Table 7.
Authors | DL Models | Year | Training Dataset | Validation/Test Dataset | Functions | Best Performance of DL | Time- Consuming |
---|---|---|---|---|---|---|---|
Bagci et al. [77] |
Long short-term memory network | 2019 | 20,480 | 5120 | Mandible segmentation and 9 automatic landmarks |
DSC: 0.9382 95HD: 5.47 IoU: 1 Sensitivity: 0.9342 Specificity: 0.9997 |
No |
Shen et al. [78] |
Multi-task dynamic transformer network |
2020 | no | no | 64 CMF landmarks |
DSC: 0.9395 ± 0.0130 |
No |
Shen et al. [79] |
U-Net, graph convolution network |
2020 | 20 | 5 for validation 10 for test |
60 CMF landmarks |
Accuracy: 1.69 mm |
1~3 min for DL |
Yap et al. [80] |
3D faster R-CNN, 3D MS-UNet |
2021 | 60 | 60 | 18 CMF landmarks |
Accuracy: 0.79 ± 0.62 mm |
26.6 s for DL |
Wang et al. [81] |
3D Mask R-CNN |
2022 | 25 | 25 | 105 CMF landmarks | Accuracy: 1.38 ± 0.95 mm |
No |
Yoon et al. [82] |
Mask R-CNN |
2022 | 170 | 30 | 23 CMF landmarks |
length: 1 mm angle: <2° |
25~35 min for manual 17 s for DL |