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Abstract: Introduction: Klebsiella pneumoniae is a major pathogen implicated in healthcare-associated
infections. Extended-spectrum β-lactamase (ESBL) and carbapenemase-producing K. pneumoniae
isolates are a public health concern. This study investigated the existence of some ESBL and car-
bapenemase genes among clinical isolates of K. pneumoniae in Southwest Nigeria and additionally de-
termined their circulating clones. Materials and Methods: Various clinical samples from 420 patients
from seven tertiary hospitals within Southwestern Nigeria were processed between February 2018
and July 2019. These samples were cultured on blood agar and MacConkey agar, and the isolated
bacteria were identified by Microbact GNB 12E. All K. pneumoniae were confirmed by polymerase
chain reaction (PCR) using the 16s rRNA gene. Antibiotic susceptibility testing (AST) was done on
these isolates, and the PCR was used to evaluate the common ESBL-encoding genes and carbapenem
resistance genes. Genotyping was performed using multi-locus sequencing typing (MLST). Results:
The overall prevalence of K. pneumoniae in Southwestern Nigeria was 30.5%. The AST revealed high
resistance rates to tetracyclines (67.2%), oxacillin (61.7%), ampicillin (60.2%), ciprofloxacin (58.6%),
chloramphenicol (56.3%), and lowest resistance to meropenem (43.0%). All isolates were susceptible
to polymyxin B. The most prevalent ESBL gene was the TEM gene (47.7%), followed by CTX-M
(43.8%), SHV (39.8%), OXA (27.3%), CTX-M-15 (19.5%), CTX-M-2 (11.1%), and CTX-M-9 (10.9%).
Among the carbapenemase genes studied, the VIM gene (43.0%) was most detected, followed by
OXA-48 (28.9%), IMP (22.7%), NDM (17.2%), KPC (13.3%), CMY (11.7%), and FOX (9.4%). GIM and
SPM genes were not detected. MLST identified six different sequence types (STs) in this study. The
most dominant ST was ST307 (50%, 5/10), while ST258, ST11, ST147, ST15, and ST321 had (10%, 1/10)
each. Conclusion: High antimicrobial resistance in K. pneumoniae is a clear and present danger for
managing infections in Nigeria. Additionally, the dominance of a successful international ST307 clone
highlights the importance of ensuring that genomic surveillance remains a priority in the hospital
environment in Nigeria.

Keywords: Klebsiella pneumoniae; extended spectrum β-lactamase; carbapenemase genes; multi-locus
sequencing typing; polymerase chain reaction

1. Introduction

Klebsiella pneumoniae is one of the most important pathogenic bacteria in healthcare.
It is a gram-negative, bacilli, nonmotile, and causative agent of many infectious diseases,
such as pneumonia, sepsis, burns, wound infections, pyogenic liver abscesses, and urinary
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tract infections [1]. K. pneumoniae affects mainly patients who have predisposing debili-
tating backgrounds [2]. In Nigeria, K. pneumoniae is among the most common etiological
agents of lower respiratory tract infections [3]. This bacterium has been reported to be the
second most common cause of urinary tract infections [2], with an increasing rate of drug
resistance to many commonly used antibiotics [4]. The emergence of carbapenem-resistant
K. pneumoniae (CRKP) strains has become a critical challenge for public health worldwide
due to their capacity to disseminate rapidly in the hospital environment [5]. The rapid
spread of carbapenem-resistant K. pneumoniae (CRKP), listed by the WHO as a critical
priority pathogen, has become a global threat to human health due to high morbidity and
mortality [6].

K. pneumoniae utilizes different resistance mechanisms to counteract the effects of
antibiotics, such as the production of destructive enzymes, target alteration, efflux pumps,
and porin loss [2]. Therefore, hospital-associated infections with multidrug-resistant (MDR)
strains of K. pneumoniae occur with high morbidity and mortality [7]. The emergence
of extended-spectrum beta-lactamases (ESBL)-producing organisms was considered to
be from the dissemination of clones of some epidemic strains along with the horizontal
transmission of resistance gene-carrying plasmids among bacteria [8]. The development
and selection of multiple drug-resistant bacteria, such as ESBL producers, have also been
attributed to the rise in the use of second and third-generation cephalosporins to treat
K. pneumonia infections [9].

Carbapenemases are enzymes that are capable of hydrolyzing the newer carbapenem
antibiotics used in the treatment of MDRbacterial infections [7]. Among these, Klebsiella
pneumoniae carbapenemase (KPC), metallo-β-lactamases (VIM, IMP, NDM), and OXA-48
types of enzymes are the most common. Mobile genetic elements, including plasmids,
transposons, and integrons, are involved in disseminating related encoding genes [10].
ESBL and carbapenemase-producing organisms often acquire resistance to non-β-lactam
antibiotics, including aminoglycosides and fluoroquinolones, resulting in multi-drug
resistant properties.

In Nigeria, the existence of these resistance profiles has been established; however,
little work has been done on the molecular identification and characterization of ESBLs
and carbapenemase genes [11]. A study carried out in two tertiary hospitals in Northwest
Nigeria showed that 58% of their K. pneumoniae and E.coli isolates were ESBL producers,
while resistance to imipenem and meropenem was observed in 36.6% and40.3% of the
isolates, respectively [12].

Factors known to promote the spread of ESBLs and carbapenemase-producing iso-
lates include irrational use of antibiotics both in the hospital and community, suboptimal
infection prevention and control practices, prolonged hospitalization, use of invasive de-
vices (e.g., central venous lines, urinary catheters, and endotracheal tubes), stay in nursing
homes, and presence of immunosuppressive conditions [13].

The main purpose of this study was to evaluate the antimicrobial resistance patterns
and molecular mechanisms of ESBLs and carbapenem resistance among clinical isolates of
K. pneumoniae from hospitalized patients in tertiary care hospitals in Southwestern Nigeria.

2. Materials and Methods
2.1. Study Site and Sample Collection

A total number of 420 clinical specimens that included urine, blood, sputum, wound
swabs, high vaginal swabs (HVS), pus, stool, tracheal aspirate, and semen of patients
that were diagnosed with various diseases were collected from hospitals in six states of
Southwestern Nigeria. These included the Ladoke Akintola University of Technology
Teaching Hospital, Osogbo, Osun State; the Obafemi Awolowo University Teaching Hos-
pitals Complex, Ile—Ife, Osun State; the Lagos State University Teaching Hospital, Lagos
State; the Federal Medical Centre Abeokuta, Ogun State; the University College Hospital,
Ibadan Oyo State; the Federal Medical Centre Ido Ekiti, Ekiti State; and the Federal Medical
Centre Owo, Ondo State between February 2018 and July 2019 and then transported to the
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medical microbiology and parasitology laboratory, the Ladoke Akintola University of Tech-
nology, Ogbomoso for microbiological and molecular analysis. Demographic and clinical
information about the source of each clinical specimen were included in the data collection.

2.2. Isolation and Identification of Bacteria

Samples were cultured by inoculating into the blood and MacConkey agar and incu-
bated at 37 ◦C for 18–24 h. Growth on blood agar and MacConkey (Oxoid Ltd., Basingstoke,
Hampshire, UK) agar was identified by cultural characteristics, morphological appearance,
and biochemical tests and confirmed by Microbact GNB 12E (Oxoid Ltd., Basingstoke,
Hampshire, UK). All K. pneumonia isolates were further confirmed by polymerase chain
reaction (PCR) using the 16s rRNA gene.

2.3. Antibiotic Susceptibility Testing

The antibiotic susceptibility testing was performed by the Kirby—Bauer Disc Diffusion
and broth microdilution methods as modified by the Clinical and Laboratory Standards
Institute [14]. The following antibiotic disks (Oxoid Ltd., Basingstoke, Hampshire, UK)
were used: chloramphenicol (30 µg), ampicillin (10 µg), cefoxitin (30 µg), ceftriaxone (30 µg),
cefuroxime (30 µg), cephalexin (30 µg), cefotaxime (30 µg), ceftazidime (30 µg), levofloxacin
(1 µg), imipenem (10 µg), meropenem (10 µg), and aztreonam (30 µg), tetracycline (30 µg),
gentamicin (30 µg), ciprofloxacin (5 µg), cefepime (30 µg), amikacin (30 µg), ofloxacin
(5 µg), amoxicillin/clavulanic acid (30 µg), oxacillin (5 µg), and polymyxin B (300 units).

All plates were incubated at 37 ◦C for 24 h. The diameters of inhibition zones were
measured to the nearest millimeter using a ruler. Control strain K. pneumoniae ATCC
700603was used in the testing to validate the results of disc diffusion.

2.4. Detection of Antimicrobial Resistance Determinants

DNA molecules were extracted by boiling method [15] and used to prepare the PCR
reaction mixture. All isolates were analyzed for the presence of β-lactamase genes, includ-
ing ESBL genes (blaTEM, blaSHV, blaOXA, blaCTX-M, blaCTX-M-2, blaCTX-M-9, blaCTX-M-15) and
carbapenemases genes (blaFOX, blaCMY, blaKPC, blaIMP, blaVIM, blaGIM, blaSPM, blaNDM-1 and
blaOXA-48) (Table 1). At the completion of the amplification, PCR products were resolved
inl.2% agarose gel stained with 0.5 µL of ethidium bromide. The DNA bands were visual-
ized and photographed using a gel bio-imaging system (UVP Imaging System, Upland, CA,
USA). The type-specific PCR products were recognized clearly by their distinct band sizes.

Table 1. Primers used to amplify genes encoding beta-lactamase in K. pneumoniae.

Primer Sequence 51–31 Annealing Temperature Product Size (bp) Reference

16 s rRNA F
16 s rRNA R

ATTTGAAGAGGTTGCAAACGAT
TTCACTCTGAAGTTTTCTTGTGTTC 57 ◦C 130 [16]

TEM-H F
TEM-H R

CCCCGAAGAACGTTTTC
ATCAGCAATAAACCAGC 52 ◦C 517 [17]

SHV-1 F
SHV-1 R

AGGATTGACTGCCTTTTTG
ATTTGCTGATTTCGCTCG 57 ◦C 393 [17]

OXA F
OXA R

ATATCTCTACTGTTGCATCTCC
AAACCCTTCAAACCATCC 57 ◦C 619 [17]

CTX-M F
CTX-M R

CGATGTGCAGTACCAGTAA
TTAGTGACCAGAACAGCGG 57 ◦C 585 [18]

CTX-M-2 F
CTX-M-2 R

ATGATGACTCAGAGCATTCG
GAAACCGTGGGTTACGATTT 60 ◦C 1400 [19]

CTX-M-9 F
CTX-M-9 R

GTGACAAAGAGAGTGCAACGG
ATGATTCTCGCCGCTGAAGCC 60 ◦C 857 [20]

CTX-M-15 F
CTX-M-15 R

CCATGGTTAAAAAATCACTGCG
TGGGTRAARTARGTSACCAGAAYSAGCGG 60 ◦C 805 [21]
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Table 1. Cont.

Primer Sequence 51–31 Annealing Temperature Product Size (bp) Reference

KPC F
KPC R

CATTCAAGGGCTTTCTTGCTGC
ACGACGGCATAGTCATTTGC 55 ◦C 538 [22]

NDM F
NDM R

CACCTCATGTTTGAATTCGCC
CTCTGTCACATCGAAATCGC 58 ◦C 984 [23]

VIM2004A
VIM2004B

GTTTGGTCGCATATCGCAAC
AATGCGCAGCACCAGGATAG 54 ◦C 390 [24]

IMP F
IMP R

CATGGTTTGGTGGTTCTTGT
ATAATTTGGCGGACTTTGGC 55 ◦C 488 [25]

SPM F
SPM R

CCTACAATCTAACGGCGACC
TCGCCGTGTCCAGGTATAAC 55 ◦C 650 [26]

GIM F
GIM R

AGAACCTTGACCGAACGCAG
ACTCATGACTCCTCACGAGG 55 ◦C 599 [27]

CMY F
CMY R

TGGCCAGAACTGACAGGCAAA
TTTCTCCTGAACGTGGCTGG 47 ◦C 462 [28]

FOXMF
FOXMR

AACATGGGGTATCAGGGAGATG
CAAAGCGCGTAACCGGATTGG 54 ◦C 190 [29]

OXA 48F
OXA 48R

TTGGTGGCATCGATTATCGG
GAGCACTTCTTTTGTGATGGC 55 ◦C 743 [30]

Source: Inqaba Biotec, Pretoria, South Africa.

2.5. Genetic Diversity Assessment by Multi-locus Sequence Typing (MLST)

Ten isolates were randomly selected for multi-locus sequence typing (MLST). Primers,
PCR reaction conditions, and detailed methodology were in accordance with those pre-
viously described by [31]. Determination of allele profiles and sequence types (STs) was
conducted by comparing the obtained sequences to the documented data at Klebsiella Pas-
teur MLST database (https://bigsdb.web.pasteur.fr/Klebsiella/Klebsiella.html, (accessed
on 25 October 2022). Table 2 shows the PCR Primers nucleotides, annealing temperatures,
and product sizes.

Table 2. Primer sequences, annealing temperatures, and PCR product sizes for MLST.

Primer Sequence 51–31 Annealing Temperature Product Size (bp)

rpoBF
rpoBR

GGCGAAATGGCWGAGAACCA
GAGTCTTCGAAGTTGTAACC 50 ◦C 501

gapA F
gapA R

TGAAATATGACTCCACTCACGG
CTTCAGAAGCGGCTTTGATGGCTT 60 ◦C 450

mdh F
mdh R

CCCAACTCGCTTCAGGTTCAG
CCGTTTTTCCCCAGCAGCAG 50 ◦C 477

pgi F
pgi R

GAGAAAAACCTGCCTGTACTGCTGGC
CGCGCCACGCTTTATAGCGGTTAAT 50 ◦C 432

phoE F
phoE R

ACCTACCGCAACACCGACTTCTTCGG
TGATCAGAACTGGTAGGTGAT 50 ◦C 420

infB F
infB R

CTCGCTGCTGGACTATATTCG
CGCTTTCAGCTCAAGAACTTC 50 ◦C 318

tonB F
tonB R

CTTTATACCTCGGTACATCAGGTT
ATTCGCCGGCTGRGCRGAGAG 45 ◦C 414

2.6. Statistical Analysis

Statistical analysis was performed using the Statistical Package for Social Sciences
software (SPSS version 24), and statistical significance was set at p < 0.05. Data were
presented as frequencies and percentages.

https://bigsdb.web.pasteur.fr/Klebsiella/Klebsiella.html
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3. Results
3.1. Distribution of Socio-Demographic Data of Selected Variables and Number of Klebsiella
pneumoniae Positive Isolates

Out of the 420 samples collected, 128 (30.5%) were positive for K. pneumoniae. The over-
all prevalence of K. pneumoniae in Southwestern Nigeria was 30.5%. Of the K. pneumoniae-
positive samples, Lagos state had the highest prevalence of K.pneumoniae, 32/70 (45.7%),
followed by Oyo state, 25/70 (35.7%), while the lowest prevalence was seen in samples from
Ekiti state,16/70 (22.9%). The difference in these isolation rates was statistically significant
(p = 0.027). The highest recovery rate of Klebsiella pneumoniae was from tracheal aspirate
specimens (42.9%) though the highest number was seen in urine specimens (40). The differ-
ences in the proportion of recovery of K. pneumoniae from the various sample types were
not significant (p = 0.540). Although there were no significant differences (p = 0.441) in the
recovery rate of K. pneumoniae from wards and clinics, the highest recovery rate was from
the intensive care unit, where almost half of their samples (43.7%) yielded K. pneumoniae
(Table 3).

Table 3. Distribution of socio-demographic data of selected variables and number of Klebsiella
pneumoniae-positive isolates.

Variable Number
(%)

Positive
No(%) Pearson Chi-Square df p-Value

Location

Ekiti
Lagos
Ogun
Ondo
Osun
Oyo

70 (16.7)
70 (16.7)
70 (16.7)
70 (16.7)
70 (16.7)
70 (16.7)

16 (22.9)
32 (45.7)
17 (24.3)
20 (28.6)
18 (25.7)
25 (35.7)

12.631 5 0.027

Total 420 128 (30.5)

Age

≤10 years 19 (4.5) 7 (36.8) 0.634 3 0.889
11–25 years 63 (15) 19 (30.2)
26–50 years 209 (49.8) 61 (29.2)
51 years and above 129 (30.7) 41 (31.8)

Sex
Female 220 (52.4) 69 (31.4) 0.172 1 0.679
Male 200 (47.6) 59 (29.5)

Sample Blood 34 (8.0) 7 (20.6) 6.968 8 0.540

High Vaginal Swab 62 (14.8) 20 (32.3)
Pus 65 (15.5) 25 (38.5)
Semen 7 (1.7) 1 (14.3)
Sputum 45 (10.7) 12 (26.7)
Stool 14 (3.3) 4 (28.6)
Tracheal Aspirate 7 (1.7) 3 (42.9)
Urine
Wound Swab

144 (34.3)
42 (10)

40 (27.8)
16 (38.1)

Ward Accident and
emergency 10 (2.38) 2 (20)

Intensive Care Unit 16 (3.81) 7 (43.7)
Geriatrics 25 (5.95) 10 (40)
Medical 160 (38.1) 41 (25.6)
Obstetrics and
Gynaecology 96 (22.9) 32 (33.3)

Pediatrics 13 (3.1) 4 (30.8)
Surgical 100 (23.8) 32 (32)
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3.2. Antibiotic Resistance Patterns of K. pneumoniae Isolates

The highest levels of antibiotic resistance were displayed against tetracycline (67.2%),
oxacillin (61.7%), ampicillin (60.2%), ciprofloxacin (58.6%), and chloramphenicol (56.3%),
while drugs with the least antibiotic resistance (below 50%) were imipenem (48.4%), ce-
fepime (44.5%), and meropenem (43.0%). All isolates were susceptible to polymyxin B
(Table 4).

Table 4. Antibiotic resistance patterns of K. pneumoniae isolates.

S/N Antibiotics Resistant Number/Percentage

1 Levofloxacin 66 (51.6)
2 Cefoxitin 69 (53.9)
3 ceftazidime 68 (53.1)
4 tetracycline 86 (67.2)
5 aztreonam 70 (54.7)
6 gentamicin 69 (53.9)
7 Cefepime 57 (44.5)
8 Imipenem 62 (48.4)
9 Amikacin 70 (54.7)
10 meropenem 55 (43.0)
11 Ofloxacin 69 (53.9)
12 cephalexin 69 (53.9)
13 Amoxycillin/Clavulanic acid 68 (53.1)
14 ciprofloxacin 75 (58.6)
15 Cefuroxime 74 (57.8)
16 ampicillin 77 (60.2)
17 oxacillin 79 (61.7)
18 Cefotaxime 66 (51.6)
19 chloramphenicol 72 (56.3)
20 Ceftriaxone 69 (53.9)
21 Polymyxin B 0 (0.0)

3.3. The Distribution of the ESBL Genes Produced by the Multidrug-Resistant K. pneumoniae Isolates

Table 5 depicts the prevalence of ESBL-associated genes in clinical isolates of K. pneu-
moniae. The TEM gene (47.7%) was recovered most, followed by CTX-M (43.8%), SHV
(39.8%), OXA (27.3%), CTX-M-15 (19.5%), CTX-M-2 (11.1%), and CTX-M-9 (10.9%). The
gel electrophoresis profiles of blaTEM, blaSHV, blaOXA, and blaCTXM genes are presented in
Figures 1–4, respectively.

Table 5. Distribution of the ESBL genes produced by the multidrug-resistant K. pneumonia isolates.

ESBL Genes Frequency Percent

TEM 61 47.7
SHV 51 39.8
OXA 35 27.3
CTX-M 56 43.8
CTX-M-2 15 11.1
CTX-M-9 14 10.9
CTX-M-15 25 19.5
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3.4. Distribution of Carbapenemase Genes among K. pneumoniae Isolates

Carbapenemases are a group of beta-lactamases that are able to breakdown the active
core of carbapenems antibiotics. Table 6 depicts the distribution of different carbapenemase-
associated genes from the clinical isolates of K. pneumoniae. The VIM gene (43.0%) was
most detected among the clinical isolates, followed by OXA-48 (28.9%), IMP (22.7%), NDM
(17.2%), KPC (13.3%), CMY (11.7%), and FOX (9.4%). GIM and SPM were not detected. The
gel electrophoresis profiles of blaVIM, blaOXA-48, blaIMP, blaKPC, blaCMY, and blaFOX genes are
presented in Figures 5–10, respectively.
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Table 6. Distribution of carbapenemase genes among K. pneumoniae isolates.

Frequency Percent

VIM 55 43.0
OXA-48 37 28.9
IMP 29 22.7
NDM 22 17.2
KPC 17 13.3
CMY 15 11.7
FOX 12 9.4
SPM 0 0.0
GIM 0 0.0
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Table 7 shows relationship between phenotypic and genotypic genes of K. pneumoniae.
From the table, carbapenem phenotype showed a significant relationship with KPC, IMP,
and VIM genes.

Table 7. Analysis of carbapenem phenotypes and carbapenem genes.

Antibiotics
Number/% Resistant
(Phenotype)

KPC Gene (17) IMP Gene (29) VIM Gene (55)

Number (%) p Value Number/% p Value Number/% p Value

Levofloxacin 66 (51.6) 2 (11.8) 0.505 16 (55.2) 0.062 29 (52.7) 0.480
Cefoxitin 69 (53.9) 4 (23.5) 0.447 11 (37.9) 0.510 32 (58.2) 0.254
Ceftazidime 68 (53.1) 1 (5.9) 0.274 14 (48.3) 0.107 29 (52.7) 0.540
Tetracycline 86 (67.2) 6 (35.2) 0.381 17 (58.6) 0.403 37 (67.3) 0.570
Aztreonam 70 (54.7) 5 (29.4) 0.325 12 (41.4) 0.406 33 (60.0) 0.193
Gentamicin 69 (53.9) 4 (23.5) 0.447 14 (48.3) 0.130 31 (56.4) 0.380
Cefepime 57 (44.5) 2 (11.8) 0.315 8 (27.6) 0.395 27 (49.1) 0.235
Imipenem 62 (48.4) 5 (29.4) 0.041 * 16 (55.2) 0.000 * 30 (54.5) 0.036 *
Amikacin 70 (54.7) 4 (23.5) 0.486 8 (27.6) 0.181 32 (58.2) 0.305
Meropenem 55 (43.0) 8 (47.1) 0.001 * 16 (55.2) 0.000 * 35 (63.6) 0.000 *
Ofloxacin 69 (53.9) 7 (41.2) 0.081 12 (41.4) 0.361 33 (60.0) 0.154
Cephalexin 69 (53.9) 3 (17.6) 0.553 13 (44.8) 0.230 32 (58.2) 0.254
Amoxycillin/Clavulanic acid 68 (53.1) 1 (5.9) 0.274 6 (20.7) 0.076 28 (50.9) 0.398
Ciprofloxacin 75 (58.6) 7 (41.2) 0.209 14 (48.3) 0.342 36 (65.4) 0.118
Cefuroxime 74 (57.8) 3 (17.6) 0.359 12 (41.4) 0.556 31 (56.4) 0.457
Ampicillin 77 (60.2) 7 (41.2) 0.270 11 (37.9) 0.271 34 (61.8) 0.441
Oxacillin 79 (61.7) 10 (58.8) 0.041 15 (51.7) 0.377 41 (74.5) 0.080
Cefotaxime 66 (51.6) 1 (5.9) 0.343 12 (41.4) 0.273 31 (56.4) 0.222
Chloramphenicol 72 (56.3) 3 (17.6) 0.436 9 (31.0) 0.221 28 (50.9) 0.190
Ceftriaxone 69 (53.9) 4 (23.5) 0.447 9 (31.0) 0.342 31 (56.4) 0.380

NOTE *: Carbapenem phenotype showed a significant relationship with KPC, IMP, and VIM.

3.5. Genetic Diversity Assessment by MLST

Table 8 shows the results of MLST conducted on 10 K. pneumoniae to determine the
extent of genotypic diversity among the K. pneumoniae isolates. Results from the table
revealed that six different sequence types (STs) were identified in this study. The most
dominant ST was ST307 (50%, 5/10), while ST258, ST11, ST147, ST15, and ST321 had (10%,
1/10) each.
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Table 8. Sequence types of multidrug-resistant and hypervirulent Klebsiella pneumoniae.

Isolate State Sample Beta-Lactamase Genes Allelic Profile MLST Cloner Cluster (CC)

LK16 Lagos Urine CTX-M-15, TEM, SHV, KPC 3-3-1-1-1-1-4 ST11 258
LK23 Lagos Urine CTX-M-15, VIM, OXA-48, KPC 3-4-6-1-7-4-38 ST147 147
LK27 Lagos HVS CTX-M-15, VIM, OXA-48, KPC, NDM 4-1-2-52-1-1-7 ST307 307
OGK1032 Ogun Pus CTX-M-15, VIM, KPC, NDM 4-1-2-52-1-1-7 ST307 307
OYK39 Oyo Urine CTX-M-15, VIM, OXA-48, KPC 1-1-1-1-1-1-1 ST15 15
OYK24 Oyo Sputum CTX-M-15, VIM, OXA-48, KPC, NDM 4-1-2-52-1-1-7 ST307 307
EK55 Ekiti Urine CTX-M-15, VIM, OXA-48, KPC, NDM 4-1-2-52-1-1-7 ST307 307
ONK74 Ondo Wound swab TEM, CTX-M-15, KPC, NDM 3-3-1-1-1-1-79 ST258 258
OSK12 Osun Urine CTX-M-15, KPC, OXA-48, NDM 4-1-2-52-1-1-7 ST307 307
OSK16 Osun Urine CTX-M-15, OXA-48 4-16-2-1-28-3-40 ST321 321

4. Discussion

K. pneumoniae has been reported as one of the main pathogens causing nosocomial and
community-acquired infections in humans over a long period of time. Due to antimicrobial
resistance, treatment of K. pneumonia infections has become complicated and difficult
to treat [32]. The 30.5% prevalence of K. pneumoniae in this study is similar to the 34%
reportedin Lagos state and also in the southwest [33]. Hence, it can be inferred that
K. pneumoniae is associated with clinical infections in Southwest Nigeria. Similar findings
have been reported in other parts of the country, such as 30.0% recorded in Kano State [34];
it is, however, higher than 12.8%reported in Kaduna State [35]. The high prevalence rate
of K. pneumoniae observed in this study could be explained by the fact that all isolates
investigated in this study were sourced from hospitalized patients, which may underscore
the lack of proper infection control practices [36], showing that K. pneumoniae is a common
nosocomial pathogen [37]. There was an association between isolated K. pneumoniae and
the selected six states showing that isolation of K. pneumoniae depends on the hospital or
its site.

The result of this study revealed that K. pneumoniae infection was seen more in females
than males. The higher occurrence of these isolates among females might result from the
higher prevalence of urogenital K. pneumoniae isolates in our study. The major proportion of
samples used in this study were urine samples. Hence, the highest number of K. pneumoniae
was observed in the urine sample, and this is in agreement with the finding of [38].

A high rate of antimicrobial resistance was observed in our study, as more than half of
the isolates were resistant to most antibiotics tested. The 48.4% and 43.0% resistance rates
of clinical K. pneumoniae isolates to imipenem and meropenem in this study are similar to
the observation in Ebonyi, Nigeria, where [39] reported 41.1% for imipenem and 43.3% for
meropenem. However, our observed resistance rate to imipenem is higher than 24% in Oyo
State [40] and 19.05% in Kaduna State [41], also in Nigeria. According to previous studies,
imipenem and meropenem have shown good activity against Enterobacteriaceae [42];
therefore, the findings of this study show that there has been a steady increase in resistance
to these antibiotics over the years. This may be as a result of their increasing use among
the populace.

In the current study, we observed that ESBL-KP isolated from different clinical samples
harbor multiple ESBL genes (blaCTX-M, blaTEM, blaOXA, and blaSHV), which is similar to
other studies, including a study from India [43].The most prevalent ESBL gene in this study
was blaTEM, with a 47.7% prevalence rate comparable to 49.3% reported in India [44] and
52% reported in Southwestern Nigeria [45]. However, this prevalence is in sharp contrast
to the 100% reported in Port Harcourt [46] and 14.28% in Sokoto State [35]. The 39.8%
prevalence of the blaSHV gene among clinical K. pneumonia isolates reported in this study
is comparable to the 35% reported in Pakistan [47]. This current prevalence is lower than
58.33% reported in Port Harcourt [46] and 48% in Southwestern Nigeria [45]. In addition,
the 27.3% prevalence rate of the blaOXA gene among clinical K. pneumoniae isolates is lower
than the 65% reported in Pretoria [48] and 41.67% in Port Harcourt [46].
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It has been proven that the blaCTX-M-15 among humans has increased outstandingly
over time in most countries. The 43.8% prevalence of the blaCTX-M gene among our clinical
K. pneumoniae isolates is slightly higher than the 41.67% reported in Port Harcourt two years
earlier [46] and also higher than 35.71% in Sokoto State [35] and the 32%in Southwest-
ern Nigeria four years ago [45]. The 19.5% prevalence of the blaCTX-M-15 among clinical
K. pneumoniae isolates is comparable to the 12.5% prevalence in China [49] and 14.54% in
Iran [50]. However, [47] reported a 46% prevalence of the CTX-M-15 gene in Pakistan.
Our study adds to the body of evidence that the CTX-M-15 remains the most important
CTX-M enzyme in K. pneumoniae as a result of its large diffusion and relation to infections
in humans. Similarly, this particular genotype is widely disseminated in Africa [51].

Moreover, 13.3% of the clinical K. pneumoniae isolates possessed the CTX-M-2 gene,
which is lower than the 45.7% reported in Argentina [52]. Additionally, the 10.9% preva-
lence of the blaCTX-M-9 among clinical K. pneumoniae isolates is comparable to the 9.69% in
China [53]. However, [54] reported a 40% prevalence of the CTX-M-9 gene in Saudi Arabia,
which is significantly greater than the study’s prevalence rate. The coexistence of ESBL
genes in these isolates may have also contributed to the observed high rate of antimicrobial
drug resistance [55]. These data have clinical applications for selecting empiric antibiotic
therapy when infections caused by ESBL-producing K. pneumoniae are suspected [55].

The present work corroborates the findings of [56], who reported that blaVIM was fre-
quently involved in causing carbapenem resistance in humans. Similarly, [56] also reported
that blaVIM (69.2%) was the predominant gene in hospitalized patients in Egypt. The 43.0%
prevalence rate of the blaVIM gene among carbapenemase-producing K. pneumoniae in this
study is higher than the 33.3% reported in Iran [57] but lower than the 84.62% in Egypt [58].
However, in contrast to our findings, no clinical isolate of K. pneumonia harbored the VIM
in a Brazilian study [7].

We report a lower prevalence of the blaKPC gene among carbapenemase-producing
K. pneumonia compared to the blaVIM gene. Similar low proportions have been reported
by [59] in Jos, Plateau state, and even a much lower prevalence of 2.7%in Port Harcourt,
Nigeria [60]. Our findings were contrary to the zero prevalence reported in South Africa,
which could be because these were mainly surveillance studies conducted among asymp-
tomatic persons [61]. It could also be attributed to the restricted use of antibiotics in those
countries as opposed to Nigeria, where antibiotics are easily available over-the-counter. We
did not find any blaSPM or blaGIM genes in K. pneumoniae isolates. This is in agreement with
other studies reporting that these genes are limited to distinct geographical regions such as
Germany and Brazil [62].

Molecular studies showed the prevalence of AmpC genes were 11.7% and 9.4% for
blaCMY and blaFOX, respectively. Similarly, in the Zorgani study in Tripoli, the majority of
AmpC-positive isolates (66.6%) were found to carry the CMY-encoding gene [63]. The
possible reason for this prevalence may be due to excessive usage of extended-spectrum
cephalosporin in the treatment of gram-negative infections [64].

In this study, MLST showed that the K. pneumoniae strains belonged to six different se-
quence types (STs), revealing clonal diversity. ST307 was the most concentrated, accounting
for 5 (50%). This finding is in accordance with the report of [65], who reported ST307 as the
most prevalent ST in Southwestern Nigeria. All five isolates having ST307 were obtained
from the urine. These isolates were also found to have similar genotypes regarding ESBLs
(CTX-M-15) and carbapenemase (KPC). Several countries, such as Italy, Korea, the USA,
Mexico, and China, have reported carbapenem-resistant K. pneumoniae ST307 with ESBL
production [66]. The ST307 identified in our study were present in five tertiary hospitals
in Southwestern Nigeria, indicating the role of immigration in the transmission of these
successful international clones from diverse geographical settings.

It is of note in Africa that the problem of carbapenem-resistant Enterobacteriaceae
(CRE) is becoming increasing on a daily basis, especially in Nigeria, where the usage of
carbapenem is on the increase in our clinical settings, as expressed from our data. It is of
note that other factors contributed to this aggravated increase by other factors such as the
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issue of poor diagnostic tools in our tertiary health care settings, poor sanitation and dirty
environment linked to the high rate of infections, sub-optimal disease surveillance, and
incessant over-the-counter abuse and usage of antibiotics. It is of note that the burden and
the problem of CRE in Africa are underreported [11,67].

5. Conclusions

A total number of 128 non-duplicate K. pneumoniae were isolated and characterized
from hospitalized patients in Southwestern Nigeria. The high MDR K. pneumoniae observed
in this study is worrisome and calls for action. Factors such as the frequent use of carbapen-
ems and cephalosporins, as well as the lack of antibiotic therapy policies and guidelines in
most healthcare facilities in the country, should be addressed as these could be responsible
for the observed high level of resistance. This study also demonstrates that although there is
considerable diversity among the K. pneumoniae in Nigerian hospitals, a high proportion of
the isolates belonged to one clonal group; therefore, molecular epidemiological surveillance
and control can effectively reduce the occurrence and spread of drug-resistant bacterial
infections in hospitalized patients.
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