighting their clinical implications and potential therapeutic inter-
ventions. We discuss the most recent advancements in our understanding of the molecular
mechanisms linking immunometabolism and kidney disease. Our review aims to provide
insights into the critical role of immunometabolism in kidney disease, regardless of the
underlying etiology, and its potential as a target for therapeutic intervention.

2. Immunometabolic Alterations in Kidney Disease

Immunometabolic alterations in kidney disease refer to the complex interplay between
immune and metabolic pathways that are disrupted in pathological conditions [13,21].
These alterations involve various cell types, cytokines, chemokines, and metabolic pro-
cesses, which together contribute to the pathogenesis and progression of kidney dis-
ease [8,22–24] (Figure 1).

T cells are an essential component of the adaptive immune response and play a crucial
role in kidney disease [25,26]. In CKD, T-cell activation and infiltration contribute to chronic
inflammation and renal fibrosis [27,28]. Activated T cells produce cytokines, such as IFN-γ
and TNF-α, which promote inflammation and fibrosis in the kidney [29]. Additionally, T
cells can directly induce tubular cell apoptosis and contribute to tubulointerstitial fibro-
sis [30,31]. In diabetic kidney disease, T cells also play a critical role in the pathogenesis
of kidney disease [32,33]. T-cell infiltration in the glomerulus is associated with the devel-
opment of albuminuria and renal fibrosis [16,34]. T cells in diabetic kidney disease also
contribute to podocyte injury and the development of glomerular sclerosis [35,36].

B cells are another critical component of the adaptive immune response, and their role
in kidney disease is becoming increasingly recognized [37]. In glomerulonephritis, autoan-
tibodies produced by B cells play a significant role in the pathogenesis of the disease [38,39].
Autoantibodies can deposit in the glomerulus, leading to complement activation and
subsequent inflammation and renal injury [40,41]. In diabetic kidney disease, B cells are
also implicated in the development of the disease. B cells can produce pro-inflammatory
cytokines and contribute to the infiltration of inflammatory cells in the kidney [42–44].

Macrophages are innate immune cells that play a critical role in the pathogenesis of
human disease [45–50]. In CKD, macrophage infiltration in the kidney is associated with
tubulointerstitial fibrosis and renal dysfunction [15,51,52]. Activated macrophages produce
pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, which contribute to renal
inflammation and fibrosis [53]. Macrophages can also promote renal fibrosis by producing
TGF-β and promoting extracellular matrix deposition [54–56]. In diabetic kidney disease,
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macrophages contribute to the development of renal injury and fibrosis [57]. Macrophages
are activated by advanced glycation end products (AGEs), leading to the production of
pro-inflammatory cytokines and the promotion of renal fibrosis [57,58].
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Figure 1. During renal injury, the metabolic programming of immune cells undergoes significant
changes. In a healthy kidney, macrophages use α-ketoglutarate derived from glutamine to maintain
their phenotypes, while both resident macrophages and T lymphocytes rely on oxidative phospho-
rylation (OXPHOS). However, during renal injury, hypoxia-inducible factor-1α (HIF-1α)-mediated
metabolic reprogramming occurs, leading to increased glycolysis and altered amino acid metabolism
in immune cells. In addition, the activation of innate pattern recognition receptors, such as Toll-like
receptors (TLRs), NOD-like receptors (NLRs), and inflammasomes, triggers intracellular pathways
that converge on nuclear factor κB (NF-κB), resulting in the production of pro-inflammatory cy-
tokines (such as tumor necrosis factor (TNF) and interleukin-1β (IL-1β)) and chemokines. This
complex network of metabolic and inflammatory responses ultimately contributes to the progression
of renal injury and disease. Elements of some figures were produced using Servier Medical Art,
https://smart.servier.com.

In addition to immune cell alterations, metabolic alterations also play a critical role in
the pathogenesis of kidney disease. In CKD, oxidative stress and mitochondrial dysfunction
are important metabolic alterations that contribute to renal injury and fibrosis [59,60].
Oxidative stress leads to the production of reactive oxygen species (ROS), which promote
inflammation and fibrosis in the kidney [61]. Mitochondrial dysfunction can also lead
to the production of ROS and promote renal fibrosis [62,63]. Additionally, altered lipid
metabolism in CKD promotes tubulointerstitial fibrosis and renal dysfunction [64,65].
In diabetic kidney disease, hyperglycemia and dyslipidemia are the primary metabolic
alterations that contribute to renal injury and fibrosis [65]. Hyperglycemia leads to the
production of AGEs, which activate inflammatory cells and promote renal fibrosis [66,67].
Dyslipidemia leads to the accumulation of lipids in the kidney, promoting inflammation
and fibrosis [68,69]. Furthermore, mitochondrial dysfunction in diabetic kidney disease
contributes to the development of renal injury and fibrosis [70,71].

3. The Impact of Immunometabolic Dysregulation in Kidney Disease
3.1. Acute Kidney Injury (AKI)

Acute kidney injury (AKI) is a complex condition characterized by a rapid loss of renal
function [72,73]. Immunometabolic dysregulation has been shown to play an important
role in the pathogenesis of AKI [22,74]. This involves an imbalance between pro- and anti-
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inflammatory cytokines, leading to the activation of innate immune cells and subsequent
tissue damage.

Several genes and pathways have been linked to immunometabolic dysregulation
in AKI. One of the key pathways involved in the development of AKI is the hypoxia-
inducible factor 1-alpha (HIF-1α) pathway [75,76]. Under hypoxic conditions, HIF-1α is
stabilized and activates the transcription of genes involved in glycolysis, angiogenesis, and
inflammation [77]. Studies have shown that HIF-1α plays a critical role in the development
of AKI by promoting glycolysis in immune cells and contributing to the production of
pro-inflammatory cytokines [78–80]. In addition, HIF-1α can also upregulate glucose trans-
porter 1 (GLUT1), which facilitates glucose uptake in immune cells, and its upregulation
has been linked to the development of AKI [80,81]. Moreover, recent studies have suggested
that epigenetic modifications, such as DNA methylation and histone modifications, can
contribute to the dysregulation of HIF-1α in AKI pathogenesis [82–84]. Another important
gene involved in immunometabolic dysregulation in AKI is the gene encoding for inducible
nitric oxide synthase (iNOS). iNOS is an enzyme that produces nitric oxide (NO), which is
a potent regulator of immune cell function [85]. Dysregulation of iNOS has been implicated
in the pathogenesis of AKI, with studies showing that iNOS-mediated NO production can
contribute to tissue damage in the kidney [86–88].

In addition to HIF-1α and iNOS, toll-like receptors (TLRs) are involved in the recogni-
tion of pathogen-associated molecular patterns (PAMPs) and damage-associated molec-
ular patterns (DAMPs), and their dysregulation has been linked to the development of
AKI [89,90]. TLRs can activate nuclear factor kappa B (NF-κB), a transcription factor that
regulates the expression of genes involved in inflammation and immune cell activation,
and its dysregulation has been shown to contribute to the development of AKI [91,92]. The
NLRP3 inflammasome, a multiprotein complex involved in the processing and secretion of
pro-inflammatory cytokines, has also been implicated in the development of AKI. Studies
have shown that NLRP3 inflammasome activation can contribute to the development of
AKI by promoting the secretion of pro-inflammatory cytokines [93–95].

Furthermore, recent studies have shown that immunometabolic dysregulation in AKI
also involves the dysregulation of lipid metabolism. For example, increased levels of
free fatty acids (FFAs) can contribute to the development of AKI by activating inflam-
matory pathways in immune cells [96,97]. This process involves the activation of TLR4
and subsequent activation of NF-κB, resulting in the production of pro-inflammatory cy-
tokines [98,99]. Moreover, dysregulation of the peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α), a transcriptional coactivator involved in the reg-
ulation of mitochondrial biogenesis and function [100], has been shown to contribute to
the development of AKI by impairing mitochondrial function in immune cells [101–103].
Dysregulation of PGC-1α may also lead to the accumulation of ROS, which can cause
oxidative stress and contribute to renal injury [104].

3.2. Chronic Kidney Disease (CKD)

Chronic kidney disease (CKD) is a progressive condition characterized by the gradual
loss of kidney function over time. Dysregulation of immune cells and metabolism con-
tribute to the accumulation of toxic metabolites, oxidative stress, and fibrosis, which are
key contributors to the progression of CKD [105]. One of the key pathways involved in
the development of CKD is dysregulated glucose metabolism in immune cells [106,107].
Studies have shown that this dysregulation can lead to the activation of pro-inflammatory
pathways, oxidative stress, and endothelial dysfunction, all of which can contribute to the
development of CKD [61]. GLUT1 and HIF-1α are two genes that have been implicated in
the dysregulation of glucose metabolism in immune cells in the context of CKD [108,109].
Another important pathway involved in CKD is the activation of the NLRP3 inflammasome
and subsequent cytokine production. Increased NLRP3 expression has been observed
in patients with CKD, and inhibition of the NLRP3 inflammasome has been shown to
ameliorate kidney damage in animal models of CKD [110]. Additionally, dysregulated
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lipid metabolism has been linked to the progression of CKD. Studies have shown that
increased levels of FFAs can contribute to the development of CKD by activating inflamma-
tory pathways and inducing oxidative stress [111,112]. In addition to the above-mentioned
pathways, other genes involved in immune cell dysregulation in CKD include TLRs, NF-κB,
and the renin–angiotensin–aldosterone system (RAAS). TLRs are involved in the recogni-
tion of PAMPs and DAMPs, and their dysregulation has been linked to the development
of CKD [113–115]. NF-κB activation in CKD can be triggered by a variety of stimuli, in-
cluding oxidative stress, hypoxia, and proinflammatory cytokines, such as TNF-α and
IL-1β [116,117]. Furthermore, NF-κB activation is tightly linked to NLRP3 inflammasome
activation in CKD. Activation of the NLRP3 inflammasome triggers the activation of NF-κB,
which, in turn, leads to the production of more proinflammatory cytokines, creating a
positive feedback loop that perpetuates the inflammatory response [118,119]. The RAAS
is a hormone system that regulates blood pressure and fluid balance in the body, and its
dysregulation has been linked to the development of CKD through its effects on renal
hemodynamics and inflammation [120–122].

Furthermore, epigenetic modifications have been suggested to play a role in the
dysregulation of genes involved in CKD pathogenesis [4]. For example, studies have shown
that DNA methylation and histone modifications can contribute to the dysregulation of key
genes involved in CKD, such as HIF-1α and NF-κB [123–126]. In conclusion, dysregulation
of immune cells and metabolism can contribute to the pathogenesis and progression of
CKD through various pathways and genes. Further research in this area may provide novel
insights into the mechanisms underlying the development of CKD and help identify new
therapeutic targets for the treatment of this condition.

3.2.1. Lupus Nephritis

Lupus nephritis is a type of kidney inflammation that occurs as a result of systemic
lupus erythematosus (SLE), an autoimmune disease [127]. Immunometabolic dysregula-
tion is one of the key mechanisms underlying the pathogenesis of lupus nephritis [128].
Dysregulated metabolism in immune cells can contribute to the production of autoanti-
bodies and the activation of inflammatory cells, leading to glomerular damage and renal
dysfunction [129,130].

Several genes and pathways have been implicated in the dysregulated metabolism
in immune cells in the context of lupus nephritis. One of the most studied pathways is
the Warburg effect, which is characterized by the preferential use of glycolysis over
oxidative phosphorylation in immune cells [131]. The upregulation of glycolysis is
thought to be driven by various signaling pathways, including the phosphoinositide
3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, the HIF path-
way, and the JAK/STAT pathway [132,133]. These pathways have been shown to
contribute to the activation of immune cells and the production of autoantibodies in
lupus nephritis [133–136].

The activation of the NLRP3 inflammasome is another key pathway involved in
the pathogenesis of lupus nephritis, with the subsequent production of cytokines. The
NLRP3 inflammasome contribute to tissue damage in lupus nephritis [137]. Studies have
shown that the NLRP3 inflammasome is upregulated in lupus nephritis patients and that
its inhibition can ameliorate kidney injury in animal models of lupus nephritis [137,138].
Moreover, dysregulated lipid metabolism has also been implicated in the pathogenesis of
lupus nephritis. Studies have shown that increased levels of FFAs can contribute to the
activation of immune cells and the production of autoantibodies in lupus nephritis [139,140].
The dysregulation of cholesterol metabolism has also been linked to the development of
lupus nephritis. In addition to the above-mentioned pathways, other genes and pathways
involved in the dysregulated metabolism in immune cells in lupus nephritis include
TLRs, NF-κB, and the IFN pathway. TLRs are involved in the recognition of PAMPs and
DAMPs, and their dysregulation has been linked to the activation of immune cells in
lupus nephritis [141–143]. NF-κB is a transcription factor that regulates the expression of
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genes involved in inflammation and immune cell activation, and its dysregulation has
been shown to contribute to the development of lupus nephritis [144,145]. The type I IFN
pathway is another important pathway involved in the activation of immune cells in lupus
nephritis, as the overexpression of type I IFN-inducible genes has been observed in lupus
nephritis patients [146–148].

Furthermore, epigenetic modifications have also been suggested to play a role in
the dysregulated metabolism in immune cells in lupus nephritis. For example, stud-
ies have shown that DNA methylation and histone modifications can contribute to the
dysregulation of key genes involved in lupus nephritis, such as NF-κB [149]. In conclu-
sion, immunometabolic dysregulation is a key mechanism underlying the pathogenesis of
lupus nephritis.

3.2.2. Diabetic Kidney Disease

Diabetic kidney disease is a common complication of diabetes mellitus and a leading
cause of end-stage renal disease [150–152]. Dysregulated metabolism and inflammation are
key factors in the pathogenesis of diabetic kidney disease. Impaired glucose metabolism
leads to the accumulation of AGEs in the kidneys, which contribute to renal dysfunction
and fibrosis [153]. GLUT1 and HIF-1α are two genes that have been implicated in the
dysregulation of glucose metabolism in immune cells in the context of diabetic kidney
disease [78,154].

In addition to dysregulated glucose metabolism, dysregulated lipid metabolism in im-
mune cells has also been implicated in the pathogenesis of diabetic kidney disease. Studies
have shown that increased levels of FFAs can contribute to the development of diabetic kid-
ney disease by activating inflammatory pathways and inducing oxidative stress [155,156].
In particular, the peroxisome proliferator-activated receptor (PPAR) family of genes, which
regulates lipid metabolism, has been shown to play a role in the pathogenesis of diabetic
kidney disease [157,158]. The activation of the NLRP3 inflammasome and subsequent pro-
duction of pro-inflammatory cytokines have been identified as critical drivers of diabetic
kidney disease. The NLRP3 inflammasome is a multiprotein complex involved in the pro-
cessing and secretion of pro-inflammatory cytokines, and its activation has been implicated
in the development of diabetic kidney disease [159]. The inflammasome is activated by
a variety of stimuli, including high glucose levels and the accumulation of AGEs [160].
The JAK/STAT signaling pathway is involved in many biological processes, including im-
mune responses and inflammation, and has been implicated in the pathogenesis of diabetic
kidney disease [161–167]. Studies have shown that the JAK/STAT pathway is activated
in response to pro-inflammatory cytokines and growth factors, and its dysregulation can
contribute to the progression of diabetic kidney disease [168]. The suppressor of cytokine
signaling (SOCS) family of genes, which negatively regulates JAK/STAT signaling, has
been shown to play a role in the development of diabetic kidney disease [169,170].

In conclusion, dysregulated metabolism and inflammation contribute to the devel-
opment and progression of diabetic kidney disease through various pathways and genes,
including dysregulated glucose and lipid metabolism, activation of the NLRP3 inflamma-
some, and dysregulated JAK/STAT signaling. Further research in this area may provide
novel insights into the mechanisms underlying the development of diabetic kidney disease
and help identify new therapeutic targets for the treatment of this condition.

3.2.3. Polycystic Kidney Disease (PKD)

Immunometabolic dysfunction plays a critical role in the pathogenesis of PKD. Dysreg-
ulated metabolism in immune cells, such as the activation of the Warburg effect, has been
implicated in the development and progression of PKD [171,172]. Additionally, studies
have shown that immune cells in PKD exhibit increased mitochondrial stress and metabolic
alterations, leading to impaired cellular energetics and increased oxidative stress [173].

One recent study has found that the inflammasome pathway, specifically the NLRP3
inflammasome, is activated in PKD, leading to the production of pro-inflammatory cy-
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tokines and subsequent cyst growth [174,175]. The activation of the NLRP3 inflammasome
has been linked to the accumulation of damaged mitochondria and the release of mito-
chondrial DNA, which can trigger an inflammatory response in the kidney [23]. Another
study has shown that PKD is associated with altered immune cell metabolism and an
increased production of ROS. The authors suggest that this metabolic dysfunction may
contribute to the activation of the NLRP3 inflammasome and the subsequent production of
pro-inflammatory cytokines in PKD [174,176]. Furthermore, recent research has also linked
PKD to dysregulated lipid metabolism in immune cells [61]. One study found that PKD is
associated with altered lipid metabolism in T cells, leading to increased T-cell activation
and subsequent inflammation in the kidney [177].

In summary, immunometabolic dysfunction, including dysregulated metabolism in
immune cells, activation of the inflammasome pathway, altered mitochondrial function,
and dysregulated lipid metabolism, contributes to the pathogenesis of PKD. These findings
suggest that targeting immunometabolic pathways may provide a potential therapeutic
strategy for PKD.

3.2.4. Impact of Immunometabolic Dysregulation on Kidney Transplant Outcomes

Immunometabolic dysregulation has been increasingly recognized as an important
contributor to kidney transplant outcomes. The immune response after kidney transplanta-
tion involves both the innate and adaptive immune systems, which interact with each other
to establish a balance between tolerance and rejection [178,179]. Dysregulated metabolism
and inflammation can disrupt this balance, leading to poor transplant outcomes, such as
rejection, infection, and chronic allograft dysfunction [180,181].

One key pathway involved in immunometabolic dysregulation after kidney transplan-
tation is the activation of the NLRP3 inflammasome. Studies have shown that activation
of the NLRP3 inflammasome in both donor and recipient cells can contribute to the de-
velopment of acute and chronic rejection [182]. Furthermore, activation of the NLRP3
inflammasome has also been implicated in the development of ischemia–reperfusion in-
jury, a common complication during kidney transplantation [183–185]. Dysregulated
metabolism in immune cells has also been implicated in poor kidney transplant outcomes.
Specifically, the Warburg effect, a phenomenon where immune cells preferentially use
glycolysis for energy production instead of oxidative phosphorylation, has been observed
in both donor and recipient cells after kidney transplantation [186,187]. This metabolic
switch has been associated with increased inflammation and oxidative stress, which can
lead to allograft injury and rejection [188,189]. Finally, dysregulation of lipid metabolism in
immune cells has also been implicated in poor kidney transplant outcomes [190]. Studies
have shown that high levels of triglycerides and low levels of high-density lipoprotein
(HDL) cholesterol are associated with an increased risk of acute rejection and chronic
allograft dysfunction [191,192]. Dysregulated lipid metabolism in immune cells can also
lead to the production of pro-inflammatory cytokines and the activation of the NLRP3
inflammasome [193,194].

In conclusion, immunometabolic dysregulation plays a critical role in kidney trans-
plant outcomes. Dysregulated metabolism and inflammation can disrupt the delicate
balance between tolerance and rejection, leading to poor transplant outcomes, such as
rejection, infection, and chronic allograft dysfunction. Understanding the mechanisms
underlying immunometabolic dysregulation in kidney transplantation may lead to the
development of novel therapeutic strategies to improve transplant outcomes.

4. Potential Therapeutic Interventions Targeting Immunometabolism
in Kidney Disease

Immunometabolic dysregulation is a promising target for the development of novel
therapeutic interventions for kidney disease. Several current and emerging therapies target-
ing immunometabolism have shown promising results in preclinical and clinical studies.
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One potential therapeutic intervention is targeting the NLRP3 inflammasome, a
key component of the innate immune system that plays a role in the activation of pro-
inflammatory cytokines. The NLRP3 inflammasome, a multimeric protein complex, acts as
a key regulator of innate immunity and exhibits predominant expression within diverse
renal cell populations, encompassing tubular epithelial cells, glomerular cells, and infiltrat-
ing immune cells within the kidney [195,196]. The NLRP3 inflammasome can be activated
in response to different signals, such as PAMPs, DAMPs, and oxidized mitochondrial DNA
fragments. Once activated, the NLRP3 inflammasome triggers the production and release
of pro-inflammatory cytokines, particularly IL-1β and IL-18, leading to an amplified inflam-
matory response within the renal microenvironment [197,198]. The significance of NLRP3
inflammasome activation in renal diseases lies in its contribution to the pathogenesis and
progression of various renal conditions [93,199]. Persistent or dysregulated activation of
the NLRP3 inflammasome has been implicated in the development of glomerulonephritis,
diabetic nephropathy, tubulointerstitial nephritis, and other inflammatory renal disorders.
The released pro-inflammatory cytokines, IL-1β and IL-18, promote immune cell recruit-
ment, exacerbate tissue damage, and stimulate fibrotic responses in the kidney [200–202].
Moreover, the NLRP3 inflammasome can modulate the activation and function of other
inflammatory signaling pathways, such as NF-κB and mitogen-activated protein kinases
(MAPKs), amplifying the inflammatory cascade in renal diseases [203]. Furthermore, the
influence of the NLRP3 inflammasome extends beyond inflammation, as it has been im-
plicated in regulating renal cell death pathways. Activation of the NLRP3 inflammasome
can lead to pyroptosis, a highly inflammatory form of cell death characterized by releasing
pro-inflammatory cytokines and forming membrane pores [204]. Pyroptosis of renal cells
can exacerbate tissue injury and contribute to the loss of renal function [205]. Addition-
ally, the NLRP3 inflammasome has been associated with the activation of other cell death
mechanisms, including apoptosis and necroptosis, further highlighting its involvement in
renal disease pathogenesis [93]. Inhibitors of the NLRP3 inflammasome, such as MCC950
and CY-09, have been shown to ameliorate renal injury and improve kidney function in
various animal models of kidney disease [206–208]. However, the clinical efficacy of these
inhibitors remains to be tested in human trials. Another potential therapy is the modulation
of the Warburg effect, a metabolic alteration characterized by enhanced glycolysis and
reduced oxidative phosphorylation. Targeting the Warburg effect in immune cells has
shown potential in the treatment of kidney disease. For instance, the use of the glycolysis
inhibitor 2-deoxyglucose (2-DG) has been shown to reduce renal injury and inflammation
in animal models of kidney disease [171,209,210]. Additionally, several other inhibitors of
glycolysis, such as dichloroacetate (DCA) and lonidamine, are currently under investigation
as potential therapies for kidney disease [211,212].

In addition to targeting specific pathways, several emerging therapies aim to modulate
the overall metabolic state of immune cells in kidney disease. One example is the use of
metformin, a widely used drug for the treatment of diabetes, which has been shown to have
immunomodulatory effects [213]. Preclinical studies have demonstrated the potential of
metformin in reducing renal injury and inflammation in models of kidney disease. Similarly,
the use of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), has been
shown to have immunosuppressive and renoprotective effects in various animal models of
kidney disease [214]. Cyclosporine A is an immunosuppressant commonly used in renal
transplant patients to prevent rejection by inhibiting immune system activity and reduc-
ing inflammatory responses and immune-mediated kidney damage. While its primary
focus is on the immune system, Cyclosporine A may also have some impact on metabolic
processes [215]. Glucocorticoids, such as prednisolone, possess anti-inflammatory proper-
ties and are frequently prescribed for various kidney diseases, mitigating inflammation
and immune-mediated injury. They can also affect metabolism by influencing glucose
metabolism and lipid metabolism [216]. Angiotensin-converting enzyme inhibitors (ACEIs)
and angiotensin receptor blockers (ARBs) are widely employed in managing hypertension
and kidney disease. In addition to their blood-pressure-lowering effects, these medications
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can have an impact on metabolic processes, including the regulation of blood glucose
levels and lipid metabolism [217]. It is important to consult healthcare professionals for
personalized treatment decisions, taking into account the specific condition and needs of
each patient.

While these immunometabolic therapies hold promise, there are also potential limita-
tions and concerns to consider. For instance, the modulation of immune cell metabolism
may have unintended consequences on other metabolic pathways and cellular functions.
Additionally, the long-term safety and efficacy of these therapies in humans remain to
be established. In conclusion, targeting immunometabolism represents a promising ap-
proach for the development of novel therapies for kidney disease. While several therapies
have shown promise in preclinical and clinical studies, further research is needed to fully
establish their safety and efficacy in humans.

5. Future Directions for Research in Immunometabolism and Kidney Disease

Despite significant progress in understanding the role of immunometabolism in kidney
disease, there are still many gaps in our knowledge. Here, we outline some areas of needed
research to better understand the complex interactions between immunometabolism and
kidney disease.

1. Elucidating the mechanisms of immunometabolic dysregulation in kidney disease:
While the role of immunometabolism in kidney disease is becoming increasingly clear, the
specific molecular and cellular mechanisms underlying this dysregulation are still not fully
understood. Future research should focus on elucidating these mechanisms to better under-
stand how immunometabolic dysregulation contributes to kidney disease pathogenesis.

2. Identifying novel immunometabolic targets for therapeutic interventions: While cur-
rent and emerging immunometabolic therapies for kidney disease show promise, there is a
need for the identification of additional immunometabolic targets for therapeutic interven-
tions. Innovative approaches and technologies, such as multi-omics and single-cell analysis,
may help identify new targets and pathways involved in immunometabolic dysregulation.

3. Personalizing immunometabolic therapies for kidney disease: The heterogeneity of
kidney disease suggests that personalized therapeutic approaches may be necessary. Future
research should aim to identify specific patient subgroups that may benefit from certain
immunometabolic therapies, as well as develop biomarkers to predict treatment response.

6. Conclusions

This review highlights the significant role of immunometabolic dysregulation in
kidney disease. The interplay between immune and metabolic pathways affects the devel-
opment and progression of various kidney diseases, including AKI, CKD, lupus nephritis,
diabetic kidney disease, PKD, and kidney transplant outcomes. Potential therapeutic in-
terventions targeting immunometabolism show promise, but further research is needed.
Understanding the interactions between immune and metabolic processes is crucial for
future advancements in treating kidney disease.
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