Table 6.
Authors | DL Models | Year | Training Dataset | Validation/Test Dataset | Functions | Best Performance of DL | Time- Consuming |
---|---|---|---|---|---|---|---|
Khajeh et al. [70] |
CNN | 2019 | 620 | 54 for validation 43 for test |
Bone density classification |
Accuracy: 0.991 Precision: 0.952 |
76.8 ms |
Lin et al. [71] |
Nested-U-Net | 2022 | 605 | 68 | Bone density classification |
Accuracy: 0.91 DSC: 0.75 |
No |
Yi et al. [72] |
QCBCT-NET | 2021 | 200 | Bone mineral density measurement |
Pearson correlation coefficients: 0.92 |
No | |
Saeed et al. [73] |
CNN | 2022 | 350 | 100 for validation 50 for test |
Missing tooth regions detection |
Accuracy: 0.933 Recall: 0.91 Precision: 0.96 F1 score: 0.97 |
No |
Shumilov et al. [74] |
3D U-Net | 2021 | 75 | Bone height\thickness\canals, missing tooth, sinus measuring |
Sinuses/fossae: 0.664 Missing tooth: 0.953 |
No | |
Chen et al. [75] |
CNN | 2022 | 2920 | 824 for validation 400 for test |
Perioperative plan | ICCs: 0.895 | 0.001 s for DL 64~107 s for manual work |
Wang et al. [76] |
CNN | 2022 | 1000 | 150 | Implant stability | Precision: 0.9733 Accuracy: 0.9976 IoU: 0.944 Recall: 0.9687 |
No |