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Abstract: Peripheral artery disease (PAD) affects more than 230 million people worldwide. PAD
patients suffer from reduced quality of life and are at increased risk of vascular complications and
all-cause mortality. Despite its prevalence, impact on quality of life and poor long-term clinical
outcomes, PAD remains underdiagnosed and undertreated compared to myocardial infarction and
stroke. PAD is due to a combination of macrovascular atherosclerosis and calcification, combined
with microvascular rarefaction, leading to chronic peripheral ischemia. Novel therapies are needed to
address the increasing incidence of PAD and its difficult long-term pharmacological and surgical man-
agement. The cysteine-derived gasotransmitter hydrogen sulfide (H2S) has interesting vasorelaxant,
cytoprotective, antioxidant and anti-inflammatory properties. In this review, we describe the current
understanding of PAD pathophysiology and the remarkable benefits of H2S against atherosclerosis,
inflammation, vascular calcification, and other vasculo-protective effects.

Keywords: peripheral artery disease; PAD; intimal hyperplasia; hydrogen sulfide; H2S; atherosclerosis;
inflammation; calcification

1. Introduction

Peripheral artery disease (PAD), defined as “all arterial diseases other than coronary
arteries and aorta”, affects more than 230 million people worldwide [1,2].

PAD is primarily due to the development of atherosclerotic plaques, leading to progres-
sive narrowing of the vessel lumen. Limb symptoms include leg pain, cramps, fatigue, and
muscle weakness during physical activity. At rest, blood flow remains sufficient to meet
basal oxygen requirements and patients are free of symptoms. However, during exercise,
the increased oxygen supply to the lower limb is impaired, leading to moderate ischemia,
which the patient experiences as cramping pain. The patient usually stops walking until the
pain subsides. Alternating cycles of walking and resting, known as intermittent claudica-
tion (IC), is the cardinal clinical manifestation of PAD [3]. Patients with IC have a reduced
walking distance, leading to an inability to perform daily activities and a reduced quality
of life [1,4,5]. However, IC may be present in only 10–35% of patients, whereas 40–50%
of PAD patients have a wide range of atypical leg symptoms, and 20–50% of patients
are asymptomatic [4–6]. The femoral and popliteal arteries are the most common sites
of atherosclerotic disease in patients with PAD. Approximately 80–90% of patients with
symptomatic PAD have some combination of femoropopliteal occlusive disease [4,5,7].

In late-stage PAD, ischemia worsens as the arteries become completely occluded, lead-
ing to chronic limb-threatening ischemia (CLTI). CLTI is characterized by resting muscle
pain, ulceration, and gangrene, and a significant reduction in quality of life. In addition,
PAD and CLTI patients are at increased risk of developing vascular occlusive disease and
all-cause mortality, as atherosclerosis usually develops throughout the vasculature. Notably,
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the 1-year incidence of all major cardiovascular events is 30% higher in patients with PAD
than in those with coronary or cerebral artery disease [8]. Without surgical revasculariza-
tion, 25% of CLTI patients die within one year of initial diagnosis and 40% of CLTI patients
undergo limb amputation within three years [9,10]. Venous bypass surgery and endovascu-
lar approaches such as angioplasty with or without stenting and endarterectomy are the
main treatment for CLTI. The disease presentation and the patient’s general health and
comorbidities determine the choice between open surgery and endovascular approaches.

Acute limb ischemia (ALI) is another severe manifestation of PAD, defined by sudden,
severe hypoperfusion of the limb, usually due to thromboembolism. Symptoms may
include pain, pallor, pulselessness, poikilothermia, paresthesias and paralysis, with loss of
sensation and motor function in severe cases. Although ALI can occur in the absence of
significant peripheral atherosclerosis due to distant plaque rupture, it is common in the
setting of PAD.

Despite its prevalence, impact on quality of life, and devastating long-term clinical
outcomes, PAD remains underdiagnosed and undertreated compared with other atheroscle-
rotic diseases such as myocardial infarction and stroke [2,11].

2. Current Management of PAD and CLTI

The main risk factors for the development of PAD are age, smoking, and diabetes.
Hyperlipidemia and hypertension are also risk factors for PAD, although the predictive
value of these parameters does not appear to be as strong as for the primary risk factors.
The presentation of PAD varies considerably and includes four categories: asymptomatic,
claudication, critical limb ischemia, and ALI. PAD patients are classified according to the
Fontaine or Rutherford classification systems.

Fontaine

• Stage I—No symptoms
• Stage II—Intermittent claudication subdivided into:
• Stage IIa—Without pain on resting, but with claudication at a distance of greater than

650 feet (200 m)
• Stage IIb—Without pain on resting, but with a claudication distance of less than

650 feet (200 m)
• Stage III—Nocturnal and/or resting pain
• Stage IV—Necrosis (death of tissue) and/or gangrene in the limb

Rutherford

• Stage 0—Asymptomatic
• Stage 1—Mild claudication
• Stage 2—Moderate claudication
• Stage 3—Severe claudication
• Stage 4—Rest pain
• Stage 5—Minor tissue loss with ischemic nonhealing ulcer or focal gangrene with

diffuse pedal ischemia
• Stage 6—Major tissue loss—Extending above transmetatarsal level, functional foot no

longer salvageable

Asymptomatic PAD patients with evidence of atherosclerosis who do not have typical
claudication symptoms (Fontaine I or Rutherford 0) are offered risk reduction strategies
to decrease cardiovascular risk factors depending on symptom severity, lipid levels, and
the presence of comorbidities such as diabetes, smoking and hypertension. Thus, current
guidelines for the management of PAD are preventive strategies such as diet and lifestyle
modification, including supervised exercise, smoking cessation and pharmacotherapy
tailored to individual risk factors [1,8,12–15]. All patients with PAD should receive statin
medication. Antihypertensive therapy should be administered to hypertensive patients to
reduce the risk of myocardial infarction (MI), stroke, heart failure, and cardiovascular death.
Antiplatelet therapy with aspirin or clopidogrel alone may be considered in asymptomatic
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patients, and should always be administered to symptomatic PAD patients. After assess-
ment of bleeding risk, further anti-coagulant therapies (Rivaroxaban) may be considered
for symptomatic PAD patients as they significantly reduce the risk of stroke, myocardial
infarction, and ALI [1,12,13,16,17].

For patients with lifestyle-limiting claudication or CLTI (Fontaine IIb—IV; Rutherford
4–6), who are poor responders to medical and/or exercise therapy, surgical revasculariza-
tion remains the only option when possible. Venous bypass surgery and endovascular
approaches such as angioplasty, stenting and atherectomy are the main methods. The
choice between open surgery and endovascular approaches depends on the presentation
of the disease and the patient’s general health and comorbidities. Whenever possible,
autogenous vein is the conduit of choice for open revascularization so that bypass surgery
is limited to patients with “good” veins [7,18]. All patients with CLTI should be given
antithrombotic and lipid-lowering therapies, as well as counseling on smoking cessation,
diet, exercise, and preventive foot care. Additional antihypertensive, and glycemic control
therapies should be given appropriately [1,12,13].

Without surgical revascularization, 25% of CLTI patients die within one year of initial
diagnosis and 40% of CLTI patients undergo limb amputation within three years [9,10]. Up
to 25% of CLTI patients are ineligible for revascularization and amputation is often the only
option [19]. When possible, surgery may be suboptimal for symptom relief, and 20% of
PAD patients have “failed revascularization”. Furthermore, PAD patients, especially those
with CLTI, carry a high risk of post-op complications, including ALI, often leading to limb
loss, disability, and death [13,20]. Even if the procedure is technically successful, residual
microvascular disease remains and the outcomes after amputation stay poor [13,21].

3. Etiology of PAD

Atherosclerosis in lower limb arteries is the main cause of PAD [22], but emerging
evidence suggests that medial calcification also contributes to the disease, especially in
lower limb PAD. Microvascular disease is also emerging as a potential contributor to the
progression of PAD and a clinically relevant sign of PAD severity.

3.1. Atherosclerosis

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of
fatty cholesterol streaks in arterial trees. Several pathophysiological processes are involved
in this disease, including endothelial cell (EC) dysfunction, inflammation, lipid accumula-
tion, and vascular smooth muscle cell (VSMC) proliferation and migration (reviewed in
detail in [23]).

The disease is initiated by EC dysfunction. Located at the interface between the blood
and the vessel wall, EC maintain a non-thrombogenic surface. In arteries, high shear
stress and laminar blood flow maintain EC function and secretion of anti-thrombotic and
vasodilator agents, mainly nitric oxide (NO) and prostacyclins [24]. Disturbed arterial
flow patterns observed at bifurcations and curved sections of arteries create regions of low
shear stress that induce EC dysfunction or “endothelial activation”. These weak points in
the vasculature are the sites of primary occlusion by atherosclerotic plaques. Endothelial
dysfunction or injury results in reduced production of NO and hydrogen sulfide (H2S),
two gasotransmitters that maintain healthy vascular function. Impaired EC function pro-
motes vasoconstriction, platelet aggregation and the accumulation of oxidized low-density
lipoproteins (LDL) in the vessel wall. Monocytes attracted to the inflamed vessel wall differ-
entiate into macrophages, which engulf large amounts of LDL particles and become foam
cells to form the fatty streaks typical of early atherosclerotic lesions. Foam cells undergo
apoptosis and form a lipid core within the vessel wall, exacerbating inflammation. The
VSMC composing the media layer of vessels are highly plastic. Upon chronic inflammation,
VSMC switch to a “synthetic” phenotype, characterized by a loss of contractile markers.
Recent lineage-tracing studies revealed that VSMC dedifferentiate into intermediate multi-
potent cell type, often referred to as mesenchymal stem cells (MSC). These cells may give
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rise to adipocytes, myofibroblasts, macrophage-like cells and fibro/osteochondrogenic
cells [25–28]. Of note, VSMC-derived macrophages perform nonprofessional phagocytosis
and contribute to the population of foam cells in atherosclerotic plaques [29,30]. Altogether,
proliferating immune cells and reprogrammed VSMC promote matrix remodeling and the
development of a fibrous cap overlying the lipid core.

Overall, atherosclerosis is driven by dyslipidemia and vascular chronic inflamma-
tion [28,31]. Macrophages are the primary immune cells involved in atherosclerosis, but
over the years evidence has accumulated of a coordinated inflammatory immune response
involving T- and B-lymphocytes in the progression of atherosclerotic plaques [28]. It
should also be noted that all the cell types found in atheromatous plaques can secrete
pro-inflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factors alpha
(TNFα) and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Activated
T-helper 1 (TH1) lymphocytes produce interferon gamma (IFNγ), which promotes phagocy-
tosis and formation of foam cells. B2 lymphocytes also secrete mediators that can aggravate
atherogenesis. In contrast, other immune cells including M2 macrophages, B1 lymphocytes
and TH2 lymphocytes can produce anti-inflammatory mediators to alleviate inflamma-
tion [28,31]. In addition, activated EC secrete lipid-derived pro-inflammatory molecules
called eicosanoids, including prostaglandins, leukotrienes, and thromboxanes, which also
play a major role in the pathophysiology of atherosclerosis [32,33].

Despite decades of research and although dyslipidemia and inflammation are known
to be the major pathophysiological features leading to atherosclerosis, the exact pathways
and mechanisms remain to be elucidated.

3.2. Vascular Medial Calcification

PAD is commonly described as an atherosclerotic disease. However, for lower limb
artery disease, recent clinical data suggest that we underestimated the role of medial
arterial calcification in PAD (recently reviewed in detail in [34,35]). Thus, the etiology of
PAD, particularly in the arteries below the knee, may differ from that of the coronary and
femoral arteries.

Two types of vascular calcification exist, intimal calcification (VIC) and medial cal-
cification (VMC), also referred to as medial arterial calcification (MAC) [34,35]. VIC is
a common feature of advanced atherosclerotic lesions and a risk factor for rupture. In
contrast, VMC/MAC develops independently of atherosclerosis, but is a common feature
of arterial disease associated with aging [36]. It is found in up to 40% of patients with
advanced chronic kidney disease [37–40], and histological studies show that up to 70% of
occluded arteries below the knee feature VMC and intimal thickening, but no atherosclero-
tis [41]. In their recent study, Jadidi et al. used machine learning to identify age, creatinine,
body mass index, coronary artery disease and hypertension as the strongest predictors of
calcification. They further confirmed that distal vessel segments (iliofemoral vs. aortic)
calcify first. In this study of an American cohort, they estimated that up to 80% of people
had VMC by the age of 40 [36].

VMC is characterized by the accumulation of calcium (Ca2+) phosphate and the
formation of hydroxyapatite crystals, leading to hardening of the medial layer [38]. It is
particularly prevalent in patients with chronic kidney disease, especially diabetic patients,
due to impaired phosphate homeostasis [35,39,40]. Different stages/severities of arterial
calcification have been described by histopathologists, ranging from punctate to nodular
calcification, and finally bone formation [34].

VIC in atherosclerosis lesion is well characterized. It is due to ectopic vascular os-
teogenesis via phenotypic reprogramming of contractile medial VSMC into synthetic
mesenchymal VSMC, which then differentiate into osteochondrogenic VSMC, leading to
bone formation [35]. VMC in lower limb arteries has not been so well studied. The presence
of osteogenesis vs. hydroxyapatite deposition and their respective contribution to VMC
in PAD and CLTI patients remain unknown, and may differ depending on the vascular
bed [38–40]. VMC increases the risk of complications during vascular interventions and



Int. J. Mol. Sci. 2023, 24, 9955 5 of 28

worsens their outcomes [34,35,42]. Further work is required to define the process underly-
ing medial calcification in the absence of atherosclerosis, evaluate its impact on PAD and
CLTI, and eventually target it for treatment.

3.3. Microvascular Dysfunction

PAD is usually recognized as a macrovascular disease. However, several recent
studies indicate that artery occlusion in PAD is often accompanied by microvascular
disease. Microvascular dysfunction (MVD) refers to the impairment of capillary function
and number. Usually, peripheral microvascular endothelial function is evaluated using
laser speckle contrast imaging, which allows assessment of cutaneous microcirculation. The
incidence of MVD is particularly high in diabetic patients. Thus, 20 to 30% of PAD patients,
and up to 70% of CLTI patients have diabetes [10]. Of note, diabetic patients have a five-fold
increased risk of developing CLTI, and diabetic CLTI patients have up to five-fold more
incidence of adverse outcomes and amputations [9,10,43]. Given the strong association
between diabetes complications and MVD, clinical studies also tend to define MVD as the
presence of nephropathy, retinopathy, or neuropathy. Clinical studies revealed a strong
association between MVD and risk of heart failure in diabetic patients, independent of
traditional heart failure risk factors including coronary artery disease [44–46]. MVD is also a
common phenomenon in PAD patients, which feature impaired cutaneous microcirculation
throughout the progression of PAD, often leading to reduced capillary density in CLTI
patients. In PAD patients, MVD can contribute to the progression of the disease and the
development of complications such as ischemic pain, tissue hypoxia, and impaired wound
healing [10]. A recent study also found a positive correlation between microvascular
endothelial function and impaired cognitive performance in PAD patients [47]. MVD can
also worsen the outcome of surgical procedures as it reduces the ability of the blood vessels
to respond to the increased blood flow after revascularization, which impairs healing,
leading to a higher risk of complications.

Additionally, recent studies suggest that MVD may be used to assess PAD severity. In
a recent meta-analysis, the Chronic Kidney Disease Prognosis discovered that albuminuria,
a marker of nephropathy, strongly correlates with the incidence of amputation [48]. This
study advocates that even at mild-to-moderate stages, chronic kidney disease and MVD
may be a major risk factor for PAD. In a similar study, a stronger association was found
between retinopathy and the incidence of PAD/CLTI, than between coronary heart disease
or stroke and PAD/CLTI [49].

Mechanistically, MVD is not due to the formation of atherosclerosis plaque and/or
occlusion of vessels. MVD is due to EC apoptosis and progressive loss of capillaries, which
plays a major role in the development and progression of diabetic complications (diabetic
retinopathy, nephropathy, and neuropathy). Patients with familial hypercholesterolemia
also feature impaired endothelial-dependent vasodilatation [50].

Overall, MVD contributes to PAD, but is seldom considered in diagnostic and thera-
peutic approaches. There is currently no specific therapy for MVD. However, the good news
is that current PAD therapeutic strategies focused on optimizing risk factors (management
of diabetes, and hypercholesterolemia), and lifestyle modifications (physical exercise, smok-
ing cessation, and weight loss), improve vascular fitness, including microvascular function.
For instance, several clinical studies demonstrated that exercise promotes microvascular
function in disease states [51–55]. Although solid evidence is still lacking, statins may also
provide benefits to endothelial function and against MVD [56,57]. Pre-clinical studies also
showed that anti-diabetic therapies, metformin especially, may preserve/restore endothe-
lium function [58–61]. Understanding the mechanisms underlying MVD in PAD patients
and finding new treatments and therapeutics targeting MVD specifically may help reduce
symptoms and improve quality of life.

Overall, PAD is due to a combination of macrovascular atherosclerosis and calcification,
associated with a rarefying microvasculature, leading to impaired vascular function and a
complex inter-individual response to treatment and revascularization interventions.
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3.4. Intimal Hyperplasia: The Unmet Challenge of Post-Operative PAD Management

Bypass surgery and endovascular revascularization, which includes angioplasty, stent-
ing and atherectomy, are recommended for patients with lifestyle-limiting claudication who
do not respond to medical and/or exercise therapy. Unfortunately, the vascular trauma
associated with surgical revascularization eventually leads to secondary occlusion of the
injured vessel, a process called restenosis. For open surgical procedures such as bypass and
endarterectomy, the rate of restenosis at 1-year ranges from 20 to 30% [62]. For endovas-
cular approaches, the rate of re-occlusion after balloon angioplasty and stenting ranges
from 30 to 60% depending on the location [63]. Restenosis has various causes, such as
secondary growth of atherosclerotic lesions or inward remodeling. However, the most
common cause is intimal hyperplasia (IH). IH is a well-known complication of all types of
vascular surgery. The progressive growth of a neointimal layer causes both an outward
and inward remodeling of the vessel wall, resulting in luminal narrowing and ultimately
impaired perfusion of downstream organs.

IH begins as a physiological healing response to injury to the blood vessel wall [64,65].
Like atherosclerosis, IH is initiated by EC injury, which promotes vasoconstriction, platelet
aggregation and recruitment/activation of resident and circulating inflammatory cells.
Inflammation leads to the reprogramming of VSMC and fibroblasts into proliferating
and migrating cells that form a neointimal layer between the intima and the internal
elastic lamina. This new layer is mainly composed of VSMC-derived cells expressing
various markers of mesenchymal (stemness) or osteochondrogenic phenotype and secreting
abundant ECM [65–67].

All current strategies to limit IH, such as paclitaxel and sirolimus, target cell pro-
liferation. Paclitaxel is a chemotherapeutic agent that stabilizes microtubules, thereby
preventing mitosis [68]. Sirolimus inhibits the mammalian target of rapamycin (mTOR),
a master regulator of cell growth and metabolism [66]. However, targeting cell prolif-
eration to reduce IH also impairs re-endothelialization. Endothelial repair is critical to
limit inflammation, remodeling and IH. Poor endothelial repair also prolongs the need for
antithrombotic therapy.

The increasing number of PAD and CLTI patients in need of surgical vascular repair,
combined with difficult long-term pharmacological and surgical management, calls for
novel therapies to promote endothelial repair while inhibiting VSMC phenotypic switch,
fibrosis, and VMC. The gaseous vasodilator molecule H2S has interesting properties in
this respect.

4. Hydrogen Sulfide

H2S is a colorless, water-soluble, flammable, and highly toxic gas with a distinctive
rotten-egg odor. In the last few years, H2S has been recognized as a novel gasotransmitter,
not unlike NO and carbon monoxide [69].

Under physiological conditions (pH 7.4), H2S is mostly present as HS−. It acts as a
reductant and undergoes a complex oxidation reaction to thiosulfate, sulfenic acids, per-
sulfides, polysulfides and sulfate [70]. These oxidative products trigger post-translational
modification of proteins by S-sulfhydration, also known as persulfidation, a chemical
reaction that forms a persulfide group (R-SSH) on reactive cysteine residues [71]. For
persulfidation to occur, cysteine residues or H2S must first be oxidized, for example in the
form of polysulfides H2Sn. H2S and other forms of sulfide contribute to the homeostasis of
numerous systems, including the cardiovascular, neuronal, gastrointestinal, respiratory,
renal, hepatic, and reproductive systems [69]. A few high-throughput studies on the conver-
sion of protein cysteinyl thiols (-SH) to persulfides (-SSH) showed extensive persulfidation
of cysteine residues in response to H2S in different experimental designs [70,72–76].
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4.1. Endogenous H2S Production

H2S is involved in many physiological and pathological processes [69]. In this sec-
tion, we will introduce the biosynthesis of endogenous H2S and the regulation of H2S in
mammalian tissues.

Endogenous H2S production in mammals results from the oxidation of the sulfur-
containing amino acids cysteine and homocysteine via the reverse “transsulfuration” path-
way. H2S is produced by two pyridoxal 5′-phosphate (PLP)-dependent enzymes: cystathio-
nine γ-lyase (CSE) and cystathionine β-synthase (CBS). CBS catalyzes the formation of
cystathionine from homocysteine, which is subsequently converted to cysteine by CSE.
Two other PLP-independent enzymes, 3-mercaptopyruvate sulphurtransferase (3-MST)
and cysteine aminotransferase (CAT), generate sulfur, which is further processed to H2S.
CAT converts L-cysteine to 3-mercaptopyruvate (3MP), which is converted to pyruvate and
H2S by 3-MST in the presence of thioredoxin [77]. It should be noted that 3-MST mainly
synthesizes H2S in the mitochondria (Scheme 1).
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Scheme 1. Endogenous H2S production. L-cysteine and homocysteine are the essential substrates for
H2S generation by CBS and CSE in the cytosol. In the mitochondria, CAT metabolizes L-cysteine to
3-MP, which is used by 3MST to release H2S and pyruvate. SQR oxidizes H2S to hydropersulfides
(R-SSH), which are then oxidized by ETHE1 in thiosulfate (SO3

2−). SO3
2− can be oxidized to sulfate

(SO4
2−) by SUOX or S2O3

2− by TST. SQR enhances the activity of the complex 2 of the electron
transport chain. Moreover, CARS1 and 2 enzymes reconstitute Cys-SSH, which can be reduced
to release H2S. CBS: cystathionine β-synthase; CSE: cystathionine γ-lyase; CAT: cysteine amino-
transferase; 3-MST: 3-mercaptopyruvate sulphurtransferase; SQR: Sulfide-quinone oxidoreductase;
ETHE1: ethylmalonic encephalopathy 1 protein; SUOX: sulfite oxidase; TST: rhodanese; CARS1 and
2: cyteinyl-tRNA 1 and 2; GSH: Gluthathione; CysSSH: Cysteine hydropersulfide; CysSH: Cysteine;
Cyt c: cytochrome c; CoQ: coenzyme Q.
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Other mitochondrial enzymes such as persulfide dioxygenase (ETHE1), sulfide-quinone
oxidoreductase (SQR), rhodanese (TST) and sulfite oxidase (SUOX) catalyze H2S oxidation
to the metabolic end products sulfate and thiosulfate [78]. Moreover, cysteinyl-tRNA syn-
thetase (CARS and CARS2) can synthesize CysSSH and cyshydropolysulfides (CysSnH),
which can be further reduced to H2S [79] (Scheme 1).

Although the enzymes and pathways responsible for endogenous H2S production are
well understood, little is known about their relative contributions to circulating and tissular
H2S and sulfane sulfur levels (e.g., polysulfides, persulfides, and thiosulfate). Accumulating
evidence indicates that the enzymes involved in H2S production are often dysregulated
in pathophysiologic conditions, leading to altered endogenous H2S production. All the
evidence will not be listed here but we refer the reader to the extensive review by G. Cirino,
C. Szabo and A. Papapetropoulos for a detailed account of the role, cellular distribution,
and regulation of CSE, CBS, and 3-MST in mammalian tissues [69].

Briefly, the basal expression of CBS had been reported to be controlled by several
transcription factors, including specificity protein (SP) 1 and 3, nuclear transcription factor-
Y, and upstream transcription factor-1 (USF-1) [69]. CBS is mainly expressed in the central
nervous system, the liver, and the pancreas, but is also found in most other systems,
including the cardiovascular system. It has been mostly reported as a cytosolic enzyme,
although CBS is also found in the mitochondria. CSE is a cytosolic and mitochondrial
enzyme highly expressed in the liver and kidney. In the cardiovascular system, it is mainly
expressed in EC [69]. In EC, CSE expression has been shown to be under the control of
the activating transcription factor 4 (ATF4), which is selectively induced via the eukaryotic
initiation factor 2 alpha (eIF2α) in response to various stresses such as ER-stress or amino
acid restriction [80]. S. Bibli et al. recently demonstrated that CSE expression in EC is
negatively regulated by shear stress, as opposed to eNOS in the mouse aorta [81]. This is in
line with a previous study showing that only disturbed flow regions show discernable CSE
protein expression after carotid artery ligation in the mouse [82]. Oxidative stress (H2O2)
enhances cellular H2S production through the promotion of CSE activity [83]. 3-MST
is expressed both in the mitochondria and cytosol, although most studies focus on the
mitochondrial role of 3-MST [69]. 3-MST is found in most mammalian cells and tissues but
varies between organs. 3-MST is most abundantly expressed in the liver, kidney, testes,
and brain, and 3-MST expression is lowest in the spleen, thymus, lungs, and gut. Smoking,
endurance exercise training, genetic defects and down syndrome have been reported to
induce 3-MST expression in various models [69].

Additional sources of H2S and related sulfur species also contribute to sulfur biology.
In the gastrointestinal tract, anaerobic bacterial strains such as E. coli, S. enterica, Clostridia
and E. aerogenes all convert cysteine to H2S, pyruvate and ammonia by means of cysteine
desulfurases. These cysteine desulfurases are also involved in the formation of a protein-
bound cysteine persulfide intermediate, which leads to the conversion of L-cysteine to
L-alanine and sulfane sulfur [84].

In addition to this enzymatic production, there are several non-enzymatic pathways.
Commensal bacteria use sulfite reductases to reduce sulfate or other organic oxidized sulfur
compounds, resulting in the formation of H2S [85,86]. Several studies have associated these
sulfate-reducing bacteria (SRB) with inflammation, inflammatory bowel syndrome and
colorectal disease [87]. SRB colonize the intestines of ~50% of humans [86–88].

4.2. Vascular Properties of H2S and Benefits in the Context of Peripheral Arterial Disease (PAD
and CLTI)

H2S participates in the homeostasis of many organs and systems. In the cardiovas-
cular system, H2S mostly has beneficial effects, and protects against vascular diseases
through several processes, including the attenuation of oxidative stress and inflammation,
improving EC function and NO production and vasodilation, as well as the preservation of
mitochondrial function [69]. CSE gene expression and CSE protein activity, as well as free
circulating H2S, are reduced in human suffering from vascular occlusive diseases [89,90].
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It was also recently demonstrated that, in patients undergoing vascular surgery, higher
circulating H2S levels were associated with long-term survival [91], suggesting low H2S pro-
duction as a risk factor for cardiovascular diseases. In the following sections, we will focus
on the role of H2S in the vascular system and H2S properties relevant to vascular conditions.

4.2.1. H2S Is a Potent Vasodilator

H2S is commonly known as a vasodilator [92]. One of the first reports came from
Hosoki et al. in 1997, showing that H2S promoted NO-induced VSMC relaxation in rat
thoracic aorta [93]. Then, numerous studies showed that H2S decreases blood pressure in
spontaneously hypertensive rats (SHRs) [94–96] and salt-sensitive hypertension in Dahl
rats [97].

Mechanistically, H2S triggers endothelium-independent vasorelaxation by persulfi-
dation/activation the ATP-dependent potassium channel (KATP) complex, specifically the
regulatory sulfonylurea receptor subunit 1 and the pore-forming subunit Kir6.1 in VSMC
(reviewed in [92,98]). Activation of the KATP channel and K+ export results in VSMC
hyperpolarization and inhibition of voltage-dependent Ca2+ channels (VDCC), reduced
[Ca2+]i and relaxation [98]. H2S may also directly inhibit VDCC in VSMC [99,100]. In
EC, H2S activates Ca2+ influx through TRPV4 [101], which in turn (i) increases eNOS
expression/activity and NO production and VSMC vasodilation [102,103]; (ii) increases
PLA2-mediated formation of arachidonic acid metabolites and VSMC relaxation; (iii) stim-
ulates the large-conductance Ca2+-activated potassium channels (BKCa), leading to EC
hyperpolarization and subsequent hyperpolarization of adjacent VSMC, closure of VDCC
and relaxation [98]. In VSMC, H2S may also enhance Ca2+ spark-induced large conductance
potassium channel activation, facilitating VSMC relaxation [98]. Elevation in intracellular
Ca2+ level in EC also leads to the activation of calmodulin, which in turn stimulates CSE
expression to produce more H2S [99]. In addition, H2S promotes NO-dependent relaxation
via enhanced eNOS activity due to persulfidation of Cys443 [70] (Scheme 2).

Although H2S is usually described as a vasodilator gasotransmitter, recent studies
demonstrated that H2S can also promote vasoconstriction. Thus, while concentrations of
NaHS in the µM range induced vessels vasodilation [104], NaHS concentrations in the
pico-nanoM range may stimulate contraction of VSMC [105] and rat coronary artery [106].
However, it should be noted that H2S alone does not trigger vasoconstriction, but only pro-
motes constriction of precontracted vessels, enhancing the already existing tone. Enhanced
vasoconstriction seems mediated by activation of Na+, K+, 2Cl− cotransport and Ca2+ influx
via VDCC [105]. H2S may also act via scavenging of NO [107]. This highlights the complex-
ity of H2S contribution to the regulation of arterial blood pressure. Additionally, H2S may
differentially act on the vascular tone depending on the arterial bed (carotid vs. mesenteric
artery), the vessel type and size (conduit vs. resistant; capillary vs. larger vessels) (for full
review, see [69,92,108]).

Overall, and although H2S is a potent vasodilator, very little is known about the
role of CSE, CBS and 3MST-mediated H2S production in the regulation of blood pres-
sure in physiologic and pathophysiologic conditions. Of note, the expression of H2S
producing enzymes and substrate-dependent H2S production are decreased in humans
with hypertension [109,110]. In addition, hypertensive patients with decreased endoge-
nous H2S level have been shown to display microvascular endothelial dysfunction and
impaired endothelium-dependent vasorelaxation [109]. Furthermore, the H2S precursor
N-acetylcysteine decreased systolic and diastolic blood pressures in a clinical trial with
126 hypertensive patients [111]. It was also recently shown than a 6-week antihypertensive
treatment with the sulfhydryl-donating angiotensin converting enzyme (ACE) inhibitor
Captopril improved cutaneous microvascular endothelium-dependent vasodilation in
middle-aged adults with hypertension [112]. This evidence indicates that H2S deficiency
probably contributes to the development of hypertension and that H2S-based therapies
may be of use for treatment of hypertension.
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Scheme 2. H2S promotes vasorelaxation. In VSMC, H2S induces vasodilation mainly via persulfi-
dation/opening of the KATP channels, leading to hyperpolarization, closing of VDCC and VSMC
relaxation. Moreover, persulfidation of eNOS in EC will allow the production of NO, which will
cause sGC/GMP-dependent vasodilation. H2S also promotes TRPV4-mediated Ca2+-influx in EC,
which enhances eNOS/NO expression/production, PLA-2-dependent production of arachidonic-acid
metabolites, and CSE/H2S expression/production. Ca2+ entry also activates Ca2+-sensitive K+ chan-
nels in EC, leading to EC hyperpolarization, which travels through myoendothelial gap junctions to
hyperpolarize nearby VSMC. AA: arachidonic-acid; NO: nitric oxide; VSMC: vascular smooth muscle
cells; eNOS: endothelial nitric oxide synthase; VDCC: voltage-dependent Ca2+ channels; PLA-2:
phospholipase A-2; sGC: soluble guanylate cyclase; GMP: cyclic guanosine-3′,5′-monophosphate;
PKG: protein kinase G; PDE5: Phosphodiesterase 5; EC: endothelial cell; CSE: cystathionine γ-lyase;
KATP: ATP-sensitive potassium channel. TRPV4: transient receptor potential vanilloid 4.

4.2.2. H2S Protects against Atherosclerosis

Atherosclerosis is a chronic progressive inflammatory disease. It is characterized
by the accumulation of cholesterol-rich fatty deposits in the arterial tree. This disease
involves numerous pathophysiological processes. These include EC dysfunction, vascular
inflammation and lipoprotein accumulation, and VMSC proliferation and migration (see
Section 3.1).

Impaired H2S production in Cse−/− mice promotes atherosclerosis [113,114]. In con-
trast, the H2S donors NaHS [114–116] and GYY4137 [117] reduce the extent of vascular
lesions in ApoE−/− mice under high fat diet. S-aspirin (ACS14), a H2S-releasing form of
aspirin, also protects ApoE−/− mice against atherosclerosis [118].
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H2S has been shown to protect against atherosclerosis mostly via anti-inflammatory
(for full review, see [119]) and antioxidant effects (Scheme 3). H2S possibly reduces inflam-
mation mainly via inhibition of nuclear factor kappa B (NF-κB) [113,117,120,121]. NF-κB
is a master regulator of pro-inflammatory genes, including cytokines and cell adhesion
molecules. NaHS inhibits NF-κB activity via persulfidation/stabilization of Inhibitory
kinase of NFκB (IκB) [122], which prevents NF-κB translocation to the nucleus [123]. In
EC, inhibition of NF-κB leads to decreased expression of adhesion molecules vascular cell
adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), thereby
limiting recruitment of leukocyte to the aortic wall [113,117,121,124]. NF-κB inhibition also
decreases production of pro-inflammatory cytokines and chemokines, including TNF-α,
IL-1β, IL-6, and CCL2 [121,125,126]. In macrophages, H2S-mediated peroxisome pro-
liferator activated receptor gamma (PPARγ) inhibition also inhibits C-X3-C chemokine
fractalkine (CX3CL1) signaling in the context of atherosclerosis in ApoE−/− mice [118]. H2S
also inhibits TNF-α expression in EC in a model high glucose-induced vascular inflamma-
tion [127].

In addition, H2S was reported to inhibit leukocyte adherence to the endothelium
via activation of ATP-sensitive K+ channels between EC and monocytes [128]. More-
over, S-sulfhydration of human antigen R (on Cys13) by CSE-derived H2S prevents its
homodimerization and activity, which attenuates the expression of target proteins such as
E-selectin and cathepsin S, which are linked to EC activation and atherosclerosis [74]. Ex-
ogenous H2S also promotes macrophage migration and shift toward the M2, pro-resolution
phenotype [129–131]. However, further studies are required to identify whether H2S has
a direct effect on macrophage state. Moreover, the fact that H2S stimulates eNOS activity
and NO production in EC has been shown to contribute to its anti-inflammatory effect in
the context of atherosclerosis [113,132]. The anti-inflammatory property of H2S may also
involve inhibition of cyclooxygenase (COX2) expression and secretion of prostaglandin
PGE2, which stimulates the secretion of pro-inflammatory cytokines and monocyte ad-
hesion to EC [133]. H2S has also been proposed to protect EC from inflammation by
inhibiting the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome
in atherosclerotic conditions [134].

H2S also protects against atherosclerosis via antioxidant effects (Scheme 3). Excessive
production of reactive oxygen species (ROS), such as superoxide anions O2

−, H2O2, and
NO, leads to cellular and molecular damages. Oxidative stress is linked to the inflammatory
process and contributes to the progression of PAD [135]. H2S is an antioxidant that can
directly reduce ROS. Thus, NaHS protects myocytes and contractile activity by scavenging
oxygen-free radical (O2

−, H2O2), thereby decreasing lipid peroxidation [136]. In the
context of atherosclerosis, NaHS was shown to reduce O2

− formation [115]. H2S also
prevents LDL oxidation and formation of oxidized LDL particles (ox-LDL), resulting in
reduced foam cell formation [137,138]. Interestingly, ox-LDL triggers the hypermethylation
of the CSE promoter, thus decreasing CSE expression and H2S production in murine
macrophages [121,139]. Mitochondrial respiration is a major source of ROS [140,141] and
H2S binds the copper center of cytochrome c oxidase (complex IV), thereby inhibiting
respiration and limiting ROS production [142].

H2S also upregulates antioxidant defenses, in particular the nuclear factor erythroid
2-related factor 2 (NRF2) pathway (reviewed in [143]) (Scheme 3). NRF2 is a major tran-
scription factor that regulates antioxidant genes including heme oxygenase 1 (HO-1),
thioredoxin-1 (TRX-1) and glutathione peroxidase (GPx). H2S promotes NRF2 activity via
persulfidation of Keap-1 on Cys131, leading to dissociation of the cytosolic KEAP1-NRF2
complex, and nuclear translocation of NRF2 to induce the expression of its target genes.
Thus, the H2S donor GYY4137 mitigates diabetes-accelerated atherosclerosis via improved
Nrf2 activation in Ldlr−/− mice, which induces Ho-1 expression and reduces superoxide
formation [144]. Exogenous H2S might protect arterial EC through antioxidant proprieties
by activating the NRF2 pathway [145]. H2S also increases glutathione (GSH) production
via modulation of the transulfuration pathway. GSH is an antioxidant that protects cells by
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reducing ROS. H2S interaction with GSH has been studied in detail in the central nervous
system, where GSH plays a major role in maintaining the homeostasis between antioxidant
and ROS production (reviewed in detail in [146]). In the vascular system, H2S persulfidates
the GPx1, which promotes GSH synthesis and results in decreased lipid peroxidation in the
aortic wall in the context of atherosclerosis [147]. H2S also stimulates TRX-1 expression,
via silencing the expression of inhibitory protein Trx-interacting protein (TXNIP) [148–151].
Trx-1 is instrumental in the cardioprotective effects of H2S against ischemia-induced heart
failure [150]. Trx-1 has atheroprotective effects via suppression of NLRP3 expression in
macrophages after ox-LDL stimulation [152]. Trx-1 also promotes the M2 pro-resolutive
macrophages state in ApoE−/− mice [153]. TRX-1 also suppresses Nox4 activity and ROS
production in HUVEC exposed to ox-LDL [154].
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Scheme 3. Anti-atherosclerotic effects of H2S. H2S persulfides/stabilize IκB, which prevent nucleus
translocation of NFκB, leading to decreased production of pro-inflammatory genes. H2S also persul-
fides Keap1, leading to the translocation of Nrf2 in the nucleus and overexpression of antioxidant
factors. This leads to reduced expression of adhesion molecules (ICAM and VCAM) in EC, thereby
reducing monocyte adhesion and infiltration. In EC, H2S also promotes eNOS/NO, which inhibits
pro-inflammatory signals. In macrophages, NFκB inhibition and Nrf2 activation favor the M2 phe-
notype. Overall, NRF2 activation and NF-κB inhibition in EC and macrophages leads to reduced
secretion of pro-inflammatory factors promoting VSMC dedifferentiation and pathological pheno-
typic change. Moreover, H2S prevents lipid peroxidation, leading to decreased LDL oxidation and
formation of foam cells. H2S also reduces cell apoptosis, limits myofibroblast proliferation and ECM
remodeling, and may reduce vascular intimal calcification ICAM: Intercellular Adhesion Molecule
1; VCAM: vascular cell adhesion molecule1; IκB: Inhibitory kinase of NFκB; NFκB: Nuclear factor
kappa B; COX2: cyclooxygenase-2; PGE2: Prostaglandin E2; NRF2: nuclear factor erythroid 2–related
factor 2; Keap1: Kelch-like ECH-associated protein 1; LDL: low-density lipoprotein; M1: Type 1
macrophages; M2: Type 2 macrophages; ROS: reactive oxygen species; ECM: extracellular matrix; EC:
endothelial cells; VSMC: vascular smooth muscle cells.
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H2S biosynthesis also occurs in adipocytes. Increased adiposity-enhanced oxidative
stress and obesity-related low grade adipose tissue inflammation play a crucial role in the
development of atherosclerosis [155]. The perivascular adipose tissue (PVAT), in partic-
ular, has been proposed to contribute to cardiovascular pathogenesis by promoting ROS
generation and inflammation. The PVAT is the fourth outer layer of vessels surrounding
the vasculature, which has emerged as an active modulator of vascular homeostasis and
pathogenesis of cardiovascular diseases [156,157]. The adipose tissue is a very active en-
docrine tissue, secreting a variety of adipokines, including leptin and adiponectin, and
pro- inflammatory cytokines such as TNFα IL-1β and IL-6. Leptin has been found to
promote atherosclerosis, whereas adiponectin has been shown to have anti-inflammatory
and anti-atherogenic effects [158–160]. H2S could reduce atherosclerosis by the inhibition
of adipogenesis [161]. H2S deficiency may affect the process of adipocyte maturation and
lipid accumulation. 3-MST knockdown also facilitated adipocytic differentiation and lipid
uptake. The 3-MST/H2S system plays a tonic role in suppressing lipid accumulation and
limiting the differentiation of adipocytes [162].

Overall, H2S has been found to be cytoprotective in oxidative stress in a wide range of
physiologic and pathologic conditions.

4.2.3. H2S Protects against Vascular Medial Calcification

First and foremost, H2S can protect from arterial calcification indirectly. As stated in
Section 3.2, chronic kidney disease and diabetes mellitus are the leading causes of VMC. H2S
has been shown to provide benefits against both pathologies. These will be not discussed in
this review due to space constraints. Readers interested in a more in-depth analysis of the
benefits of H2S against diabetes are referred to other reviews [163,164]. H2S has been shown
to decrease blood glucose, atherosclerosis, and diabetic cardiomyopathy in the context of
diabetes in pre-clinical models [165,166]. H2S also provides renal protection against various
injury, including models of diabetic nephropathy [167]. Below we detail the studies directly
measuring the impact of H2S on the process of VMC in various experimental in vitro and
in vivo models (Scheme 4).

VMC is an accumulation of Ca2+ and inorganic phosphate (Pi) in arteries with mineral
deposits in the intimal or medial layer of the vessel wall [168,169]. VMC formation is
a complex, controlled molecular process involving the differentiation of macrophages
and VSMC into osteoclast-like cells, like that which occurs in bone formation [170,171]
(see Section 3.2). In recent years, H2S supplementation has been shown to lessen VMC.
In this section, we discussed these studies and their molecular insight into the potential
mechanisms underlying the benefits of H2S on VMC (Scheme 4).

Using a model of VMC by administration of vitamin D3 plus nicotine (VDN), it
was shown in rats that Cse expression is downregulated in the context of VMC, and that
treatment with H2S donors NaHS [172] or AP39 [173] lessens VMC in that model. Similarly,
exogenous NaHS treatment also restored Cse activity and expression, and inhibited aortic
osteogenic transformation in a rat model of diabetic nephropathy [163]. NaHS also limits
Ca2+ deposition in VSMC in in vitro models of calcification in cell culture [138,174,175].

Mechanistically, H2S has been proposed to limit VMC via reduced ER stress-induced
VSMC phenotypic reprogramming [173]. H2S attenuates VSMC calcification induced by
high levels of glucose and phosphate through upregulating elastin level via the inhibition of
the signal transducer and activator of transcription 3 (Stat3), leading to reduced Cathepsin
S expression [175]. NaHS also significantly reduced Stat3 activation, cathepsin S activity in
a rat model of diabetic nephropathy [163]. In another model of VSMC calcification induced
by circulating calciprotein particles, H2S was shown to mitigate VMC via activation of the
antioxidant factor NRF2 [174]. Overall, H2S likely acts on several pathways improving
VSMC identity to avert osteogenic transformation (Scheme 4). Of note, low plasma levels
of H2S and decreased CSE enzyme activity were found in patients with chronic kidney
disease receiving hemodialysis [138,176], suggesting that low H2S may contribute to VMC
in patients.
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Scheme 4. H2S and vascular medial calcification. In VSMC, H2S inhibits STAT3 and cathepsin
S, which will stop the elastin degradation and improves the resolution of vascular calcification.
Moreover, H2S increases the production of antioxidant genes Nrf2, which inhibits vascular calcifi-
cation. Vascular calcification is also reduced by the inhibition of ER-stress by H2S. STAT3: Signal
transducer and activator of transcription 3; ER-stress: Endoplasmic reticulum-stress; IκB: Inhibitory
kinase of NFκB; NFκB: Nuclear factor kappa B; NRF2: nuclear factor erythroid 2–related factor 2;
KEAP1: Kelch-like ECH-associated protein 1;CBFα1: core-binding factor alpha1; ECM: extracellular
matrix; EC: endothelial cells; VSMC: vascular smooth muscle cells.

From a translational point of view, it should be mentioned that the FDA-approved
H2S donor Sodium thiosulfate (STS) reduces periarticular calcification in a mouse model
of osteoarthritis via its effects on chondrocyte mineralization [177]. STS is already used
in the clinic to treat cyanide poisoning and to increase the solubility of Ca2+ for the treat-
ment of acute calciphylaxis, a rare vascular complication of patients with end-stage renal
disease [178]. The phase III CALISTA trial of STS for acute calciphylaxis is ongoing
(NCT03150420) and STS is also tested in a few clinical trials for the treatment of ectopic
calcification (NCT03639779; NCT04251832; NCT02538939). Although STS has not been
shown to reduce VC, it stands to reason that STS should be explored for the treatment of
VMC in the context of PAD.
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4.2.4. H2S Supports Endothelial Cell Function

With one simple monolayer, the endothelium regulates vascular tone, cell adhesion
and vessel wall inflammation, and VSMC phenotype. Atherosclerosis and PAD preferen-
tially develop at site of disturbed arterial flow leading to “endothelium activation”. As
described in the previous sections, impaired EC-derived H2S contributes to inflammation
and oxidative stress, leading to atherosclerosis. The ability of EC to proliferate and migrate
to restore the endothelial barrier of the vessel is a key feature in wound healing, vascular
repair, and the resolution of inflammation. In this section, we describe the effects of H2S
in EC proliferation and migration, which constitute an interesting avenue of research to
promote therapeutical angiogenesis for PAD patients (Scheme 5). The benefits of H2S on
EC may also limit MVD, which contributes to the severity of PAD (see Section 3.3).
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Scheme 5. H2S promotes angiogenesis. H2S promotes VEGF signaling via persulfidation/activation
of the VEGFR2, leading to (i) increased eNOS/NO expression/production; (ii) increased MAPK
signaling; (iii) increased CSE/H2S expression/production in a positive feedback loop. H2S further
enhances NO production via eNOS persulfidation. Altogether, these effects facilitate VEGF-induced
sprouting angiogenesis. In addition, H2S inhibits mitochondrial respiration, which promotes gly-
colysis and ATP production, proliferation, and migration in hypoxic condition. Akt: Protein ki-
nase B, EC: endothelial cells; ERK: Extracellular signal-regulated kinase; ETC: electron transport
chain; GLUT: glucose transporter; IP3: inositol triphosphate; MKK: mitogen-activated kinase kinase;
PI3K: phosphor-inositol 3 kinase; PKC: protein kinase C; VEGFR2: Vascular endothelial growth factor
receptor 2; NO: nitric oxide; eNOS: endothelial NO synthase; persulf: perfulfidation; EC: endothelial
cells; CSE: cystathionine γ-lyase.

Preclinical studies have shown that H2S and polysulfites stimulate EC angiogenesis
and arteriogenesis. Thus, H2S donors stimulate the growth, motility, and organization
of EC into a vascular structure in vitro [179]. Conversely, inhibition of H2S biosynthesis,
either by pharmacological inhibitors or by silencing CSE, CBS or 3MST, reduces EC growth
and migration in vitro [180,181]. Cse−/− mice also show reduced vascular endothelial
growth factor (VEGF)-induced sprouting angiogenesis in the mouse aortic ring assay
ex vivo [182]. In vivo studies on chicken chorioallantoic membranes treated with the
CSE inhibitor propargylglycine (PAG) also indicate that CSE is important for vascular
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branching [182]. In vivo, there is no adequate PAD model. Most studies are conducted
using the hindlimb ischemia (HLI) model, which can be applied to rodent and pigs alike.
In this model, transection or occlusion of the femoral or iliac artery leads to ALI. Recovery
from ALI is then followed for 2 to 4 weeks via angiographic scores, return of hind limb
blood flow, and capillary density in the gastrocnemius muscle. As such, the model allows
for assessment of arteriogenesis and angiogenesis-mediated neovascularization. Using
this model, it was shown that whole-body Cse−/− mice with impaired H2S production
displayed impaired neovascularization [114,183]. Conversely, we recently showed that Cse
overexpression in transgenic mice is sufficient to promote neovascularization following
HLI [184]. Various H2S donors such as NaHS, GYY4137, ZYZ-803, a hybrid NO and H2S
donor were also shown to improve capillary density, angiographic scores, and hind limb
blood flow in rodent models [179,185,186]. Fu et al. also reported that H2S-saturated
water accelerates perfusion recovery through improved arteriogenesis in the abductor
muscle and increased capillary density in the gastrocnemius muscle in the mouse [187].
Diallyl trisulfide, S-allylcysteine and S-propyl-L-cysteine, organosulfur compounds found
in garlic, were also shown to improve blood flow recovery after HLI in mice in various
context [188–193]. Rushing et al. also showed that SG1002, a H2S-releasing pro-drug,
increases leg revascularization and collateral vessel number after occlusion of the external
iliac artery in the minipig [194]. We also recently showed that the H2S donor STS promotes
EC proliferation and migration in vitro, and VEGF-induced angiogenesis in vivo. STS also
accelerates neovascularization in the HLI model in WT and Ldlr−/− male mice [195].

Several mechanisms have been proposed to explain H2S-induced angiogenesis (Scheme 5).
Most studies report that H2S promotes VEGF-driven sprouting angiogenesis. Thus, over-
expression of CSE, CBS and 3-MST leads to an increase in VEGF expression and decrease
in anti-angiogenic factor endostatin [196]. Similarly, NaHS increases VEGF expression
while reducing the levels of anti-angiogenic factors [197]. In EC, H2S induces the VEGF
receptor VEGFR2 persulfidation, which facilitates dimerization, autophosphorylation and
activation [198]. Interestingly, short-term exposure of human EC to VEGF increases H2S
production [182], suggesting a positive feedback loop of VEGF signaling through H2S.
Matrigel plug angiogenesis assay also confirmed the importance of CSE and H2S in VEGF-
induced angiogenesis [195,199,200]. CSE overexpression is also sufficient to stimulate
VEGF-dependent EC migration in vitro, and capillary formation using an aortic ring assay
ex vivo [184]. CSE and H2S are also required for VEGF-dependent EC migration and
angiogenesis in response to amino acid restriction [80]. Exogenous H2S donors have also
been shown to stimulate the growth pathways Akt, p38 and ERK1/2, which all promote
EC proliferation and migration [182,200,201]. EC migration is also activated by exogenous
H2S through KATP channels/MAPK pathways in vitro [182]. CSE overexpression has also
been reported to increase cGMP level [199], which fuels capillary tube formation [187].
In addition, H2S promotes angiogenesis via interactions with NO, which is essential for
EC survival and growth during VEGF- or bFGF-induced angiogenesis [202]). Finally, H2S
is proposed to promote angiogenesis by inhibiting mitochondrial electron transport and
oxidative phosphorylation, increasing glucose uptake and glycolytic ATP production re-
quired to rapidly power EC migration [80]. Indeed, under hypoxia when mitochondrial
respiration is not possible, glycolysis fuels EC migration and proliferation during angiogen-
esis [203,204]. H2S promotes the metabolic switch in EC to favor glycolysis, which drives
VEGF-induced EC migration [80,205] (Scheme 5).

4.2.5. H2S Inhibits Intimal Hyperplasia: Post-Operative Management of CLTI Patients

The revascularization procedure in CLTI patients is plagued by restenosis of the
operated area, a progressive reduction of the vessel lumen at the site of angioplasty, or at the
anastomosis of a bypass graft. Restenosis is mainly related to a complex phenomenon called
IH (see Section 3.4). IH is characterized by a thickened wall due to VSMC proliferation
and deposition of a proteoglycan-rich ECM between the endothelium and the internal
elastic lamina.
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Mice lacking Cse show a significant increase in IH formation as compared to WT mice
in a model of carotid artery ligation [205,206]. On the contrary, Cse overexpression decreases
IH formation in a murine model of vein graft by carotid-interposition cuff technique [207].
We and others demonstrated that systemic treatment using diverse H2S donors inhibit
IH in vivo in various models in rats [208], rabbits [209] and mice [205,206,210]. We also
showed that various H2S donors inhibit IH ex vivo in a model of vein graft IH [205,210,211].
Recently, it was shown that a locally applicable gel containing the hydrogen sulfide releasing
prodrug (GYY4137) mitigates graft failure and improves arterial remodeling in a model
of vein graft surgery in the mouse [212]. We also recently showed that a H2S-releasing
biodegradable hydrogel inhibited VSMC proliferation while facilitating EC proliferation
and migration, which inhibited IH in an ex vivo model of human vein graft disease [211].

H2S probably reduces IH mainly via inhibition of VSMC proliferation (Scheme 6).
Indeed, several studies demonstrated that H2S supplementation using various donors, or
CSE overexpression, decreases VSMC proliferation [205,209–211,213]. H2S also specifically
inhibits VSMC migration. Thus, Several H2S donors have also been shown to reduce VSMC
migration in vitro [205,210,211]. VSMC isolated from Cse−/− mice also migrate faster than
wild type VSMC, and blocking CSE activity using PAG increases VSMC migration [206,214].

The mechanisms whereby H2S affects VSMC proliferation and migration are not
fully understood (Scheme 6). In mouse VSMC, H2S has been shown to modulate the
MAPK pathway, especially ERK1,2 [208], and Ca2+-sensing receptors [215,216]. H2S may
also limit MMP2 expression and ECM degradation, preventing VSMC migration from
the media to the intima [206,214]. In human VSMC, we reported that the H2S donor
Zofenopril decreases the activity of the MAPK and mTOR pathways, which correlates with
reduced VSMC proliferation and migration [210]. We also showed that the H2S donors
NaHS and Sodium thiosulfate (STS; Na2S2O3) inhibit microtubule polymerization, which
results in cell cycle arrest and inhibition of proliferation and migration in primary human
VSMC [205]. Interestingly, an ongoing clinical study aims to evaluate the efficacy and
safety of STS compared to placebo on myocardial infarct size in ST-segment elevation
myocardial infarction (STEMI) patients treated with percutaneous coronary intervention
(NCT02899364). The anti-inflammatory properties of H2S may also contribute to reduced
IH [217,218] and it was recently shown that NaHS prevents IH through activation of the
Nrf2/HIF1α pathway [219].

4.3. Further Directions and Limitations

Although H2S research is still in its early stages, there is considerable evidence to
suggest that this gas plays a protective role in the development of cardiovascular disease.
As mentioned throughout the review, H2S acts in concert with NO, and the vascular
effects of NO and H2S are mutually supportive and intertwined (for a complete review,
see [69]). Due to poor tolerability and uncontrolled hypotensive effects, all therapeutic
strategies based on NO have failed. Whether H2S-based solutions can succeed where NO
has failed remains to be seen. There is currently no clinically approved molecule that
exploits the therapeutic potential of H2S. Most compounds available for research have
poor translational potential due to their pharmacokinetic properties. Developing stable
H2S donors that allow slow and sustained H2S release over months/years will be the first
challenge. Given the instability and short half-life of H2S, such molecules are difficult
to design. Another challenge for systemic or local H2S release is the delivery system, as
H2S donors may require a carrier system. Gels, nanoparticles, multilayer coatings, and
biodegradable scaffolds were invented for sustained release. Applying this knowledge
to H2S donors will be interesting. Another strategy to harness the benefits of H2S is to
conjugate the H2S-releasing moiety with well-established parent compounds. For example,
the sulphhydrylated ACEi zofenopril has been shown to improve clinical outcomes in
patients with various cardiovascular diseases such as acute myocardial infarction and
congestive heart failure [220–222]. S-aspirin (ACS14), an H2S-releasing form of aspirin,
and otenaproxesul, an H2S-releasing non-steroidal anti-inflammatory drug developed by
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Antibe Therapeutics Inc, may also prove beneficial for vascular patients. Further work is
needed to evaluate the therapeutic potential of these molecules against atherosclerosis, but
also against VMC and MVD in PAD. H2S-eluting balloons and stents would be interesting
tools to limit VSMC proliferation while promoting EC recovery to limit IH in PAD/CLTI
patients requiring surgery.

Strategies to increase endogenous H2S production using small molecules or diet are
also explored. However, further animal studies are needed to understand and leverage
endogenous H2S production and to test the potential and safety of new H2S-based therapies.
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Scheme 6. H2S decreases intimal hyperplasia. H2S decreases the activity of the MAPK and mTOR
pathways, which correlates with reduced VSMC proliferation and migration. H2S inhibits the
microtubule polymerization leading to an arrest of cell-cycle inhibition of proliferation and migration
of VSMC. H2S also reduces MMP2 expression and ECM degradation, inhibiting VSMC migration
from the media to the intima. MEK1/2: mitogen-activated protein kinases; ERK: Extracellular
signal-regulated kinase; NFκB: Nuclear factor kappa B; mTOR: mammalian target of rapamycin;
MMP2: matrix metalloproteinase-2; TLR4: toll-like receptor 4; GPCR: G protein-coupled receptors;
IGF-1: insulin-like Growth Factor 1; IGF-1R: IGF-1 receptor; IRS-1: insulin receptor substrate 1; PDGF-
BB: Platelet-derived growth factor BB; FGF: fibroblast growth factor; EGF: epidermal growth factor;
TNFα: tumour necrosis factor alpha; IL-1β: interleukin-1 beta; MCP-1: monocyte chemoattractant
protein-1; ECM: extracellular matrix; EC: endothelial cells; VSMC: vascular smooth muscle cell;
CSE: cystathionine γ-lyase.
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5. Conclusions

PAD is a chronic, recurrent disease with a major impact on quality of life and dev-
astating long-term clinical outcomes. PAD remains underdiagnosed and undertreated
compared to other atherosclerotic diseases such as myocardial infarction and stroke. Emerg-
ing evidence suggests that PAD has different pathological features in peripheral vessels
compared to the well-characterized coronary arteries, in particular media calcification
and microvascular dysfunction. In addition, the incidence of restenosis following surgical
revascularization remains high. The increasing number of PAD and CLTI patients, com-
bined with difficult long-term pharmacological and surgical management, warrants further
research to better understand the molecular mechanisms of PAD.

Although still in its early stages, research into H2S suggests its potential to protect
against cardiovascular disease. The success of H2S-based solutions remains uncertain and
there are currently no clinically approved molecules exploiting its therapeutic potential.
The development of stable H2S donor molecules for sustained release is challenging due to
the instability of the gas. Delivery systems such as gels, nanoparticles and biodegradable
scaffolds designed for sustained release could be applied to H2S donors. H2S-eluting
balloons and stents may be useful in limiting VSMC proliferation and promoting EC
recovery in patients with PAD. Another strategy is to combine H2S donors with established
drugs. Strategies to increase endogenous H2S production using small molecules or diet
are also investigated. Further studies are needed to explore the therapeutic potential and
safety of these molecules against atherosclerosis, vascular calcification, and microvascular
dysfunction. The advancement of this knowledge will contribute to the development of
successful H2S-based therapies in the future.
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