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Abstract: Diabetes is a chronic condition caused by an uncontrolled blood sugar levels in the human
body. Its early diagnosis may prevent severe complications such as diabetic foot ulcers (DFUs). A
DFU is a critical condition that can lead to the amputation of a diabetic patient’s lower limb. The
diagnosis of DFU is very complicated for the medical professional as it often goes through several
costly and time-consuming clinical procedures. In the age of data deluge, the application of deep
learning, machine learning, and computer vision techniques have provided various solutions for
assisting clinicians in making more reliable and faster diagnostic decisions. Therefore, the automatic
identification of DFU has recently received more attention from the research community. The
wound characteristics and visual perceptions with respect to computer vision and deep learning,
especially convolutional neural network (CNN) approaches, have provided potential solutions for
DFU diagnosis. These approaches have the potential to be quite helpful in current medical practices.
Therefore, a detailed comprehensive study of such existing approaches was required. The article
aimed to provide researchers with a detailed current status of automatic DFU identification tasks.
Multiple observations have been made from existing works, such as the use of traditional ML and
advanced DL techniques being necessary to help clinicians make faster and more reliable diagnostic
decisions. In traditional ML approaches, image features provide signification information about DFU
wounds and help with accurate identification. However, advanced DL approaches have proven to be
more promising than ML approaches. The CNN-based solutions proposed by various authors have
dominated the problem domain. An interested researcher will successfully be able identify the overall
idea in the DFU identification task, and this article will help them finalize the future research goal.

Keywords: diabetic foot ulcer; convolutional neural network; deep learning; identification

1. Introduction

Diabetes mellitus, often known as diabetes, is a metabolic disorder characterized by
elevated blood glucose levels (hyperglycemia) [1]. Pancreatic β-cells secrete insulin, which
transfers sugar from the blood into the body’s cells, where it is stored or utilized for energy.
However, in an individual with diabetes, the pancreas either cannot produce sufficient
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insulin or the body loses its ability to use the insulin produced [2]. Based on the degree of
hyperglycemia, diabetes can be classified as:

• Type 1 diabetes, which affects 10% of diabetic population, causes the loss of cells,
producing insulin in the pancreas.

• Type 2 diabetes causes blood sugar levels to rise as the body becomes insulin-resistant.
• Gestational diabetes is occurs during pregnancy due the insulin-blocking hormones

produced by the placenta.

In a 2021 study, the International Diabetes Federation stated that diabetes affects
537 million persons between the ages of 20 and 79. This number is estimated to rise to
approximately 783 million by 2045 [3]. However, one in two diabetes cases is undiagnosed,
resulting in 6.7 million deaths. Diabetes is highly likely to cause various life-threatening
conditions in the undiagnosed population [4]. Cardiac diseases, heart attacks, kidney
diseases, retinopathy, neurological complications, foot injuries hearing loss, vision prob-
lems, bacterial and tinea infections, depression, insomnia, and dementia are examples of
consequences. According to the IDF, the major complications related to diabetes are shown
in Figure 1. This work was focused on diabetic foot complications caused by damages to
blood vessels and peripheral nerves.
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Diabetic foot ulcers (DFUs) are a common consequence of poorly treated diabetes that
can harm the feet, right down to the bones. Early indications of diabetic foot ulcers include
unusual swelling, exudate maceration, redness, itching, irritation, and odor [5]. A black
tissue, called eschar, surrounding the ulcer area is the most visible sign of serious DFU [6].
People with type 2 diabetes often deal with this complication, fighting off infections due
to DFU. Diabetic foot problems are a prominent cause of non-traumatic lower extremity
amputations globally. DFUs account for nearly 85% of lower limb amputations [7–9]. Dia-
betic peripheral neuropathy, structural abnormalities of foot deformities, and peripheral
artery occlusive disease are the most frequent risk factors for DFU. Foot ulcers are the most
common reason diabetic people are admitted to hospitals. The comprehensive evaluation
and risk assessment of a diabetic individual’s feet necessitate a multidisciplinary foot
care team [10–14]. Treatment must involve a patient’s medical records, lab test results,
and assessments of their subcutaneous, nervous system, cardiovascular, musculoskeletal,
rheumatological, and vascular states. In current clinical practice, the severity of DFUs are
inspected visually by podiatrists and healthcare professionals using manual measurement
tools, with additional examinations conducted using technology such as X-rays, computed
tomography scans, magnetic resonance imaging, and ultrasound tests [15–18]. The differ-
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ence between a normal foot and one with a DFU in terms of blood circulation is shown in
Figure 2.
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Figure 2. Blood circulation in a healthy foot and a DFU foot [11].

The treatment of DFU is costly [19]. The cost of diagnosis, regular and periodic
check-ups, the continuous use of expensive medications, and proper healthcare, including
the maintenance of personal hygiene to avoid further deterioration of a DFU condition,
leads to a more significant financial burden on the patient [20–22]. Therefore, intelligent
automated telemedicine systems are now the most cost-effective alternative for remote DFU
detection. Current DFU detection works have proposed using computer vision methods
based on fundamental image processing approaches, supervised classical machine learning,
and deep learning algorithms [23–27]. To segment wounds, these methods depend on
the detection of edges and morphological processes and techniques for clustering that
use distinct color spaces. In terms of medical imaging and computer vision, there are
three popular tasks that are addressed by researchers: classification, localization, and
segmentation, as shown in Figure 3.
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The recent works involving DFU classification, localization and segmentation have
encountered major challenges [28–30]. These challenges include the costly and time-
consuming processes of dataset collection and its expert labeling; the differences in the
visual appearances of DFUs due to the lighting conditions in the images and the ethnicities
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of the patients; high inter-class similarities between DFU skin, healthy skin, and various
other skin lesions; and intra-class dissimilarities based on the classifications of DFUs.
Therefore, with all the major therapeutic challenges involved in DFU detection, it is the need
of the hour to study state-of-the-art works and assess their quality and effectiveness [31–33].
Thus, before devising an algorithm and implementing it for common practice, it was best
to review the pre-existing approaches. This paper discusses some of the most recent works
associated with DFU identification, emphasizing their advantages and limitations.

Detailed Comparative Analysis of the Related Works

Liu et al. (2015) [34] proposed an automatic diabetic foot complication detection
mechanism with an infrared and RGB camera setup. A capturing device was used to detect
the presence of DFU conditions and acquire thermal images. An asymmetric analysis, with
segmentation and non-rigid landmarks between the registration of both of individual’s
feet, was conducted to detect DFUs [35]. The asymmetric analysis was performed in three
steps: first, a segmentation approach was used to extract both feet from their background.
Then, registration of both feet was completed with the corresponding areas. Finally, the
temperatures of the associated areas were compared to determine if the difference was
larger than a threshold. A systematic model diagram of the proposed work by Liu et al. is
shown in Figure 4.
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The proposed approach used K-means and expectation-maximization segmentation
techniques. It achieved 97.8% sensitivity and 98.4% specificity scores. Although the
proposed approach achieved significant results, one of its primary limitations was that if
one foot had already been amputated, the approach could not detect a DFU on the other
foot. Further, detection was normally missed if both feet had similar complications.

Dataset: The foot images were captured using a two-stage setup combining a thermal
camera and an RGB camera. The patients were from Hospital Group Twente Almelo,
Netherlands. A total of 76 images of feet of images with the standard setup.

Wang et al. (2016) [36] proposed a two-stage cascaded SVM classifier-based technique
for determining the wound area in a DFU. After super-pixel segmentation, the classifier
was used in two phases with the SLIC algorithm for color extraction and texture descriptors
from the DFU images. In the first phase, K binary SVM classifiers [37] were used on
different subsets of training images to find wrongly classified samples. The second SVM
classifier ran over the incorrectly classified samples by taking as inputs the color and texture
descriptors extracted previously. Figure 5 depicts the flowchart of the approach proposed
by Wang et al. [36].
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The proposed approach was applied to a smartphone platform and the achieved
sensitivity score was 73.3%. However, the proposed system depended on various image-
capturing conditions such as illumination, placement of the foot, and capturing distance.

Dataset: The images were collected from 15 patients at the UMASS medical school
in the United States over two years. There were 100 images of feet captured by an image
capture box that maintained standard illuminations. The images were down-sampled to
560 × 320 for use in the smartphone platform after a Regions of Interest (ROIs) extraction.

Patel et al. (2017) [38] proposed a step-by-step architecture to detect DFUs. The
architecture consisted of pre-processing the images and segmentation and feature extraction,
followed by texture detection and classification of the processed images. The input RGB
images were converted into HSI color spaces in preprocessing, and the noise was removed
using diffusion. Next, image segmentation was performed using multiple algorithms,
such as differential evolution, edge detection with a Gabor filter, and region growing, to
separate the ROIs from the background. The results of the initial segmentation and ROIs
extraction are shown in Figure 6. Next, the texture and color features were extracted,
and finally, classification was completed with the extracted features using the K-means
algorithm [39]. The K-means algorithm categorized the input images into three clusters:
granulation, slough, and necrotic tissue. However, the work did not include the dataset
description. The classification results invalidation in the evaluation metrics was another
work limitation.

Adam et al. (2018) [40] used plantar foot thermograms from the Diabetes and
Metabolism Centre (DMC), Ngee Ann Polytechnic, and Singapore General Hospital (SGH)
and designed a computer-aided system to identify the DFUs. At first, the foot images were
decomposed with the help of higher order spectra (HOS) and discrete wavelet transform
(DWT). Next, several features (e.g., GLCM, Hu moments, LBP, LTE, and entropies) were
extracted and fed to the radial basis function kernel (the SVM classifier) to perform clas-
sification [41]. The intermediate results after segmentation are shown in Figure 7. The
proposed method, shown in Figure 8, attained an accuracy rating of 89.39% while maintain-
ing a good sensitivity score. However, using 33 samples from each normal and abnormal
class made the system less reliable for use in real-life scenarios.
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Dataset: The thermograms were collected from two separate sources. There were
33 healthy subjects’ images obtained from Ngee Ann Polytechnic and Singapore General
Hospital (SGH). The same number (33) of non-neuropathic diabetic patients’ foot images
were collected from the Diabetes and Metabolism Centre (DMC) under standard conditions.
There were 15 females in both the normal and abnormal groups, and there 18 males in each
group that were considered for this study. The average age was 51.94 ± 11.25 years for the
normal population, whereas the average age for the diabetes group was 56.18 ± 14.71.

Vardasca et al. (2018) [42] proposed an approach that used infrared thermal images
and a KNN classifier to perform DFU identification. The images were acquired from the
Centro Hospital do Porto, EPE, in standard temperature and humidity conditions. At first,
the ROIs were extracted from the input thermal images. The results of the ROI extraction
are shown in Figure 9. Then, the KNN classifier, with a K-value of five, achieved an
accuracy rating of 90.8% when the KNN was implemented from scratch [43]. However, the
authors concluded that using data from only 56 patients made the system less reliable for
practical use in DFU prevention. In addition, the lower score in predicting positive classes
(28%) required further exploration.
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Dataset: The dataset comprised 56 infrared thermal images collected from the Centro
Hospital do Porto, EPE. The samples were collected at room temperature (approximately
25 ◦C) and <50% humidity. An infrared camera (FLIR A325sc with an FPA sensor of
320 × 240) was used to capture the samples.

Goyel et al. (2018) [44] created a new DFU-related dataset for normal vs. abnormal
binary classification. The investigations were carried out to understand the characteristics
of normal and abnormal skin patches from a computer vision perspective. Several current
ML and DL techniques have extracted features from healthy and DFU skin patches. The
researchers also proposed a novel CNN architecture (DFUNet), shown in Figure 10, to
extract features and perform classification. The proposed architecture consisted of 5 × 5,
3 × 3, and 1 × 1 kernels with parallel connections, and the first traditional convolution
layers had kernel sizes of 7 × 7. A detailed experimental study suggested that the proposed
DFUNet outperformed the traditional ML-based feature extraction methods and standard
CNNs architectures such as LeNet [45], AlexNet [46], and GoogLeNet [47] in normal vs.
abnormal classification. The proposed DFUNet achieved an accuracy rating, F1 score, and
sensitivity rating of 0.925 (±0.029), 0.939 (±0.024), and 0.934 (±0.033), respectively.

Dataset: The samples were collected from the Lachainchar Teaching Hospital (LTH),
United Kingdom, and they consisted of 397 full-foot images (292 abnormal and 105 normal).
They were obtained with the help of image-capturing devices such as a Nikon D3300. The
images were captured in a parallel orientation, maintaining a 30–40 cm distance from the
wound area. As a result, the medical experts delineated the Regions of Interest (ROIs), and
1679 skin patches (641 and 1038 abnormal) were produced.

Alzubaidi et al. (2018) [48] introduced a new DFU dataset and proposed a novel CNN
architecture for classification. The proposed CNN architecture was named DFU_QUTNet.
The proposed architecture’s primary aim was to increase the network width while main-
taining a lower depth. KNN and SVM classifiers performed the classifications using the
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features retrieved by the proposed DFU_QUTNet. Figure 11 depicts the proposed system’s
working pipeline.
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Further, the proposed model’s results were compared with those of standard CNN
architectures (i.e., GoogleNet, VGG16 [49], and AlexNet). The SVM-based classification
with features extracted by the DFU_QUTNet architecture obtained the highest average F1
score of the tested architectures (94.5%). Although the proposed model was proven to be
significant in this problem domain, it will be interesting to see how it performs with a fully
connected network at the end.

The dataset consisted of healthy and abnormal DFU images acquired from Nasiriyah
Hospital’s diabetic center in Iraq. The images were captured using mobile devices in
standard conditions, and the images were preprocessed to make them homogeneous.
After expert labeling and ROIs extraction, the final dataset consisted of 1609 skin patches
(542 normal and 1067 abnormal). Samples from the dataset are depicted in Figure 12.

To detect DFUs, Bill Cassidy et al. [50] used Faster-RCNN [51], Inception-v2-Resnet101,
FRCNN Inception-v2-ResNet101, YOLOv5, and EfficientDet. They discovered that these
networks were significant in terms of producing promising findings. Furthermore, the
analysis of the results suggested that among all the considered networks, EfficientDet
achieved the highest mAP score (0.6929). Some of the detection results by EfficientDet are
shown in Figure 13.
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Dataset: The DFUC2020 dataset consisted of 4000 natural RGB images (2000 for
training and 2000 for testing). An additional 200 images were provided as the validation set.
The samples were gathered over a period of several years by Lancashire Teaching Hospitals
(LTH) in the UK. The digital cameras captured the samples at 30–40 cm from the object.
The initial samples were heterogeneous. Therefore, the samples are resized to 640 ± 480.

Goyel et al. (2020) [52] introduced a new dataset with ground truth labels for ischemia
and infection recognition. They used multiple traditional ML-based feature extraction
techniques and CNN architectures to recognize ischemia and infection as two individual
binary classification problems. The diagrammatic representation of the proposed approach
is depicted in Figure 14. The ensemble of the CNN-based approach achieved the highest-
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scoring results for both tasks. However, for infection vs. non-infection, the results were not
as promising compared to the ischemia vs. non-ischemia classification results. The highest
average accuracy rating and AUC score for infection recognition achieved by the ensemble
CNN approach were 73.70% and 73.1%, respectively. Using segmentation subtasks was a
great help for achieving better classification results.
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Dataset: The dataset contained two sub-directories of natural RGB images obtained
from LTH, UK: one for recognizing ischemia and the other for recognizing infection. Initially,
the ischemia dataset included 1459 full-foot pictures (210 with ischemia and 1249 without).
Then, 1666 patches were extracted while keeping the ROIs in mind. Finally, natural
augmentation was performed, and the dataset builder created a sum of 9870 augmented
image patches with a uniformly distributed classes of 4935 (ischemia (1)/non-ischemia
(0)). Similarly, the initial number of full-foot pictures in the infection dataset was 1459
(628 infections and 831 non-infections) and 1666 patches were created. Figure 15 depicts
examples of the augmented images. The final infection dataset included 4890 augmented
patches, with 2945 images included individually for the infection (class ‘1’) and non-
infection (class ‘0’) classes.
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Cruz-Vega et al. (2020) [53] proposed a model to perform multiclass DFU classification
using thermograms. There were five different classes, as shown in Figure 16. The experi-
ments were conducted in multiple setups. Results were achieved using traditional SVM
and ANN classifiers and pre-trained GoogLeNet and AlexNet. However, the classification
results could have been more satisfactory.
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Therefore, a new CNN architecture was proposed, and it consisted of multiple convo-
lution layers with kernel sizes of 7 × 7 and 3 × 3. The proposed shallow network, DFTNet,
had significantly improved DFU classification, with an average F1 score of 0.9457. The
layer-wise architecture of the proposed DFTNet is shown in Table 1. However, using fuzzy
entropy measures and differential evolution optimization in segmentation slowed the
model down. In addition, the use of fewer thermogram (110 samples) examples demands
further exploration for designing such an approach.

Table 1. The architecture of DFTNet [53].

Layer No. Layer Type Filter Size Stride No. of Filters FC Units

1 Conv. 7 × 7 1 × 1 32
2 Max-Pool 3 × 3 2 × 2 -
3 Conv. 1 × 1 1 × 1 64
4 Conv. 3 × 3 1 × 1 64
5 Max-Pool 3 × 3 2 × 2 -
6 Conv. 3 × 3 1 × 1 32
7 Max-Pool 2 × 2 2 × 2 -
8 Conv. 3 × 3 1 × 1 32
9 FC (Fully conn) - - - Class Nos.

Dataset: The dataset consisted of 167 plantar thermograms, out of which 122 were
collected from diabetic patients and the rest (45) were collected from a non-diabetic pop-
ulation. The samples were acquired over a period of three years from multiple medical
facilities, hospitals, and institutions in Puebla, Mexico.

Alzubaidi et al. (2021) [54] proposed hybrid CNNs combining traditional and multi-
branch parallel convolutional layers. Multiple versions of the proposed network have been
evaluated with different depths in a similar setting. In addition, the convolutional layers
in parallel connection had different-sized kernels, which enabled better feature extraction.
The general structure of the proposed approach with four branches is shown in Figure 17.
The proposed hybrid CNN architecture achieved 95.8% average F1 scores. Although the
proposed hybrid CNN architecture achieved promising results, it will be interesting to see
how fine-tuning the network parameters can contribute to improving its performance.
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Dataset: The dataset contained 754 foot images from Nasiriyah Hospital’s diabetic cen-
ter in Iraq. The samples were rescaled to 224 × 224 for experimental purposes. The images
were split into two categories: healthy or normal skin vs. unhealthy or abnormal skin.

In the MICCAI DFUC2021 challenge [55], a multiclass classification problem was
introduced with image samples from the following classes: none, infection, ischemia, and
both. The best scores were obtained by BiT-ResNeXt50 and EfficientNet-B3, which were
trained on multiple data folds. The highest average AUC achieved by the proposed model
was 88.55%. However, its low scores in other evaluation metrics, such as F1 score (62.16%)
and recall (65.22%), demands further exploration and the design of more sophisticated
CNNs to perform multiclass classification in DFU research.

Dataset: The DFUC2021 dataset consisted of natural image (RGB) samples from four
categories: 1703 images of infections, 152 images of ischemia, 372 samples with both
ischemia and infection conditions, and 1703 controlled images. The dataset also consisted
of 1337 unlabeled DFU foot skin images. The samples were collected from LTH, UK in
standard conditions. Two medical professionals completed the ground truth labeling of
the images. Additionally, data augmentation was performed to enhance the number of
samples in the dataset. The final volume of the dataset became 15,683 (11,689 labeled and
3994 unlabeled) DFU patches.

The comparisons of the proposed approaches for DFU identification will provide a
clearer picture to readers. Comparisons could be made in terms of the proposed methodolo-
gies. We divided the approaches into conventional machine learning-based and advanced
deep learning approaches. We observed, as shown in Table 2, that until 2018, traditional
approaches for DFU identification were more popular. However, in 2018, many advanced
deep-learning approaches were proposed. In most traditional ML approaches, specific
image modalities are used, such as thermal images. These approaches are similar in that
they extract image features and use them in ML classifiers to make decisions. Multiple
image processing features, such as GLCM, Hu moments, LBP, LTE, and entropies, are used
to acquire knowledge from image data. At the same time, segmentation techniques have
proven to be very helpful to traditional ML approaches for conducting DFU identification.
However, in advanced DL approaches, the requirements of expensive image acquisition
techniques are reduced. The evolution of DL learning techniques, especially CNNs, to
handle natural image classification has proven to be significant. In most approaches where
CNNs are used to identify DFUs, authors have used standard CNN architectures or their
own proposed CNNs. However, one interesting point is that standard CNNs, such as
Residual Network, Inception Network, etc., have inspired the proposed CNN approaches.



Diagnostics 2023, 13, 1998 13 of 17

Table 2. Summary table of DFU identification.

Year Approach Advantages Research Scopes

2015 [34]

Asymmetric analysis of feet from thermal
images with the help of K-means and

expectation-maximization
segmentation approach

The proposed approach could achieve
promising sensitivity and specificity in

diabetic foot complication detection

Costly setup and experience required to
operate; in addition, it missed identification
on alternate feet if one foot had already been

amputated or if both feet had
similar complications

2016 [36]
Cascaded two-stage SVM classifiers with

SLIC based a super-pixel
segmentation approach

The approach was applied to smartphone
platforms to detect DFU wound areas in

an offline mode

The detection accuracy depended on the
image-capturing conditions such that the
illumination, capturing distance, and foot

position had to be consistent

2017 [38]

The use of preprocessing, multiple
segmentation algorithms, texture and

color feature extraction, and
K-means clustering

Such a classification approach to
categorize the DFU images into different
severity classes can provide great help to

involved clinicians, helping to build a
better treatment strategy for patients

The details of the dataset used were not
included in the published work; in addition,

the classification results invalidation in
terms of the evaluation metrics was another

limitation of the work

2018 [40]
Multiple image processing features

(GLCM, Hu moments, LBP and LTE, and
entropies) with an SVM classifier

The use of multiple feature descriptors
helped in looking at the input images in

various scales

Although the proposed approach achieved
promising results, the use of 66 samples

made the system less reliable for
real-life scenarios

2018 [42]

Multiple thermal parameters such as the
mean, median, and standard deviation

temperatures of the ROIs with
KNN classifiers

Analysis with multiple K-values
provided the proposed system with

significant importance

The problem could not be considered as a
binary classification; therefore, the use of

other classifiers such as SVM or ANN was
not possible

2018 [44]
A new DFU dataset was created and a
new CNN architecture (DFUNet) was

proposed with parallel convolution layers

Multiple ML-based features were
extracted, and a detailed results analysis

was provided for the standard CNNs
(e.g., LeNet, AlexNet, GoogLeNet)

The proposed DFUNet could be trained on
various optimizer settings; additional

intermediate transition layers in the DFUNet
could improve the classification results

2019 [48]

A novel CNN architecture
(DFU_QUTNet) was proposed to extract
the bottleneck features, and the extracted

features were fed to KNN and SVM
classifiers to perform classification

The proposed width CNN architecture
could extract abstract features by

maintaining less network depth; as a
result, the network’s training time

became shorter

The SVM classifier outperformed the KNN;
a completely linked network at the end of
the DFU_QUTNet, on the other hand, may

improve the results

2020 [50]
Inception-v2-Resnet101, FRCNN

Inception-v2-ResNet101, YOLOv5, and
EfficientDet were used to detect DFUs

The analysis of results from various
standard architectures created a new
benchmark result in DFU detection

A new CNN architecture was proposed to
perform DFU identification

2020 [52]

Introduced new datasets for ischemia
and infection identification; an ensemble

of standard CNN architectures
(Inception-V3, ResNet50, and

InceptionResNetV2) with an SVM
classifier was proposed

The proposed super-pixel color
descriptor for feature extraction and the
feature ensemble of multiple standard

CNN architectures helped with
extracting significant feature abstraction

The proposed ensemble approach
performed well for ischemia identification;

however, the approach performed poorly at
a comparatively harder infection

identification task

2020 [53]
A shallow CNN architecture (DFTNet)
with multiple convolution layers with

kernel sizes of 7 ×7 and 3 ×3

The proposed architecture was very
simple and shallow but outperformed the

standard CNN pre-trained models
GoogLeNet and AlexNet

Fuzzy entropy measures and differential
evolution optimization in segmentation

made the model slow

2021 [54]
A hybrid CNN combining traditional and

multi-branch parallel
convolutional layers

The convolutional layers in parallel
connection had different-sized kernels,

which helped with better
feature extraction

Parameter fine-tuning of the proposed
hybrid CNN could be completed to improve

the results

2021 [55]

In the DFUC2021 challenge, multiple
approaches were introduced to set up
benchmark results on the multiclass
classification problem of DFUs; the
predefined classes were ischemia,

infection, both, and none

The best scores were obtained by
BiT-ResNeXt50 (Big Image Transfer) and
EfficientNet-B3, which were trained on

multiple data folds

The benchmark results set by the DFUC2021
challenge demands further exploration of

DL-based architecture to improve
classification performance

Therefore, further research scope has been created for the exploration of the design and
development of a more sophisticated CNN approach to improving these results. However,
in medical imaging, various attempts have been made to blend handmade and CNN-based
features [50,56–59] in other illness detection. These visual qualities aid in detecting color
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and texture cues when utilizing various CV, ML, and DL algorithms for automatic DFU
assessment. A comparison of the above-discussed approaches is provided in Table 2.

2. Conclusions and Research Direction

The objective of the article was to provide readers with a clear idea of the current work
status of automatic DFU identification. The advances in ML and DL approaches have been
proved to be a great help to clinicians for decision-making. The application of engineering
solutions in DFU identification are relatively new compared to other similar problem
domains. Therefore, the most important published works since 2015 are discussed in detail.
Observations have been made that the traditional ML and advanced DL approaches are
used to solve the problem. However, advanced DL approaches, especially CNNs, have
proven to be significant for achieving promising results. Therefore, the major findings from
work were: firstly, it introduced the problem to readers so that they can realize the necessity
of involving advanced engineering solutions. Secondly, until now, detailed work has been
performed to address the challenges and required tools and materials for approaching
the problems in DFU identification. We have included details about the approaches and
materials. Thirdly, discussions about the advantages of each existing approach and its
limitations are reported. This will help readers to find directions for solving such problems.

Further, a comprehensive study of the methods used for DFU detection and the
performance metrics displayed by these frameworks in recent works provided evidence
for its future scope and challenges. Because of the constant upsurge in the number of
diabetes patients and, consequently, the number of cases of DFUs, the need for expert
podiatrists and health professionals is rising exponentially. Furthermore, the costly and
lengthy procedures for DFU detection and treatment makes it even more challenging to
control the cases of DFU. Hence, there is a need to develop an automated system based on
computer vision techniques to create a cost-effective, reliable, and user-friendly healthcare
solution for identifying diabetic foot ulcers. Nevertheless, the currently available works by
researchers performed quite well in identifying DFU skin, though certain loopholes exist in
most of these frameworks.

The frameworks discussed in this paper form the future targets that can be addressed
by researchers as follows:

(a) An automatic annotator is introduced to make the expert labeling process less challenging.
(b) The performance of these architectures must be further improved to increase their relia-

bility. Once complete, they can be implemented for the detection of other skin lesions.
(c) Implementation of these architectures on mobile devices such as smartphones should be

made easier and with improved inference speed, which will increasing their scalability.
(d) Diabetic foot care systems that can operate remotely outside hospitals should be

established. In addition, diabetic foot monitoring systems could be introduced in
home settings to keep track of a patient’s exposure to the risk of amputation.

(e) These deep learning architectures can be used to analyze and classify the different
tissues within an ulcer bed to further develop precautionary recommendations for
detecting early key pathogenic abnormalities in diabetic feet.

(f) The development of DL-based pre-processing techniques for the separation of image
features such as skin color, wrinkles, moles, and skin deformities from the actual DFU
features will allow for better segmentation.

(g) Researchers can conduct error analyses on the widely varied DFU image datasets for
different lighting conditions to studying the effects of light on DFU detection by these
architectures and minimize errors. They can also analyze and compare the impacts of
the capturing devices and make detection more robust.

These state-of-the-art architectures can transform outdated clinical approaches to DFU
diagnosis into highly advanced, remote, cost-effective, and user-friendly telemedicine
software that can be used globally for detecting DFUs in diabetic patients. This can save
significant time while removing the dangers of inaccurate diagnosis and delayed treatment.
In addition, the increased workloads of expert medical practitioners due to the shortage
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of diabetic foot experts and podiatrists can be mitigated with such an automated solution.
Further, designing automatic DFU identification approaches for other subtasks such as
analysis and identifying biomarkers and how they contribute to DFU identification can be
related research domains that researchers can work [60,61].
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