Table 4.
Authors | DL Models |
Year | Training Dataset | Validation/Test Dataset |
Functions | Best Performance of DL | Time- Consuming |
---|---|---|---|---|---|---|---|
Jin et al. [48] |
Unknown | 2022 | 216 | 223 | Tooth identification and segmentation |
Recall: 0.9013 ± 0.0530 F1 score: 0.9335 ± 0.0254
Recall: 0.9371 ± 0.0208 DSC: 0.9479 ± 0.0134 HD: 1.66 ± 0.72 mm |
No |
He et al. [49] |
cGAN | 2020 | 15,750 teeth | 4200 teeth | Tooth identification and segmentation |
Lateral incisor: 0.92 ± 0.068 Canine: 0.90 ± 0.053 First premolar: 0.91 ± 0.032 Second premolar: 0.93 ± 0.026 First molar: 0.92 ± 0.112 Second molar: 0.90 ± 0.035 |
No |
Jacobs et al. [50] |
CNN | 2021 | 2095 slice | 328 for validation 501 for optimization |
Tooth segmentation |
DSC: 0.937 ± 0.02
DSC: 0.940 ± 0.018 |
R-AI 72 ± 33.02 s F-AI 30 ± 8.64 s |
Jacobs et al. [51] |
3D U-Net | 2021 | 140 | 35 for validation 11 for test |
Tooth identification and segmentation |
Precision: 0.98 ± 0.02 IoU: 0.82 ± 0.05 Recall: 0.83 ± 0.05 DSC: 0.90 ± 0.03 95HD: 0.56 ± 0.38 mm |
7 ± 1.2 h for experts 13.7 ± 1.2 s for DL |
Deng et al. [52] |
CNN | 2022 | 450 | 104 | Tooth identification and segmentation |
Accuracy: 0.913 AUC: 0.997 |
No |
Jacobs et al. [53] |
CNN | 2022 | 140 | 35 | Tooth identification and segmentation |
Accuracy of teeth detection: 0.997 Accuracy of missing teeth detection: 0.99 IoU: 0.96 95HD: 0.33 |
1.5 s |
Ozyurek et al. [55] |
CNN | 2020 | 2800 | 153 | Periapical pathosis detection and their volumes calculation | Detection rate: 0.928 | No |
Li et al. [56] |
U-Net | 2020 | 61 | 12 | Periapical lesion, tooth, bone, material segmentation |
Accuracy: 0.93 Specificity: 0.88 DSC: 0.78 |
No |
Schwendicke et al. [58] |
Xception U-Net | 2021 | 100 | 35 | Detect the C-shaped root canal of the second molar |
DSC: 0.768 ± 0.0349 Sensitivity: 0.786 ± 0.0378 |
No |
Mahdian et al. [59] |
U-Net | 2022 | 90 | 10 | Unobturated mesial buccal 2 (MB2) canals on endodontically obturated maxillary molars |
Accuracy: 0.9 DSC: 0.768 Sensitivity: 0.8 Specificity: 1 |
No |
Xie et al [60] |
cGAN | 2021 | Improved group 40 Traditional group 40 |
Different tooth parts segmentation |
Omit, Precision, TRP, FRP, and DSC |
No | |
Yang et al. [61] |
RPN, FRN, U-Net | 2021 | 20 | Tooth and pulp segmentation |
ASD: 0.104 ± 0.019 mm RVD: 0.049 ± 0.017
ASD: 0.137 ± 0.019 mm RVD: 0.053 ± 0.010 |
No | |
Lin et al. [62] |
U-Net, AGs, RNN | 2020 | 1160 | 361 | Root segmentation |
IoU: 0.914 DSC: 0.955 Precision: 0.958 Recall: 0.953 |
No |
Lin et al. [63] |
ResNet50, VGG19, DenseNet169 | 2022 | 839 | 279 | Vertical root fracture diagnosis |
Sensitivity: 0.970 Specificity: 0.985
Sensitivity: 0.927 Specificity: 0.970
Sensitivity: 0.941 Specificity: 0.985 |
No |
Zhao et al. [64] |
3D U-Net | 2021 | 51 | 17 | Root canal system detection |
DSC: 0.952 | 350 ms |