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Abstract: Chest X-ray (CXR) is the most important technique for performing chest imaging, despite
its well-known limitations in terms of scope and sensitivity. These intrinsic limitations of CXR have
prompted the development of several artificial intelligence (AI)-based software packages dedicated
to CXR interpretation. The online database “AI for radiology” was queried to identify CE-marked
AI-based software available for CXR interpretation. The returned studies were divided according
to the targeted disease. AI-powered computer-aided detection software is already widely adopted
in screening and triage for pulmonary tuberculosis, especially in countries with few resources and
suffering from high a burden of this disease. AI-based software has also been demonstrated to be
valuable for the detection of lung nodules detection, automated flagging of positive cases, and post-
processing through the development of digital bone suppression software able to produce digital
bone suppressed images. Finally, the majority of available CE-marked software packages for CXR are
designed to recognize several findings, with potential differences in sensitivity and specificity for
each of the recognized findings.

Keywords: artificial intelligence; chest c-ray; CE-mark; deep learning; pulmonary tuberculosis; lung
nodules

1. Introduction

Since the introduction of digital radiography in 1980, chest X-ray (CXR) has remained
the most important imaging technique for chest imaging [1]. CXR is a cheap and easily
accessible imaging technique with broad indications, characterized by short scan time and
a lower dose compared to other imaging techniques, such as computed tomography, for
example [2]. Nevertheless, CXR is limited in scope and sensitivity, and its interpretation is
challenging due to the overlay of several different tissues belonging to a complex three-
dimensional volume within a two-dimensional image [3].

The difference in density between pathological and healthy lung parenchyma may be
subtle and challenging to detect, also because about 40% of lung parenchyma is covered by
the ribs and mediastinum [4]. The experience of the radiologist and the cognitive process
behind the interpretation of a CXR directly affect the clinical utility and effectiveness of CXR
in patient management. To complicate matters even further, the rising demand for imaging
exams, particularly in the emergency setting, may contribute to increasing numbers of
errors [5].

The intrinsic limitations of CXR and the increasing number of examinations has
prompted the proliferation of Artificial Intelligence (AI)-based software packages dedicated
to CXR interpretation over the past decade [6].

Diagnostics 2023, 13, 2020. https://doi.org/10.3390/diagnostics13122020 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13122020
https://doi.org/10.3390/diagnostics13122020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-7950-4559
https://doi.org/10.3390/diagnostics13122020
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13122020?type=check_update&version=1


Diagnostics 2023, 13, 2020 2 of 13

AI-based image analysis, especially through deep learning, has become popular in
recent years for classifying and segmenting the wealth of unlabeled data usually available
in medical institutions in order to reduce, for example, the subjectivity and the time burden
introduced by a manual labeling [7].

Still, to effectively tackle the above-mentioned issue, it is necessary to make these new
technologies part of the daily routine. However, the gap between scientific research and
clinical practice can be very significant. As a first essential step to achieving the clinical
translation of all these research efforts, AI-based software needs to be certified for medical
use. The providers affirm by means of CE marks the good conformity of the software with
European health, safety, and environmental protection standards [8].

The primary aim of this review is to summarize the state-of-the-art of CE-marked
AI-based software for CXR interpretation, focusing on their role, but also on the open issues
of these applications and all the features of these software the reader must be aware of.

2. Materials and Methods

The online database “AI for radiology”, a non-commercial project tracking all CE-
certified AI products, was queried to identify CE-marked AI-based software available for
CXR interpretation [9]. Filters were applied to include only software developed for the
chest, as subspecialty, and for X-ray, as imaging modality. No filters were applied regarding
the level of CE and FDA (Food and Drug Administration) class. We ran the product and
company name of each of the AI-based software packages through the PubMed database.
Original research published in English was included in this review. The last search was run
on 13 September 2022.

After collecting the studies, we used a narrative approach to analyze the state of the
art of AI-based interpretation of different disease on CXR.

3. Results

We found 26 different CE-marked AI-based software packages.
The characteristics of the included software are summarized in Table 1. The studies

were divided into three categories according to the targeted disease: AI-based software for
tuberculosis-related abnormalities; AI-based software for nodule and lung cancer detection;
and AI-based software for multiclass findings and other clinical scenarios. However, several
software packages were not developed for a single disease or finding, and a significant
overlap among categories was found.

3.1. AI-Based Software for Tuberculosis-Related Abnormalities

Pulmonary tuberculosis (TB) diagnosis is based on clinical features, sputum/blood
test examinations positive for tubercle bacilli, and CXR presenting confluent dense shadows
or signs of consolidation [10]. However, CXR as a screening and triage tool presents some
relevant drawbacks, such as high inter- and intra-reader variability, moderate specificity,
and limited radiology availability, especially in regions of the world with higher burdens
of pulmonary TB [11].

Artificial intelligence (AI)-powered computer-aided detection (CAD) is already a
fundamental tool in screening and triaging pulmonary TB, especially in countries suffering
from a high burden of this disease. In these countries, CAD software packages are already
widely adopted in mobile unit machines, which can operate without access to an electrical
power grid [12]. Indeed, in 2021, the WHO recommended the use of CAD software for TB
screening and triage, and the minimum required values of sensitivity and specificity were
defined as 0.90 and 0.70, respectively [13,14].
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Table 1. Characteristics of the included Software (information provided from the online database “AI for radiology”).

Software Name Company Disease Targeted Population Processing Time

ClearRead XRay Riverain Technologies Lung cancer Adult, not pediatric 1–10 min

ChestLink Oxipit 75 different pathologies Older than 18 years old 10–60 s

CAD4TB Thirona Tuberculosis All chest X-rays 3–10 s

AI-Rad Companion Chest X-ray Siemens Healthineers Pulmonary lesions, pleural effusion,
pneumothorax, consolidation, atelectasis All upright chest X-rays 1–10 min

SenseCare-Chest DR Pro SenseTime Pneumonia, tuberculosis, pneumothorax,
pleural effusion, cardiomegaly, rib fractures All chest X-rays 3–10 s

Annalise Enterprise CXR annalise.ai 124 findings present in the emergent, urgent, and non-urgent care settings Patients over 16 years of age 3–10 s

Chest | MSK AI Arterys Fracture, dislocation, elbow joint effusion, pleural effusion,
pulmonary nodule, pulmonary opacity, pneumothorax

Emergency department
population Not available

Chest X-ray Classifier Quibim 14 different findings All chest X-rays 10–60 s

qXR Qure.ai Tuberculosis, COVID-19, signs seen in Lung Parenchyma,
Pleura, Mediastinum, Cardiac and bones All chest X-rays 10–60 s

TIRESYA Digitec Unspecified Unspecified Not available

Milvue Suite Milvue Bone fracture, pleural effusion, lung opacity,
elbow joint effusion, lung nodule, pneumothorax, dislocation All chest X-rays 10–60 s

CheXVision XVision 17 pathologies All chest X-rays of patients
above 16 years old 3–10 s

CAD4COVID-XRay Thirona COVID-19 All chest X-rays 3–10 s

Chest Solution Nanox.AI Pneumothorax, pleural effusion Unspecified Not available

VUNO Med®-Chest X-ray™ VUNO Nodule/Mass, Consolidation, Interstitial Opacity,
Pneumothorax, Pleural Effusion All chest X-rays <3 s

InferRead DR Tuberculosis Infervision Tuberculosis Unspecified Not available

InferRead DR Chest Infervision Lung cancer, pneumothorax, fracture, tuberculosis, lung infection, aortic
calcification, cord imaging, heart shadow enlargement, pleural effusion. Any Not available
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Table 1. Cont.

Software Name Company Disease Targeted Population Processing Time

X1 Visionairy Health 12 different findings Unspecified Not available

Auto Lung Nodule Detection Samsung Electronics Lung cancer Unspecified <3 s

Pneumothorax (Ptx) Aidoc Pneumothorax Radiograph 1–10 min

Red Dot Behold.ai Pneumothorax Unspecified Not available

JLD-02K JLK Inc. Lung cancer All Chest X-rays 3–10 s

Lunit INSIGHT CXR Lunit 11 different findings Patients aged 14 years or older 3–10 s

Critical Care Suite GE Healthcare Pneumothorax Adult-size patients. Suspected
of pneumothorax or intubated. <3 s

ChestView GLEAMER Pneumothorax, pleural effusion,
alveolar syndrome, nodule, mediastinal mass All Chest X-rays 10–60 s

ChestEye Quality Oxipit 75 different pathologies Patients over 18 years old 3–10 s
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However, the definition of software diagnostic accuracy is not that straightforward, as
the performance may vary significantly according to several technical and clinical variables,
see Figure 1. Furthermore, it is complicated to perform a direct comparison between the
available software packages, or even between different versions (vrs) of the same software
package. Only the newer vrs of the software CAD4TB (vrs 6 and vrs 7) and qXR (vrs 2 and
vrs 3) utilize deep learning (DL) techniques and reach the required minimum values of
sensitivity and specificity fixed by the WHO [13,14].
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Figure 1. Factors determining software diagnostic accuracy.

CAD software also differs in image processing and output. CAD4TB produces an
abnormality heatmap indicating suspicious regions and provides a likelihood score ranging
from 0 (no TB) to 100 (TB positive). Conversely, qXR compares the computed abnormality
score with a prespecified threshold and provides a binary classification (positive or negative
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for pulmonary TB) [12,14]. This threshold must be tailored to achieve the optimal sensitivity
and specificity according to the characteristics of the population studied, as suggested by
Fehr et al., who achieved the best possible sensitivity for detecting pulmonary TB (84.8%),
with a decisional threshold of 25 [15]. The proper tailoring of this threshold requires the
consideration of clinical variables such as the TB burden in the studied population, diabetes,
and HIV status [14].

According to the TB burden, we can differentiate high-burden and low-resource regions
and low-burden high-resource regions. In high-burden low-resource regions (Pakistan,
Nigeria, Brazil, etc.), the TB prevalence is almost 0.5%, but may reach as high as 2% when
considering patients living with diabetes mellitus [16]. Mass screening surveys have been
conducted in Karachi, Pakistan and Nigeria [17,18]. Due to the shortage of experienced
CXR readers, in these regions, CAD could be used as the sole screening reader and may
outperform the diagnostic accuracy of human reading [15]. In a resource-constrained setting,
Philipsen et al. prospectively compared sputum testing alone and with the integration of
CAD software for the selection of patients for sputum testing in terms of accuracy and cost.
The results showed that the use of CAD software as a triage tool significantly reduced the
cost, both per screened subject and per notified TB case, with only a few TB cases being
missed [12,19]. Conversely, in low-burden high-resource countries, CAD software could be
used to support triage or screening programs. Melendez et al. implemented CAD software
in a screening program in London (UK) for a high-risk population including homeless
people, prisoners and the drug and alcohol addicted [20].

Qin et al. compared the diagnostic accuracy of three DL algorithms (CAD4TB, Lunit
and qXR), and concluded that the area under the curve (AUC) values for the three software
packages were similar (0.92, 0.94, and 0.94, respectively), but most importantly, they pointed
out the absence of a universal cut-off and the importance of identifying the proper threshold
according to the TB prevalence in the population to achieve this level of performance [21].

However, even within the same region, there are different population subsets requiring
specific adjustments. For instance, many studies have been conducted on prisoners [22,23].
The most significative study with respect to yield, efficiency and costs of mass screening
algorithms for TB in prison was conducted in Brazil [24]. As a result, the integration
of CAD4TB in this screening did not significantly change the cost per case diagnosed
compared to other screening strategies without AI, and missed a higher number of cases.
The most important drawback in this population subset was the high prevalence of HIV
positivity and coinfection in the screened population [23,25].

Indeed, the detection of TB on CXR in HIV-positive subjects or patients with nontuber-
culous mycobacteria coinfection is quite challenging [19,26]. A strategy for avoiding this
bias could be the stratification of the analysis according to the HIV status [19].

Two additional drawbacks to consider in the included studies are the significant
heterogeneity regarding the gold standard and the methodology of comparison between
algorithms and humans reader performance.

The majority of the included studies lack sputum culture testing for TB as a gold
standard, usually because this test is expensive and requires several weeks to obtain a
conclusive result, with rare exceptions [14,15,21,27]. As an alternative to sputum culture,
the Xpert sputum test is usually adopted as a reference standard [12,26,28].

In regions where radiologists are not widely available for CXR reading, some studies
have compared CAD software performance with the performance of clinical officers [29].
The difference between a clinical officer and an expert reader, such as a radiologist, was
highlighted by Breuninger et al., who conducted a study with an older version of CAD4TB
that outperformed only the clinical officers and not the experienced readers [26]. Moreover,
only newer versions of CAD4TB and qXR achieved performance that was comparable to
that of human radiologists in terms of triage ability [13,30]. A similar heterogeneity was
reported by Qin et al., who assessed five AI algorithms during a screening campaign and
also reviewed the literature related to CAD software for TB.
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3.2. AI-Based Software for Nodule and Lung Cancer Detection

CXR remains, to date, the first line method for the diagnosis of lung nodules. Lung
cancer benefits, in terms of survival, from early detection on CXR, but it has also been
demonstrated that CXR fails to identify lung cancer in 18% of patients and that about 90%
of mistakes in lung cancer diagnosis occur on CXR [31,32].

AI could assist radiologists in lung nodule diagnosis in several ways, such as detection,
flagging of positive cases, and digital bone suppression.

A DL-based automatic detection algorithm has already been shown to be able to
outperform the performance of physicians. However, in clinical practice, AI should be
considered an aid to radiologists, and not an alternative [33].

Indeed, many papers have demonstrated that radiologists’ performance is enhanced
when using AI as a second reader [34,35]. This benefit has been proven for young radiolo-
gists as well as for senior radiologists, thus being independent of reader experience [36].
However, as seen in the previous section on TB, the nature of this benefit may be affected
by several technical and clinical–radiological variables, such as the nodule characteristics
or the adopted ground truth.

AI-based detection performance in terms of accuracy and robustness seems to depend
on the size and conspicuousness of the nodule solid portion. Indeed, inconspicuous nodules
may cause fluctuations in the model output, leading to misclassification of findings [37].

Additionally, the algorithm performance may vary significantly according to the dif-
ferent adopted methods of ground truth. In a recent paper by Kim et al., a DL algorithm
showed an AUC of 0.771 and 0.839 when using CT and radiologist readings as ground truth,
respectively [38].

Liang et al. used the QUIBIM CXR Classifier to detect pulmonary nodules/masses. The
four different algorithms of the software were analyzed and validated, and each one of them
was characterized by different pros, such as higher sensitivity for the nodule probability
algorithm or higher specificity for the heat map algorithm. Thus, to obtain the maximum
benefits and minimize both false positives and false negatives, the radiologist may combine
different algorithm strategies [39]. The increase in sensitivity, specificity and diagnostic
confidence could be even higher for trained radiographers, which is particularly helpful in
countries facing both a shortage of radiologists and high medical imaging demand [40].

Another application of AI exploiting the synergy between AI and radiologists in lung
cancer diagnosis on CXR is the automated flagging of positive cases. For this purpose, Tam
et al. proposed a triage workflow and achieved a significant reduction in missed cancer of
60% by using AI to flag positive case [41].

Moving to post-processing, to overcome the obscuration of lung cancer by overlying
bone structures, digital bone suppression software has been developed, which is able to
produce bone-suppressed images (BSIs). Digital bone suppression does not require special
dual-energy hardware or additional dosage, and it is not affected by motion artifacts [42].

In 2013, Schalekamp et al. showed that BSIs improved radiologists’ detection perfor-
mance for lung nodules compared to CXR alone (AUC = 0.883 vs. 0.855), particularly for
nodules with moderate and subtle conspicuity [43].

However, BSIs have been shown to reduce specificity and lead to an increased overcall
for focal lesions, which may result in unnecessary follow-up or further expansive inves-
tigations in normal patients [44,45]. It can be hypothesized that the lack of experience of
the reader with BSIs may have caused this overcall, and it is likely that more practice will
partially overcome this issue.

Another possible solution is to combine both detection and post-processing strategies
by applying CAD software after digital bone suppression. As reported by Schalekamp et al.,
CAD improved radiologists’ performance and detected 127 of 239 (53%) of the nodules
that were initially missed by the radiologists. However, only 57 (45%) of these detections
were accepted by the observer. According to the authors, the limited ability of the readers
to reliably differentiate true-positive from false-positive CAD marks is currently one of
the most important limits to CAD’s beneficial effect [46]. To optimize CAD’s beneficial



Diagnostics 2023, 13, 2020 8 of 13

effect and address this issue, two alternative methods already implemented with success in
mammograms have been proposed for CXR. First, in the interactive mode, a CAD mark
is shown together with a score of suspicions only if the radiologist clicks on the mark’s
location. Secondly, the observer evaluates its score without viewing the CAD analysis,
then a mathematical combination of the reader and the CAD score is computed. No
improvement was seen with the interactive mode, while the mathematical combination
significantly improved detection performance.

Thus, CAD provides information that might be even more useful when independently
combined with a radiologist’s evaluation, without interfering with the reading process
itself [47]. However, this approach could raise other legal and ethical problems, as the
radiologist would have no way of checking the software output.

3.3. AI-Based Software for Multiclass Findings and other Clinical Scenarios

However highly accurate, the clinical benefit of a software package limited to a single
or a small number of findings is at least questionable. The use of different software packages
for different findings is unrealistic in clinical practice, and software covering the full range
of CXR findings could be more effectively integrated into clinical practice.

Indeed, the majority of available CE-marked software packages for CXR fulfill this
need, and are designed to recognize multiple findings. Multiclass finding detection must
address differences in size and extension, ranging from subtle nodular opacities to ex-
tensive pleural effusion or pneumothorax [48]. Thus, the software may exhibit different
performances for each finding, and the radiologist must be aware of this.

One clinical scenario necessarily requiring multiclass detection is the post-traumatic
CXR performed in the emergency department, where findings vary from subtle ones to
time-critical pathology [49]. In this setting, AI may aid in timely identification and worklist
prioritization. Gipson et al. externally validated the software Annalise.ai for the detection
of traumatic injuries on supine CXR, using CT as ground truth. In this study, the software
outperformed radiologists for detection of pneumothorax and rib fractures, two of the
most common pathologies in thoracic trauma, but was found to be inferior to radiologists
for clavicle, humerus and scapula fractures [50]. However, as already pointed out in the
previous paragraphs, comparing the performance of radiologists and AI is not enough to
objectively investigate the beneficial effect provided by AI on clinical practice. An initial
step was taken by Hwuang et al., who did not limit themselves to comparing the standalone
detection performance of Lunit software and radiology residents in the emergency setting,
but also assessed the effect of AI on residents’ performance. The results showed that when
radiology residents used Lunit, the sensitivity improved from 65.6% to 73.4%, but, not
surprisingly, a decrease in specificity was observed (98.1% vs. 94.3%) [51].

To evaluate the real-world usefulness of AI as a diagnostic assistance device for radiol-
ogists, Jones et al. set up a prospective multicenter study involving a group of radiologists
using Annalise.ai in their daily reporting workflow [52]. Out of 2927 patients, 92 (3.1%) had
significant reported changes, 43 (1.4%) had changed patient management, and 29 (1.0%) had
further imaging recommendations. Moreover, radiologist attitudes towards the software
were questioned, and almost all of them (9 out of 10) felt an improvement in their accuracy
and a more positive attitude at the end of the study.

Another relevant clinical scenario to address is pediatric radiology. As CT cannot be
freely performed in children, CXR plays an even more critical role in pediatric radiology.

Shin et al. evaluated whether Lunit, an AI-based detection software developed and
approved for adult CXR, could be used for pediatric CXR as well. The software assessed
the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion,
pneumothorax and pneumoperitoneum. Diagnostic accuracies up to 96.9% were found
when cardiomegaly and children 2 years old or younger were excluded [53]. To detect car-
diomegaly, other strategies may be explored. Bercean et al. trained two U-Net segmentation
algorithms to contour the heart and the lungs and automatically compute the cardiothoracic
ratio. This kind of approach reduced the reading time from 22.54 s to 5.14 s, and the F1 score
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for cardiomegaly detection was 0.85. However, AI may not necessarily reduce reading time,
as showed by Kim et al., who reported a slight but significant increase in reading time from
14 s to 19 s when using AI [54].

Finally, COVID-19 pneumonia is a clinical scenario deserving of special mention,
considering the ways in which it boosted radiology research, and particularly the AI field,
and despite the SARS-CoV-2 pandemic is relatively recent, two different CE-certified deep-
learning-based software packages are already available, qXR and CAD4COVID [55,56].
Mushtaq et al. investigated the prognostic utility of qXR on initial CXR. In this study, the
software output was personalized to only report a score reflecting the percentage of pixels
involved by opacity or consolidation, and a score ≥30 was shown to be an independent
predictor for both mortality and severity of COVID-19 pneumonia (p < 0.001) [57]. The
second software package is CAD4COVID, redesignated from CAD4TB vrs 6. CAD4COVID
was efficiently integrated by Tovar et al. into a mobile TBC screening unit in Lima, Peru.
Integrated TB and COVID-19 screening and testing services may ensure that TB case
detection is maintained and not de-prioritized by health systems. The software produced a
continuous abnormality score from 0 to 100, and all patients with a score >50 were tested for
SARS-CoV-2 antibodies and by polymerase chain reaction (PCR) test, leading to a diagnosis
of SARS-CoV-2 antibodies per three people screened and PCR-confirmed SARS-CoV-2
infection per eight people screened [58].

The radiologists’ interpretation of CXR, regardless of the clinical scenario, may be
hindered by bone overlay. Thus, as well as for lung nodules, digital bone suppression may
be helpful. BSIs have been demonstrated to be useful for improving radiologists’ detection
performance for invasive pulmonary aspergillosis, single or multiple focal opacities, or
signs of cardiac congestion [44,59]. These studies demonstrated that, without any significant
negative effect on the interpretation of diffuse lung disease, the detection of focal chest
abnormalities in CXRs, beyond just lung nodules, can be improved when their evaluation
is aided by digital bone suppression.

3.4. Opportunities and Challenges

As highlighted in the previous paragraphs, the number of publications in the field of
AI and of the available commercial applications for CXR interpretation is steadily increasing.
Radiologists will definitively have to deal with these solutions, and therefore must be aware
of both the opportunities they offer as well as their challenges.

Artificial intelligence could be the answer to the problem of an ever-increasing popu-
lation faced by healthcare systems and the rising number of examinations referred to the
radiology departments [60].

These software packages may help in finding and detecting various types of CXR
abnormalities, saving work for the radiologists and time that can be dedicated to harder
issues. This is possible today thanks to the availability of software covering the full range
of CXR findings, from fractures to pleural effusions. In those regions in which expert
radiologists may be lacking, such as developing countries, these software packages may
really be game changers.

The integration of AI as a second reader is a topic of extreme interest and an emergent
subject of study. AI has been demonstrated able to significantly increase radiologists’
sensitivity; however, it is also proven to decrease specificity, especially in unexperienced
radiologists. This dual effect makes necessary to emphasize that the responsibility of final
diagnosis still lies with the radiologists, not AI systems, [61] and that radiologists must be
aware of when to trust the AI output.

An additional point of complexity concerns the previously mentioned AI-based soft-
ware for multiclass findings. The software may present different levels of sensitivity and
specificity for each of the recognized findings, and the radiologist must be aware of this in
order to trust the different outputs with more or less confidence.

Some issues still undermine the building of a trust relationship between radiologists
and AI, significantly slowing down its integration into clinical practice. One of these issues
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is the lack of explainability of the software and the lack of transparency of the available
literature, particularly regarding algorithm and dataset characteristics and limitations [62].

However, promising progress has been achieved in recent years, such as the increasing
number of papers reporting objective comparisons between different AI software packages
performed with independent datasets.

Another relevant issue is the lack of large-scale multicentric datasets, which are pivotal
for training the algorithms, and this is particularly true for pediatric CXR. Pediatric imaging
requires expertise and also dedicated or adaptable equipment [63]. Similarly, AI-based
software requires specific training to achieve acceptable performance for pediatric CXR
interpretation, and the application of AI in this promising field is currently limited.

4. Conclusions

CXR is still the most important imaging technique for chest imaging, as evidenced
by the number of published studies and software packages that have been developed for
this technique. AI-based software packages that have obtained CE markings have been
created for diverse clinical scenarios, including TB screening and nodule detection. AI was
demonstrated to be able to improve the diagnostic accuracy of CXR in TB screening, with
performance varying according to the software characteristics and the targeted population.
In this setting, to be aware of this dependence is critical to properly tailoring the software
according to the clinical context. AI-based software also affirmed its role as a second
reader when performing nodule detection by CXR. Nodule features and combination BSIs
seem to have more impact on diagnostic performance than the level of experience of the
user. Finally, AI-based software for the detection of multiclass findings was developed to
comprehensively address the complexity and wide range of potential findings.

In conclusion, the primary objective of this software is not to outperform the diagnostic
performance of radiologists, but rather to enhance it. In order to achieve this objective, the
radiologist must be aware not only of the benefits but, more significantly, of the limitations
of this software.
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