Skip to main content
. 2023 Jun 14;13(12):2056. doi: 10.3390/diagnostics13122056

Table 7.

The existing DL models on landmark localization and their function and performance.

Authors DL Models Year Training Dataset Validation/Test Dataset Functions Best Performance of DL Time-
Consuming
Bagci
et al. [77]
Long short-term memory network 2019 20,480 5120 Mandible
segmentation and 9
automatic
landmarks
DSC: 0.9382
95HD: 5.47
IoU: 1
Sensitivity: 0.9342
Specificity: 0.9997
No
Shen
et al. [78]
Multi-task
dynamic transformer network
2020 no no 64 CMF
landmarks
DSC:
0.9395 ± 0.0130
No
Shen
et al. [79]
U-Net, graph
convolution network
2020 20 5 for
validation
10 for test
60 CMF
landmarks
Accuracy:
1.69 mm
1~3 min
for DL
Yap
et al. [80]
3D faster
R-CNN,
3D
MS-UNet
2021 60 60 18 CMF
landmarks
Accuracy:
0.79 ± 0.62 mm
26.6 s for DL
Wang
et al. [81]
3D Mask
R-CNN
2022 25 25 105 CMF landmarks Accuracy:
1.38 ± 0.95 mm
No
Yoon
et al. [82]
Mask
R-CNN
2022 170 30 23 CMF
landmarks
  • mean absolute

value of deviation
length: 1 mm
angle: <2°
25~35 min
for manual
17 s for DL