Skip to main content
. 2023 Jun 14;13(12):2056. doi: 10.3390/diagnostics13122056

Table 1.

The existing DL models on upper airway segmentation and their functions and performance.

Authors DL
Models
Year Training
Dataset
Validation/Test Dataset Functions Best Performance of DL Time-
Consuming
Jacobs
et al. [28]
3D U-Net 2021 48 25 Segmentation of pharyngeal airway space Precision: 0.97 ± 0.02
Recall: 0.98 ± 0.01
Accuracy: 1.00 ± 0.00
DSC: 0.98 ± 0.01
IoU: 0.96 ± 0.02
95HD: 0.82 ± 0.41 mm
No
Choi
et al. [29]
CNN 2021 73 for
segmentation
121 for
OSAHS diagnose
15 for
segmentation
52 for
OSAHS diagnose
Segmentation of upper airway, computational fluid dynamics and OSAHS assessment
  • Upper airway flow characteristics

Accuracy: 0.702 ± 0.048
Sensitivity: 0.893 ± 0.048
Specificity: 0.593 ± 0.053
F1 score: 0.74 ± 0.033
DSC: 0.76 ± 0.041
  • OSAHS diagnosis

Accuracy: 0.815 ± 0.045
Sensitivity: 0.893 ± 0.048
Specificity: 0.862 ± 0.047
F1 score: 0.0876 ± 0.033
6 min
Yuan
et al. [30]
CNN 2021 102 21 for validation
31 for test
Segmentation of upper airway Precision: 0.914
Recall: 0.864
DSC: 0.927
95HD: 8.3
No
Spampinato
et al. [31]
CNN 2021 20 20 Segmentation of sinonasal cavity and pharyngeal airway DSC: 0.8387
Matching percentage:
0.8535 for tolerance 0.5 mm
0.9344 for tolerance 1.0 mm
No
Oz
et al. [32]
CNN 2021 214 46 for validation
46 for test
Segmentation of upper airway DSC: 0.919
IoU: 0.993
No
Lee
et al. [33]
Regres-sion Neural Network 2021 243 72 Segmentation of upper airway r2 = 0.975, p < 0.001 No