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Abstract: Atypical hemolytic uremic syndrome (aHUS) is a rare, life-threatening thrombotic mi-
croangiopathy. Definitive biomarkers for disease diagnosis and activity remain elusive, making
the exploration of molecular markers paramount. We conducted single-cell sequencing on pe-
ripheral blood mononuclear cells from 13 aHUS patients, 3 unaffected family members of aHUS
patients, and 4 healthy controls. We identified 32 distinct subpopulations encompassing 5 B-cell types,
16 T- and natural killer (NK) cell types, 7 monocyte types, and 4 other cell types. Notably, we observed
a significant increase in intermediate monocytes in unstable aHUS patients. Subclustering analy-
sis revealed seven elevated expression genes, including NEAT1, MT-ATP6, MT-CYB, VIM, ACTG1,
RPL13, and KLRB1, in unstable aHUS patients, and four heightened expression genes, including
RPS27, RPS4X, RPL23, and GZMH genes, in stable aHUS patients. Additionally, an increase in
the expression of mitochondria-related genes suggested a potential influence of cell metabolism on
the clinical progression of the disease. Pseudotime trajectory analysis revealed a unique immune
cell differentiation pattern, while cell—cell interaction profiling highlighted distinctive signaling
pathways among patients, family members, and controls. This single-cell sequencing study is the
first to confirm immune cell dysregulation in aHUS pathogenesis, offering valuable insights into
molecular mechanisms and potential new diagnostic and disease activity markers.

Keywords: atypical hemolytic uremic syndrome; complement; disease activity; single cell
sequencing; therapy

1. Introduction

Atypical hemolytic uremic syndrome (aHUS) is a rare and life-threatening thrombotic
microangiopathy (TMA) disease characterized by a triad of microangiopathic hemolytic
anemia, thrombocytopenia, and acute kidney injury. This presentation is distinct from
thrombotic thrombocytopenic purpura and other TMA diseases. The TMA of aHUS affects
multiple organ systems, often leading to rapid multi-organ failure and mortality [1]. The
pathogenesis of aHUS is closely related to the dysregulation of the complement system,
which normally functions to protect the body against invading pathogens that can damage
cells. In aHUS, alternative complement pathway gene mutations or the dysregulation
of complement regulators can lead to the excessive activation of the complement system
after the body’s environment has come into contact with a range of triggers, including
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infection, pregnancy, and specific drugs. The deposition of complement components
on endothelial cells triggers a series of downstream events, including the recruitment
and activation of immune cells, such as neutrophils and monocytes, which adhere to the
endothelial cells and contribute to the formation of blood clots. This process is mediated by
the expression of adhesion molecules on the surface of endothelial cells, which interact with
receptors on the surface of immune cells [2]. Furthermore, mutations in the genes related
to the lectin pathway, classic pathway, and coagulation pathway have been identified
in several aHUS studies. It should be noted that patients may present with multiple
genetic variations, as opposed to a single gene mutation [3]. Plasma exchange is not
universally effective in all cases of aHUS, and a significant number of aHUS patients
require costly anti-complement therapy as a life-saving measure. The optimal timing
for the discontinuation of anti-complement therapy in aHUS patients remains undefined.
However, the monitoring of hemolysis markers—including hemoglobin, platelet count,
lactate dehydrogenase, haptoglobin, blood smear, and an evaluation of organ function, as
well as the measurement of 50% hemolytic complement (CH50) activity in serum—may be
used to guide this decision [4].

Complement plays a critical role in regulating the activation of T- and B-cells, and this
is achieved through various receptors and regulators, such as CD46, CR1, CD59, and CD55.
C3d acts as a molecular adjuvant for B-cell activation by reducing the activation threshold.
Furthermore, the interaction of CR2 on B-cells with C3d and iC3b forms a co-receptor
complex with CD19 and CD81, which facilitates antigen presentation and the production of
antigen-specific IgG. C4 is important for maintaining B-cell tolerance, while the activation
of complement may lead to autoimmune diseases. C3 is also essential for the generation
and persistence of memory B-cells in germinal centers, where it binds to CR2 on follicular
dendritic cells, leading to the presentation of antigens and the induction of effector and
memory B-cells [5].

Approximately 35–50% of patients with atypical hemolytic uremic syndrome (aHUS)
do not exhibit any detectable pathogenic genes [4,6]. However, these patients still respond
to anticomplement therapy. Currently, there is no definitive biomarker to indicate the
disease activity of aHUS. Clinicians must rely solely on the improvement of clinical symp-
toms of TMA in the absence of the progression of hemolysis markers. Unfortunately, in
critical clinical scenarios, such indicators may only manifest after it is too late to control
the progression of aHUS. Therefore, the identification of a molecular marker for disease
activity is of utmost importance. Given the critical role of complement in maintaining the
homeostasis of the human immune system and endothelial adhesion—and the correlation
with immune cells—while the current understanding of the circulating immune cell types
and states implicated in aHUS remains unknown, we hypothesize that the dysregulation of
specific immune cells may contribute to the pathogenesis of aHUS.

Single-cell sequencing (scRNA-seq) is a cutting-edge tool that permits the assessment
of heterogeneity among various immune subpopulations, enabling the investigation of
gene expression and intracellular signaling pathways at the single-cell or cell type level to
understand the progression of diseases. To explore the role of immune cell dysregulation in
aHUS pathogenesis, we conducted scRNA-seq analysis on peripheral blood mononuclear
cells (PBMCs) from 13 aHUS patients, 3 aHUS relative family members without a diagnosis
of aHUS, and 4 healthy controls, identifying specific immune cell subpopulations and
pathways implicated in aHUS. We compared immune cell dysregulation between aHUS
patients, aHUS family members, and healthy controls, as well as between aHUS patients
with stable versus unstable disease activity and those undergoing plasmapheresis versus
those receiving both plasmapheresis and anti-complement therapy. Our study is the first to
examine immune cell regulation in aHUS, deepening our understanding of immune cell
pathogenesis and providing clinical insights.
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2. Results
2.1. The Demography of Studied Cases

Table 1 presents the clinical features of 13 aHUS patients diagnosed with hemolytic
anemia, thrombocytopenia, and acute kidney injury, excluding infectious, autoimmune, or
malignant etiologies. The patients’ ages spanned from 30 to 81 years, with balanced gender
distribution (7:6). All exhibited extrarenal manifestations, with nine (69.2%) stable and four
(30.8%) unstable cases. Treatment involved plasma exchange alone (five cases, 38.5%) or
combined with anti-complement therapy (eight cases, 61.5%).

Table 1. Characteristics of 13 aHUS patients.

Case Age Gender TMA Involvement Organ Treatment Disease Activity

a1 39 M Kidney, brain, lung, heart PE Stable

a3/a5 81 M Kidney, heart a3 before 1st PE
a5 after PE Unstable

a4 66 M Kidney, brain, heart PE + anti C5 Stable
a7 36 F Kidney, heart, pancreas, eye PE + anti C5 Stable
a8 33 F Kidney, brain, lung, heart PE Unstable
a9 62 F Kidney, brain, heart PE + anti C5 Unstable
a10 39 M Kidney, brain, lung, heart, eye PE + anti C5 Stable
a11 30 F Kidney, brain, lung, heart, eye, bowel PE + anti C5 Stable
a12 42 F Kidney, brain, lung, heart, pancreas, liver, eye, skin PE + anti C5 Stable
a13 53 M Kidney, brain, heart PE + anti C5 Stable
a14 70 M Kidney, brain, heart PE Unstable
a16 62 F Kidney, heart PE Stable
a17 49 F Kidney, brain, lung, heart, pancreas, liver, eye PE + anti C5 Stable

F, female; M, male; TMA, thrombotic microangiopathy; PE, plasma exchange; anti-C5, anti-complement therapy.

2.2. The Immunological Landscape of Immune Cells from aHUS, aHUS Family, and Healthy

We conducted scRNA-seq on PBMCs from aHUS patients (N = 13), family members
(N = 3), and healthy controls (N = 4) to examine immune cell heterogeneity in aHUS
(Figure 1a). After preprocessing and quality control, we obtained single-cell transcriptomes
of 112,191, 24,848, and 37,539 immune cells from aHUS patients, family members, and
healthy controls, respectively. This enabled distinguishing among groups, disease activity,
and treatments (plasma exchange only, combined anti-complement therapy).

Using SCTransform normalization and robust principal component analysis (rPCA) in
Seurat, we identified 32 PBMC cell subpopulations in aHUS patients. SingleR annotation
predicted B-cells, T-cells, monocytes, macrophages, dendritic cells, NK cells, megakary-
ocytes, granulocytes, and progenitors (Figure 1b). The analysis of five B-cell subpopulations
displayed high diversity in aHUS patients and families, influenced by disease activity and
treatment (Figure 2a–c). The investigation of 16 T and NK cell subpopulations also revealed
significant diversity (Figure 3a), impacted by disease activity and treatment (Figure 3b,c).
In seven monocyte subpopulations, aHUS patients had more intermediate monocytes than
healthy controls (Figure 4a). Additionally, intermediate monocytes with higher numbers in
the unstable aHUS group (Figure 4b) increased in combined treatment compared to plasma
exchange alone (Figure 4c).

2.3. Cell Populations in PBMCs
2.3.1. Comparing aHUS Patients, aHUS Family, and Healthy Controls

Utilizing Wilcoxon rank sum tests, we discovered significant increases in various
immune cell populations, such as plasmablasts, intermediate monocytes, terminal effector
CD4 T-cells, Th1 cells, Th1/Th17 cells, Th17 cells, effector memory CD8 T-cells, central
memory CD8-T cells, and terminal effector CD8 T-cells in aHUS patients compared to the
controls (p < 0.05, Figure 5a–i). Notably, aHUS families showed intermediate cell popu-
lation levels between aHUS patients and healthy controls for plasmablasts, intermediate
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monocytes, terminal effector CD4 T-cells, Th1 cells, effector memory CD8 T-cells, and
terminal effector CD8 T-cells.
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Figure 1. The immune cell phenotype of aHUS patients, aHUS family, and healthy controls were
investigated using scRNA-seq analysis of PBMCs. The study design is presented in (a). UMAP
coordinates showing the distribution of immune cells in PBMCs are presented in (b).

Non-switch memory B-cells and plasmacytoid dendritic cells were more abundant
in controls than in aHUS patients and families (p < 0.05, Figure 5j,k). Intermediate and
classical monocytes were higher in patients compared to families (p < 0.05, Figure 5l,m),
while non-classical monocytes were lower in patients compared to families (p < 0.05,
Figure 5n).

2.3.2. Comparing Stable and Unstable aHUS Patients, aHUS Family, and Healthy Controls

Intermediate monocytes were significantly enriched in the unstable aHUS group,
followed by the stable group, aHUS family, and the controls (p < 0.05, Figure 6a). Conversely,
classical monocytes were enriched in the stable group compared to the unstable group
(p < 0.05, Figure 6b). Plasmablasts, non-Vd2 gd T-cells, and effector memory CD8 T-cells
increased in the unstable group, followed by the stable group, aHUS family, and controls,
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with significant differences between the control and unstable groups (p < 0.05, Figure 6c–e).
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Figure 2. The relative abundance of subpopulations of B-cells is shown in (a), while the impact
of aHUS disease activity on B-cell subpopulations is presented in (b), and the influence of aHUS
treatment on B-cell subpopulations is shown in (c). The identifiers N01F, N01M, and N05S correspond
to the individual cases of three aHUS family members included in our study. Similarly, the identifiers
RJ, YB, MH, and RG denote the individual cases of four healthy controls in our study.

Plasmacytoid dendritic cells were more abundant in the healthy group, followed by
the aHUS family, stable group, and unstable group (p < 0.05, Figure 6f), with the unstable
group showing significantly lower levels compared to the control group. For non-switched
B-cells, the stable group had significantly lower levels compared to the control group
(p < 0.05, Figure 6g).
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Figure 3. The relative abundance of subpopulations of T- and natural killer (NK) cells is shown in (a),
the impact of aHUS disease activity on T- and NK cell subpopulations is presented in (b), and the
influence of aHUS treatment on T- and NK cell subpopulations is shown in (c).

2.3.3. Comparing Different Treatment in aHUS Patients, aHUS Family, and
Healthy Controls

In this subgroup analysis of aHUS treatment, intermediate monocyte enrichment
showed an increasing trend from the plasma exchange group to the combined plasma
exchange with anti-complement therapy group, aHUS family group, and healthy control
group (Figure 7a). The difference was only statistically significant (p < 0.05) between
plasma exchange and healthy control groups, with no significant difference between the
two treatment groups. Plasmacytoid dendritic cell abundance exhibited an increasing
trend from the healthy control group to the aHUS family group, followed by the combined
therapy group and plasma exchange group, with the highest levels occurring in the controls
and the lowest levels in the plasma exchange group (Figure 7b). The combined therapy
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group exhibited significant enrichment of follicular helper T-cells, Th1/Th17 cells, and
Th17 cells compared to the plasma exchange group (Figure 7c–e, p < 0.05). Non-switched
memory B-cells were significantly less abundant in the combined therapy group compared
to the control group (Figure 7f, p < 0.05).
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2.4. Cell Subclusters in PBMCs
2.4.1. Comparing aHUS Patients, aHUS Family, and Healthy Controls

This study identified significant differences in immune cell subclusters among aHUS
patients, aHUS family members, and healthy controls. In aHUS patients compared to
healthy controls, we observed increased levels of classical monocytes (subclusters 6, 7) with
higher RPS27 and IFI27 expression (Figure 8a,b), central memory CD8 T-cells (subcluster 3)
with higher CXCR4 expression in patients and family members, non-Vd2 gd T-cells (sub-
cluster 4) with higher SYNE2 expression, Th1 T cells (subcluster 3) with higher MT-CYB
expression, and Th17 cells (subcluster 4) with higher MT-ATP6 expression (Figures S1–S4).

Conversely, in healthy controls compared to aHUS patients, increased levels were
found for central memory CD8 T-cells (subcluster 1) with higher EIF3E expression, Th1
cells (subcluster 0) with higher RPS27 expression, non-classical monocytes (subcluster 5)
with higher LYPD2 expression, terminal effector CD4 T-cells (subcluster 3) with higher
KLRD1 expression, and Th17 cells (subcluster 3) with higher ACTG1, CD52, and LGALS1
expression (Figures S1 and S3–S6). Gene expression levels for each cell type were illustrated
using dot plots, and the findings are summarized in Table 2.

2.4.2. Comparing Stable and Unstable aHUS Patients, aHUS Family, and Healthy Controls

Our study revealed significant differences in immune cell subclusters among unstable
aHUS, stable aHUS, aHUS family members, and healthy controls. In unstable aHUS com-
pared to stable aHUS, we observed increased classical monocytes (subcluster 4) with higher
NEAT1, MT-ATP6, and MT-CYB expression, central memory CD8—cells (subclusters 2)
with elevated VIM expression, non-Vd2 gd T-cells (subcluster 1) with increased ACTG1
expression, and terminal effector CD8 T-cells (subclusters 3, 5) with elevated RPL13 and
KLRB1 expression (Figures S7–S10).
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Figure 8. The figure presents boxplots displaying the subcluster significant abundance of classical
monocytes (a) in PBMCs of individuals with aHUS, aHUS family, and healthy subjects. (b) Dot
plots of the gene expression profiles of the top 10 marker genes in each subcluster are also provided.
Statistically significant differences are indicated by * p < 0.05 and ** p < 0.01.

In contrast, subclusters that increased in stable aHUS compared to unstable aHUS
include central memory CD8 T-cells (subcluster 1) with higher RPL23 expression, non-Vd2
gd T-cells (subcluster 0) with elevated GZMH expression, and Th1 cells (subcluster 0)
with increased RPS27 and RPS4X expression (Figures S8, S9 and S11). These findings are
summarized in Table 3.

2.5. Trajectory Analysis for B-Cell, T-Cell, and Monocyte
2.5.1. Comparing aHUS Patients, aHUS Family, and Healthy Control

Cytopath analysis showed immune cell state dynamics in B-cell, T-cell, and monocyte
trajectories (Figure 9). Naïve B-cells, exhausted B-cells, and non-switched memory B-cells
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in the aHUS group peaked at pseudotimes 0, 9, and 12, differing from healthy controls and
aHUS nuclear families. From pseudotimes 5 to 10, naïve B-cell abundance was highest
in the healthy controls, followed by aHUS families, and was lowest in the aHUS group
(Figure 10a).

Table 2. Significant difference in cell subclusters in aHUS and healthy controls.

Significantly Increased Immune Cell Subclusters in aHUS Patients Compared to Healthy Controls with Correlated Gene
Expression Increasing

Cell Subclusters p value Higher expression levels of gene
Classical monocyte subclusters 6 p < 0.01 RPS27
Classical monocyte subclusters 7 p < 0.05 IFI27
Central memory CD8 T-cells subcluster 3 p < 0.05 CXCR4
Non-Vd2 gd T-cells subcluster 4 p < 0.05 SYNE2
Th1 cells subcluster 3 p < 0.05 MT-CYB
Th17 cells subcluster 4 p < 0.05 MT-ATP6
Significantly Increased Immune Cell Subclusters in Healthy Controls Compared to aHUS Patients with Correlated Gene
Expression Increasing
Cell Subclusters p value Higher expression levels of gene
Central memory CD8 T-cells subcluster 1 p < 0.05 EIF3E
Th1 cells subcluster 0 p < 0.05 RPS27
Non classical monocytes subcluster 5 p < 0.01 LYPD2
Terminal effector CD4 T-cells subcluster 3 p < 0.01 KLRD1
Th17 cells subcluster 3 p < 0.05 ACTG1, CD52 and LGALS1

Table 3. Significant difference in cell subclusters in aHUS disease activity.

Significantly Increased Immune Cell Subclusters in Unstable aHUS Patients Compared to Stable aHUS Patients with
Correlated Gene Expression Increasing

Cell Subclusters p value Higher expression levels of gene
Classical monocyte subclusters 4 p < 0.05 NEAT1, MT-ATP6 and MT-CYB
Central memory CD8-T cells subcluster 2 p < 0.05 VIM
Non-Vd2 gd T-cells subcluster 1 p < 0.05 ACTG1
Terminal effector CD8—cells subcluster 3 p < 0.05 RPL13
Terminal effector CD8 T-cells subcluster 5 p < 0.01 KLRB1
Significantly Increased Immune Cell Subclusters in stable aHUS Patients Compared to unstable aHUS Patients with
Correlated Gene Expression Increasing
Cell Subclusters p value Higher expression levels of gene
Central memory CD8 T-cells subcluster 1 p < 0.05 RPL23
Non-Vd2 gd T-cell subcluster 0 p < 0.05 GZMH
Th1 cells subcluster 0 p < 0.05 RPS27, RPS4X

CD4 T-cell trajectory analysis showed distinct abundance patterns for naïve CD4
T-cells, T regulatory cells, Th1 cells, and Th1/Th17 cells in healthy controls, aHUS families,
and the aHUS group across pseudotimes. During 20–25, Th2, Th17, and Th1/Th17 cells
were the most abundant in the healthy controls, followed by aHUS families and the
aHUS group (Figure 10b). Terminal effector CD4 T-cell abundance exhibited a similar
pattern in pseudotimes 35–40. At pseudotime 30, Th2, Th1, T-regulatory, and follicular
T-helper cells were most abundant in the aHUS group, followed by aHUS families and the
healthy controls.

In pseudotimes 0–5, naïve CD8 T-cell abundance was highest in the healthy controls,
followed by aHUS families and patients (Figure 10c). This trend reversed in pseudotimes
5–10. No significant differences in plasmacytoid dendritic cells, myeloid dendritic cells,
non-classical monocytes, and classical monocytes were observed among aHUS patients,
families, and healthy controls in pseudotimes 0–30. However, intermediate monocyte
abundance in aHUS patients significantly increased during pseudotimes 7–10, which was
not observed in the families or healthy controls (Figure 10d).



Int. J. Mol. Sci. 2023, 24, 10007 12 of 20

Int. J. Mol. Sci. 2023, 24, 10007 13 of 22 
 

 

2.5. Trajectory Analysis for B-Cell, T-Cell, and Monocyte 

2.5.1. Comparing aHUS Patients, aHUS Family, and Healthy Control 

Cytopath analysis showed immune cell state dynamics in B-cell, T-cell, and monocyte 

trajectories (Figure 9). Naïve B-cells, exhausted B-cells, and non-switched memory B-cells 

in the aHUS group peaked at pseudotimes 0, 9, and 12, differing from healthy controls 

and aHUS nuclear families. From pseudotimes 5 to 10, naïve B-cell abundance was highest 

in the healthy controls, followed by aHUS families, and was lowest in the aHUS group 

(Figure 10a). 

 

Figure 9. The trajectories for B−cells (a), T−cells (b,c), and monocytes (d) with different state dynam-

ics of the immune cells. 
Figure 9. The trajectories for B-cells (a), T-cells (b,c), and monocytes (d) with different state dynamics
of the immune cells.

2.5.2. Comparing Stable and Unstable aHUS Patients, aHUS Family, and Healthy Controls

The unstable aHUS group showed a significant increase in exhausted B-cells during
pseudotimes 7–13 compared to stable aHUS, aHUS families, and healthy controls, followed
by a decline from pseudotimes 13–18. In this interval, switched memory B-cell abundance
was lowest in the unstable group compared to the others. Non-switched memory B-cells
were more abundant in the unstable group, with the largest difference at pseudotimes 10–15
(Figure 10e,f).
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Figure 10. (a) Shows the pseudotime interval difference and abundance of B-cells, while (b,c) show
the pseudotime interval difference and abundance of T-cells. (d) The pseudotime interval difference
and abundance of monocytes. The pseudotime interval difference and abundance of B-cells (e) and
T-cells (f), respectively, among the unstable aHUS group, stable aHUS group, aHUS family, and
healthy subjects.
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Th2, Th17, and Th1/Th17 cells had the lowest abundance in the unstable aHUS group
at pseudotimes 18–22 but peaked at pseudotimes 28–32 for Th2, Th17, Th1/Th17, Th1,
T regulatory, follicular helper T, and naïve CD4 T-cells (Figure 10f). The stable aHUS
group showed a pattern more akin to the unstable group than to aHUS families and
healthy controls.

2.6. Immune Cell Interactions in Blood Samples from aHUS, aHUS Family, and Healthy Control

To establish a comprehensive immune cell–complement pathway interaction net-
work, we used the STRING database, integrating identified pathway interactions with
aHUS-associated genes, including CFH, CD46, CFI, C3, CFB, THBD, CFHR1-5, DGKE, VTR,
C2, C3AR1, C8B, C9, C4BPA, CFD, MASP1-2, MMACHC, PLG, WT1, VWF, CR1, CXCL12,
C5, TLR4, CXCR4, HASP, KNK, INF2, EXOSC3, TSEN2, CD36, and VTN [2,4,5,7–16].
The enriched pathways in aHUS patients include ALCAM-CD6, IL16-CD4, APP-CD40,
CD86-CTLA4, CXC, and SELPLG (Figures 11a–d and S12a,b).
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Figure 11. Cell–cell interaction signaling of ALCAM-CD6 (a), IL16-CD4 (b), APP-CD40 (c), CD86-
CTLA4 (d) among individuals with aHUS with varying disease activity, treatment, aHUS family
members, and healthy controls.

ALCAM-CD6 interactions had two patterns: one resembling healthy controls and
another similar to aHUS families. Plasmacytoid dendritic cells exhibited increased outgoing
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signaling in pattern 1, while various T-cells showed increased incoming signaling in
pattern 2.

APP-D40 interactions in aHUS patients were divided into two patterns, with pattern
2 being similar to aHUS family and healthy controls. Classical monocytes, intermediate
monocytes, megakaryocytes, and myeloid dendritic cells demonstrated increased outgoing
signaling in pattern 1.

IL16-CD4 interactions in aHUS patients had two patterns. Outgoing signaling from
myeloid dendritic cells and plasma blasts was highest in pattern 1, while intermediate
monocytes, myeloid dendritic cells, non-classical monocytes, and classical monocytes
exhibited increased incoming signaling.

CD86-CTLA4 pathways in aHUS patients displayed distinct patterns with height-
ened outgoing signaling in non-classical monocytes. In the SELPLG pathway, cases a7
and a10 showed significantly increased outgoing signaling in megakaryocytes. The CXC
interactions in aHUS patients had three patterns. Patterns 1 and 2 demonstrated signifi-
cantly reduced incoming signaling from non-switched memory B-cells, central memory
CD8 T-cells, Vd2 gd T-cells, Th1/Th17 cells, and Th1 cells compared to pattern 3 and the
healthy control. Notably, case a10 exhibited significantly increased outgoing signaling from
non-classical monocytes and incoming signaling from MAIT cells, which was unobserved
in other participants.

3. Discussion

aHUS represents a rare, life-threatening condition. The challenges in diagnosing
and managing aHUS largely stem from the absence of specific diagnostic markers and
the disease’s rapid progression. In a pioneering effort, our study employs single-cell
sequencing to probe immune cell dysregulation in aHUS, thereby offering unique insights
into the disease’s pathogenesis and its clinical implications.

In our study, we analyzed cell subpopulations and found that aHUS patients had
higher levels of plasmablasts, intermediate monocytes, terminal effector CD4 T-cells, Th1
cells, effector memory CD8 T-cells, and terminal effector CD8 T-cells compared to aHUS
families and healthy controls. In contrast, non-switch memory B-cells and plasmacytoid
dendritic cells were most abundant in healthy controls, followed by aHUS families and
patients. The unstable aHUS group showed significantly higher intermediate monocyte
abundance than stable aHUS, aHUS families, and healthy controls. We suggest intermediate
monocytes as potential aHUS disease activity markers. In the study conducted by Zawada
AM et al., the pivotal role of monocytes is examined, where they are segmented into three
distinct subsets with a particular emphasis on the potential involvement of the intermediate
subset in atherosclerosis [17]. In the research presented by Wong KL et al., the authors
delineate the specific phenotypes and functions of these monocyte subsets and further
discuss alternative markers for their segregation [18]. Finally, Ziegler-Heitbrock L. et al.
propose an officially endorsed classification for monocyte and dendritic cell subsets in their
study, aiming to streamline communication and spur further research within the scientific
community [19]. These monocytes also interact with endothelial cells, indicating a potential
contribution to aHUS pathogenesis and correlation with endothelial cells.

In the study led by Perez RK et al., they identify a heightened expression of type 1
interferon-stimulated genes in monocytes, a decrease in naive CD4+ T-cells that was aligned
with the upregulated monocyte ISG expression, and an expansion of cytotoxic GZMH+
CD8+ T-cells with limited repertoire diversity [20]. In the study led by Nehar-Belaid D et al.,
they notice the expansion of unique interferon-stimulated genes and/or monogenic lupus-
associated gene-enriched subpopulations which could identify patients with the highest
disease activity [21]. Li Y et al. demonstrates that a six-protein combination (IFIT3, MX1,
TOMM40, STAT1, STAT2, and OAS3) offers valuable diagnostic utility for systemic lupus
erythematosus (SLE) [22]. Zhang Y et al. further substantiate this by observing increased
levels of macrophage migration inhibitory factor (MIF) in the serum of SLE patients [23].
Shifting focus to IgG4-related disease (IgG4-RD), Wu X et al. identify increased proportions
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of CD8 central memory T- (TCM) and TIGIT+ CD8 cytotoxic T (CTL)-cells in patients
compared to the healthy controls. Their additional analysis illuminates the critical role of
B-cell activation factor (BAFF) signaling pathways, showing their enrichment from myeloid
cell subsets to B-cells [24].

In this study, we identified significant gene upregulation in various immune cell
subclusters in aHUS patients compared to healthy controls. Classical monocyte subclusters
6 and 7 showed upregulated RPS27 and IFI27 genes, while central memory CD8 T-cells sub-
cluster 3, non-Vd2 gd T-cells subcluster 4, Th1 cells subcluster 3, and Th17 cells subcluster
4 exhibited upregulated CXCR4, SYNE2, MT-CYB, and MT-ATP6 genes, respectively.

We also observed distinct gene expression patterns between unstable and stable aHUS.
Unstable aHUS exhibited increased expression of NEAT1, MT-ATP6, MT-CYB, VIM, ACTG1,
RPL13, and KLRB1 genes in various immune cell subclusters, while stable aHUS showed
upregulated RPS27, RPS4X, RPL23, and GZMH genes. These genes may serve as potential
clinical markers for aHUS disease activity. Elevated mitochondria-related gene expression
suggests cell metabolism’s role in the aHUS clinical course, warranting further investigation.
Notably, these gene expression patterns were not observed in other autoimmune diseases,
such as systemic lupus erythematosus [20–23] or immunoglobulin G4-related disease [24],
highlighting the unique immune cell profile in aHUS.

Our pseudotime trajectory analysis revealed a unique point where immune cell
differentiation in aHUS patients diverged from healthy individuals. This divergence
was also apparent in some aHUS family members, falling between aHUS patients and
healthy controls.

In our cell–cell interaction analysis, we aimed to identify signaling pathway differ-
ences between healthy individuals and aHUS patients, ensuring observed complement and
immune cell interactions were not comparable between groups. The results showed unique
signaling patterns in aHUS patients, specifically in ALCAM-CD6, IL16-CD4, APP-CD40,
CD86-CTLA4, CXC, and SELPLG pathways, indicating distinctions from healthy individu-
als. Moreover, MIF or BAFF pathways, common in SLE and IgG4-related diseases, were
not increased.

Our study underscores several statistically significant differences, yet the rarity of
aHUS and the consequent limitation in case enrollment necessitates future investigations
involving a broader participant base. A pertinent consideration is that aHUS’s incidence
does not display a direct correlation with factors such as age or gender. However, due to
funding constraints, our selection of healthy controls was restricted to four individuals and
three unaffected family members. This sampling constraint may potentially introduce a
selection bias, which we recognize as a limitation of our current study. We will explicitly
address this point in the limitations section of our paper. Going forward, we aim to
undertake more exhaustive and far-reaching studies to mitigate this issue and enhance the
robustness of our findings.

The sensitivity of our scRNA-seq method, influenced by protocol specifics and data
quality, generally detects thousands of genes per cell, but is limited in discerning lowly
expressed genes. The complementary methods used, CellChat and Monocle 3, similarly rely
on data quality and dataset characteristics. Statistical test sensitivity is tied to sample size
and effect size. Despite their recognized limitations, we deemed these methods suitably
sensitive for our research, bolstered by rigorous protocol adherence and multifaceted
validation to ensure finding robustness and reliability.

4. Materials and Methods
4.1. Patient Recruitment

In this single-center Taiwanese study, peripheral blood samples from 13 adult aHUS pa-
tients, 3 unaffected family members, and 4 healthy subjects were analyzed using scRNA-seq.
aHUS patients were classified into stable and unstable groups, receiving plasma exchange
alone or combined with anti-complement therapy. Stable disease had stable TMA-related
organ involvement and normal hemolysis markers.
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Three individuals were unaffected family members who were directly blood-related
to our aHUS patients. It was validated that they neither exhibited any clinical symptoms of
aHUS nor demonstrated any anomalies in their hemolysis markers. Further supplementing
our control cohort were four healthy medical professionals who willingly participated as
‘healthy controls’. Everyone underwent rigorous health evaluations, ensuring not only the
absence of abnormalities in their hemolysis markers, but also confirming no personal or
familial history of aHUS.

4.2. Single Cell RNA-Seq and Data Analysis

scRNA-seq was performed as previously described [25]. Sequencer raw data were
processed using CellRanger v3.1.0 or v6.0.2 with the GRCh38-3.0.0 reference file. Cells were
selected using Seurat v4.0.4 [26] in R software (www.R-project.org, accessed on 5 February
2023) based on criteria including detected genes, unique molecular identifiers (UMIs),
mitochondrial gene read counts, and doublet identification using Scrublet v0.2.2 [27]. Data
type conversion was performed using Scanpy v1.8.1 [28] and SeuratDisk v0.0.0.9015 tools
(https://mojaveazure.github.io/seurat-disk/, accessed on 5 February 2023).

4.3. Single Cell RNA-Seq Data Integration and Clustering

Using the SCTransform workflow, scRNA-seq datasets were integrated, scaled, and
normalized, considering regression variables such as cell cycle stage, mitochondrial reads,
gene number, and UMI count. The top 3000 variable genes were selected for PCA using
SelectIntegrationFeatures. A reference-based integration workflow with rPCA was applied,
using four healthy control samples as reference. The top 50 PCs from PCA were used
for UMAP, and the FindNeighbors function constructed a nearest neighbors graph for
clustering analysis, all provided by the Seurat v4.0.4 package.

4.4. Cell Type Annotations

Using SingleR v1.4.1 [29], a reference-based cell type annotation tool, cell types in the
dataset were classified by comparing gene expression profiles and assigning nomenclature
and cell ontology terms. Reference gene expression data were obtained from five functions
provided by the celldex v1.0.0 R package. MonacoImmuneData labels were selected first,
followed by Macrophages M1 and M2 labels from BlueprintEncodeData. Lastly, cell types
such as Macrophages (CL: 0000235), Lung Macro (CL: 0000583), INF-Macro (CL: 0000863),
and Megakaryocyte (CL: 0000556) were identified using cell ontology terms.

4.5. Clustering Analysis

Further clustering analysis was performed using the same parameters as before, with
a resolution range of 0.1 to 0.5. The Seurat function FindAllMarkers was applied to identify
expression markers for each cluster in each cell type.

4.6. Pseudotime Estimation

Monocle 3 [30] was utilized to construct cell trajectory paths for B-cells, CD4+ T-cells,
CD8+ T-cells, and monocyte lineages. This involved dimensionality reduction using PCA
and UMAP, followed by Leiden clustering [31]. Trajectory paths were built by connecting
nearest neighbors in the UMAP graph, with the root node determined based on early-stage
cell types, such as naïve B-cells, naïve T-cells, and monocytes. Cell type abundance along
pseudotime from the trajectory path was also analyzed.

4.7. Cell–Cell Communication Analysis

The CellChat v1.1.3 [32] R package was used to infer the probability of ligand-receptor
signaling communication among all cell types in scRNA-seq datasets. Heatmaps of cell–cell
interaction probability were generated for each sample using the ComplexHeatmap [33]
R package and visualized with Morpheus (https://software.broadinstitute.org/morpheus,
accessed on 5 February 2023) for each signaling pathway.

www.R-project.org
https://mojaveazure.github.io/seurat-disk/
https://software.broadinstitute.org/morpheus
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4.8. Statistical Analysis

The abundance of cell types and further clusters are presented as percentages. Con-
tinuous data were compared using Wilcoxon rank sum tests with the R package ggpubr
(v0.4.0) (https://rpkgs.datanovia.com/ggpubr, accessed on 5 February 2023), and confi-
dence intervals were calculated using the R package asht (v0.9.7) [34].

4.9. Ethics Approval and Consent to Participate

In accordance with ethical standards, we obtained informed consent from all par-
ticipants. This study received approval from the Research Ethics Committee of China
Medical University Hospital, Taiwan (CMUH111-REC2-048). Additionally, all procedures
adhered to both the principles of the Declaration of Helsinki and the Good Clinical Practice
Guidelines. Every participant provided their explicit informed consent before partaking in
this study.

5. Conclusions

Our study presents robust evidence underscoring the critical role of immune cell dys-
regulation in the pathogenesis of atypical hemolytic uremic syndrome (aHUS). We reveal
intermediate monocytes as a novel potential disease activity marker, displaying significant
abundance in unstable aHUS cases. Furthermore, our investigation into immune cell sub-
clusters exposes distinct gene expression profiles between stable and unstable aHUS, thus
offering potential clinical indicators for assessing aHUS disease activity. Our pseudotime
trajectory analysis uncovers a divergence point in immune cell differentiation between
aHUS patients and healthy controls, highlighting a previously unobserved pathogenetic
mechanism. Complementing this, our cell–cell interaction analysis discloses striking differ-
ences in signaling pathways between aHUS patients and healthy individuals, suggesting
altered intercellular communication as a crucial player in aHUS. Taken together, these find-
ings significantly enrich our understanding of the molecular mechanisms underpinning
aHUS and hold the potential to catalyze the development of novel diagnostic tools and
disease activity markers. We posit that this study paves the way for future investigations
into the pathogenesis of aHUS and the development of innovative therapeutic strategies
for this complex disease.
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Abbreviations

aHUS Atypical hemolytic uremic syndrome
TMA Thrombotic microangiopathy
CH50 50% hemolytic complement activity
PBMCs Peripheral blood mononuclear cells
scRNA-seq Single-cell RNA sequencing
PCA Principal component analysis
rPCA Robust principal component analysis
UMAP Uniform manifold approximation and projection
NK Natural killer
Mono Monocytes
Ma Macrophages
DC Dendritic cells
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
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