Skip to main content
. 2023 Jun 16;25(6):946. doi: 10.3390/e25060946
Algorithm 2: Pseudo-code of PFA-GMM
Input: The set of data pointsX={x1,x2,,xn}, Maximum iterations, Population numbers
Output: The optimal clustering result
1.  Initialize the population
2.  Select data points randomly and determine the number of clusters C
3.  Generate the initial population and applying through GMM
4.  Calculate the fitness function according to EM
5.  Choose population with the best fitness value as Pathfinder
6.  While K < maximum number of iterations
7.       For i = 1 to maximum number of populations
8.              Update positions of members using Equation (2)
9.              Calculate fitness value of members through EM
10.      End
11.      If best fitness < fitness of Pathfinder
12.             Pathfinder = best member
13.             Fitness = best fitness
14.      End
15.      α and β = random number in [1, 2]
16.      Generate new A and ε
17.      Update the position of Pathfinder using Equation (1)
18.      If new Pathfinder is better than old
19.             Update Pathfinder
20.             Calculate fitness value
21.      End
22. Assign data points to final cluster centroids