Skip to main content
. 2023 Jun 12;25(6):926. doi: 10.3390/e25060926
Algorithm 1: The UWUSRank Algorithm
Input: Dynamic User Interaction Network GT
Output: UWUSRank for each user
//Calculate the user’s own influence
for all  u in U do
Compute act(u) using Equation (5)
Compute res(u) using Equation (6)
Compute aut(u) using Equation (7)
I0(u)=ϕ1act(u)+ϕ2res(u)+ϕ3aut(u)
Initialize the influence value of each user as I0(u)
end for
//Calculate user influence considering the user’s own influence and Interaction behavior
for iter=1 to max_iter do
       while (u,v) E
       Compute ωt(u,v) using Equation (9)
       Compute γt(u,v) using Equation (4)
          Affectt(u)=(1d)×I0(u)+d×vO(u)(Affectt(v)×ωt(u,v)×γt(u,v)) 
          δ=i=1NAffectiter(u)Affectiter1(u)
          if converged(δ) then
              break
          end if
       end while
for all u in U do
    //Calculate the similarity between user interest and the topic content
                                            sim(u,topic)=ver(u)ver(topic)ver(u)×ver(topic)
    //Calculate the UWUSRank value
                                    UWUSRankt(u)=Affectt(u)sim(u,topic)
return UWUSRankt  for each user