Skip to main content
. 2023 Jun 14;13(12):2056. doi: 10.3390/diagnostics13122056

Table 4.

The existing DL models on tooth segmentation and their functions and performance.

Authors DL
Models
Year Training Dataset Validation/Test
Dataset
Functions Best Performance of DL Time-
Consuming
Jin
et al. [48]
Unknown 2022 216 223 Tooth
identification and
segmentation
  • Tooth identification

Precision: 0.9681 ±  0.0167
Recall: 0.9013 ±  0.0530
F1 score: 0.9335 ±  0.0254
  • Tooth segment

Precision: 0.9595 ±  0.0200
Recall: 0.9371 ±  0.0208
DSC: 0.9479 ±  0.0134
HD: 1.66 ±  0.72 mm
No
He
et al. [49]
cGAN 2020 15,750 teeth 4200 teeth Tooth
identification and
segmentation
  • IoU

Incisor: 0.89 ± 0.087
Lateral incisor: 0.92 ± 0.068
Canine: 0.90 ± 0.053
First premolar: 0.91 ± 0.032
Second premolar: 0.93 ± 0.026
First molar: 0.92 ± 0.112
Second molar: 0.90 ± 0.035
No
Jacobs
et al. [50]
CNN 2021 2095 slice 328 for
validation
501 for
optimization
Tooth
segmentation
  • R-AI

IoU: 0.881 ± 0.036
DSC: 0.937 ± 0.02
  • F-AI

IoU: 0.887 ± 0.032
DSC: 0.940 ± 0.018
R-AI
72 ± 33.02 s
F-AI
30 ± 8.64 s
Jacobs
et al. [51]
3D U-Net 2021 140 35 for validation
11 for test
Tooth
identification and segmentation
Precision: 0.98 ± 0.02
IoU: 0.82 ± 0.05
Recall: 0.83 ± 0.05
DSC: 0.90 ± 0.03
95HD: 0.56 ± 0.38 mm
7 ± 1.2 h
for experts
13.7 ± 1.2 s
for DL
Deng
et al. [52]
CNN 2022 450 104 Tooth
identification and segmentation
Accuracy: 0.913
AUC: 0.997
No
Jacobs
et al. [53]
CNN 2022 140 35 Tooth
identification and segmentation
Accuracy of teeth detection: 0.997
Accuracy of missing teeth detection: 0.99
IoU: 0.96
95HD: 0.33
1.5 s
Ozyurek
et al. [55]
CNN 2020 2800 153 Periapical pathosis detection and their volumes calculation Detection rate: 0.928 No
Li
et al. [56]
U-Net 2020 61 12 Periapical lesion, tooth, bone,
material
segmentation
Accuracy: 0.93
Specificity: 0.88
DSC: 0.78
No
Schwendicke
et al. [58]
Xception U-Net 2021 100 35 Detect the
C-shaped root canal of the
second molar
DSC: 0.768 ± 0.0349
Sensitivity:
0.786 ± 0.0378
No
Mahdian
et al. [59]
U-Net 2022 90 10 Unobturated
mesial buccal 2 (MB2) canals on endodontically obturated
maxillary molars
Accuracy: 0.9
DSC: 0.768
Sensitivity: 0.8
Specificity: 1
No
Xie et
al [60]
cGAN 2021 Improved group 40
Traditional group 40
Different
tooth parts
segmentation
Omit,
Precision, TRP,
FRP, and DSC
No
Yang
et al. [61]
RPN, FRN, U-Net 2021 20 Tooth and pulp segmentation
  • Single root tooth

DSC: 0.957 ± 0.005
ASD: 0.104 ± 0.019 mm
RVD: 0.049 ± 0.017
  • Multiroot tooth

DSC: 0.962 ± 0.002
ASD: 0.137 ± 0.019 mm
RVD: 0.053 ± 0.010
No
Lin
et al. [62]
U-Net, AGs, RNN 2020 1160 361 Root
segmentation
IoU: 0.914
DSC: 0.955
Precision: 0.958
Recall: 0.953
No
Lin
et al. [63]
ResNet50, VGG19, DenseNet169 2022 839 279 Vertical root
fracture
diagnosis
  • ResNet50

Accuracy: 0.978
Sensitivity: 0.970
Specificity: 0.985
  • VGG19

Accuracy: 0.949
Sensitivity: 0.927
Specificity: 0.970
  • DenseNet169

Accuracy: 0.963
Sensitivity: 0.941
Specificity: 0.985
No
Zhao
et al. [64]
3D U-Net 2021 51 17 Root
canal system
detection
DSC: 0.952 350 ms