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Abstract: Psoriasis is a chronic skin disease that affects millions of people worldwide. In 2014,
psoriasis was recognized by the World Health Organization (WHO) as a serious non-communicable
disease. In this study, a systems biology approach was used to investigate the underlying pathogenic
mechanism of psoriasis and identify the potential drug targets for therapeutic treatment. The study
involved the construction of a candidate genome-wide genetic and epigenetic network (GWGEN)
through big data mining, followed by the identification of real GWGENs of psoriatic and non-psoriatic
using system identification and system order detection methods. Core GWGENs were extracted from
real GWGENs using the Principal Network Projection (PNP) method, and the corresponding core
signaling pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. Comparing core signaling pathways of psoriasis and non-psoriasis and their downstream
cellular dysfunctions, STAT3, CEBPB, NF-κB, and FOXO1 are identified as significant biomarkers
of pathogenic mechanism and considered as drug targets for the therapeutic treatment of psoriasis.
Then, a deep neural network (DNN)-based drug-target interaction (DTI) model was trained by the
DTI dataset to predict candidate molecular drugs. By considering adequate regulatory ability, toxicity,
and sensitivity as drug design specifications, Naringin, Butein, and Betulinic acid were selected from
the candidate molecular drugs and combined into potential multi-molecule drugs for the treatment
of psoriasis.

Keywords: pathogenic mechanism of psoriasis; systems biology method; core signaling pathways; DNN-
based DTI model; drug design specifications; multi-molecule drug; bid data mining; DTI databases

1. Introduction

Psoriasis is a common chronic disease, which is an autoimmune disease. Its main
symptoms are erythema, scales, dryness, and other lesions on the skin surface, usually
affecting the scalp, elbows, knees, and back, and may be accompanied by pain and itching
and other discomfort. Microscopically, psoriasis is characterized by markedly increased
proliferation and incomplete differentiation of the epidermis, a marked increase in cuta-
neous blood flow, and leukocytic infiltration of the papillary dermis and the epidermis. In
addition, psoriasis may also affect the nails and joints, causing symptoms such as deformed
nails and joint pain. Psoriasis is a chronic disease, its symptoms may last for many years
or lifelong, and it often presents a recurring state of incessant advances and retreats [1].
Psoriasis may also cause some psychologically related symptoms. Because the symptoms
of psoriasis often appear on the skin, patients often feel distressed and insecure about their
appearance, which in turn affects their mental health. Studies have shown that people with
psoriasis may have higher levels of depression and anxiety and may even experience suici-
dal thoughts and behaviors [2]. Psoriasis is a global disease, and approximately 1% to 3%
of the global population suffers from this disease, among which there are more patients in
Europe and the United States and relatively few in Asia. It is estimated that approximately
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125 million people worldwide currently suffer from psoriasis [3]. In 2014, World Health
Organization (WHO) member states recognized psoriasis as a serious non-communicable
disease and adopted resolution WHA 67.9, which called for multilateral efforts to raise
awareness and combat stigma [4].

Psoriasis is an autoimmune disease, and its pathogenesis is not fully understood, but
current research shows that a combination of factors may lead to the occurrence of psoriasis.
First of all, genetic factors are one of the important causes of psoriasis. Research shows that
family members with psoriasis are at higher risk than the general population [5]. There
are specific gene variants that may be associated with the development of psoriasis, but no
single gene mutation that is strongly associated with psoriasis has been found so far [6]. Sec-
ondly, environmental factors are also one of the causes of psoriasis. Environmental factors
include stress, infection, smoking, alcohol abuse, overuse of certain drugs, overexposure to
sunlight, etc. These factors may affect the function of the immune system, which can lead to
the development of psoriasis [7]. In addition, psoriasis may also be related to abnormalities
in the immune system. Under normal circumstances, the immune system attacks and
destroys foreign bodies and abnormal cells to protect human health. However, in people
with psoriasis, the immune system attacks the skin cells, causing them to overgrow and
eventually form psoriatic plaques. In conclusion, psoriasis is an autoimmune disease, and
its pathogenesis involves many factors, including genetic factors, environmental factors,
and immune system abnormalities. Therefore, systematic genetic and epigenetic research,
as well as genome-wide microarray data exploration and comparison of psoriasis and
non-psoriasis, can help us better understand the etiology and treatment of psoriasis.

There is currently no complete cure for psoriasis, but there are a variety of medications
that can help manage symptoms and improve the patient’s quality of life. The followings
are common psoriasis medications: topical steroids suppress the immune system response
and are widely used in the treatment of psoriasis. Topical steroids, including vitamin D
analogs and topical corticosteroids, can reduce inflammation and control cell proliferation,
reducing symptoms. However, long-term use of steroids increases the risk of side effects
such as localized skin thinning and pigmentation [8]. Phototherapy is through ultraviolet B
irradiation (UVB), narrow-wave ultraviolet B irradiation, and other methods. However,
long-term side effects of UV exposure include pigmentary disorder, photoaging, cataracts,
and carcinogenesis. Photodermatitis usually occurs in UV radiation as UV-induced DNA
damage or mutation results in the activation of oncogenes or silencing of tumor-suppressor
genes, which are closely related to the pathogenesis of skin squamous-cell carcinoma [9,10].
Immunosuppressants can suppress the immune system response and reduce inflammation
and skin cell proliferation. These drugs are commonly used to treat severe psoriasis
but can cause damage to the liver, kidneys, immune system, etc., and increase the risk
of infection and disease [11]. Biological agents include TNF inhibitors, IL-23 inhibitors,
etc. These medications are commonly used to treat severe psoriasis and can be effective
in reducing symptoms and plaque size. However, biological agents affect the immune
system to cause side effects, such as infection, fatigue, and approx. 30% of patients do not
respond well to the therapy [12]. At present, there does not exist an effective medication
to treat psoriasis. The approach is to combine systems medicine methods with some drug
design specifications to improve the drug design discovery and design for the therapeutic
treatment of psoriasis.

Drug discovery is a time- and resource-intensive process, often costing billions of
dollars and over a decade [13]. Pharmaceutical companies spend significant resources
conducting experiments to understand drug properties and their interactions with target
molecules. Furthermore, drug efficacy and safety must also be considered, leading to
extensive animal and clinical trials [14]. Despite these efforts, drug development failures are
still common due to poor clinical outcomes [15]. Therefore, more efficient and systematic
approaches to drug design are needed. Drug-target interaction (DTI) prediction is an
important process in drug design and repurposing that can narrow down the list of drug
candidates [16]. Traditional DTI prediction methods mainly include ligand-based methods
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and docking-based methods, which are used to predict interactions based on the similarity
between proteins and ligands. In recent years, DTI prediction methods based on machine
learning have developed rapidly [17–20]. Drug repurposing, which refers to the use of
a drug for an indication other than its original approval, can yield a wealth of data for
research and can also reduce the need for additional studies of pharmacokinetic properties
and toxicity. A drug combination is a multi-molecule drug that can improve the efficacy
of each molecular drug in the combination and reduce the toxicity, drug resistance, and
side effects of patients [17]. DTI prediction for drug targets based on deep neural network
(DNN) via the large DTI database can be applied to systemic drug design and discovery
and to select adequate multi-molecule drugs for the treatment of various diseases from the
perspective of drug repurposing and drug combination [18].

The goal of this study is to investigate core signaling pathways through the systems bi-
ology method, identify significant biomarkers for the pathogenic mechanism of psoriasis as
drug targets, and employ a DNN-based DTI model to predict and design a multi-molecule
drug for the treatment of psoriasis as shown in Figure 1. First, the genome-wide genetic and
epigenetic networks (GWGENs) of psoriasis and non-psoriasis are constructed [19]. For the
annotation of KEGG pathways, GWGENs of psoriasis and non-psoriasis are extracted by the
principal network projection (PNP) method into two core GWGENs with 6000 significant
nodes, as shown in Figures 2 and 3, respectively. Then, two core GWGENs are annotated
by KEGG pathways to core signaling pathways of psoriasis and non-psoriasis in Figure 4.
Comparing core signaling pathways of psoriasis and non-psoriasis and their downstream
cellular dysfunctions, the significant biomarkers for the pathogenic mechanism of psoriasis
are identified as drug targets of therapeutic treatment. In order to improve the efficiency
and success rate of drug discovery and design for the therapeutic treatment of psoriasis,
a deep neural network (DNN)-based drug-target interaction (DTI) prediction model was
proposed and trained by a large amount of DTI databases to predict candidate molecular
drugs to target their significant biomarkers of psoriasis, as shown in Figure 5. The drug
design specifications based on the regulation ability, toxicity, and sensitivity of drugs were
employed for screening potential molecular drugs Naringin, Butein, and Betulinic acid,
which can be combined as a multiple-molecule drug for the treatment of psoriasis.

The DNN-based DTI model method has significant advantages over traditional com-
putational drug discovery methods [20]. It can learn the molecular features of drugs and
targets and make predictions from a large number of drug and protein interactions [17].
As shown in the flowchart of multi-molecule drug design for psoriasis in Figure 5, the
DNN-based DTI model will be trained using publicly available biological and chemical
datasets to predict candidate drugs for biomarkers (drug targets) with accuracy and reli-
ability. In addition to the development of single molecular drugs, drug repurposing and
drug combinations are also the focus of our research. Drug repurposing can reduce the cost
and time of drug development by harnessing the efficacy of existing molecular drugs to
treat other diseases or conditions [17]. Molecular drug combinations can use more than
one molecular drug to enhance the effect of treatment, thereby increasing the success rate
of treatment and reducing side effects. Finally, our findings can provide a new perspective
and approach for systems drug design and discovery, thereby opening up new possibilities
for the systematic development and discovery of a multiple-molecular drug for therapeutic
treatments of psoriasis and other diseases.
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Figure 1. Flowchart of systems biology methods to identify significant biomarkers of pathogenic 
mechanism as drug targets of psoriasis and the outline of systematic drug discovery design of pso-
riasis. Candidate GWGEN is composed of a protein–protein interaction network (PPIN) and gene 
regulatory network (GRN), which are constructed by PPIN and GRN datasets. Real GWGENs were 
obtained by pruning false positives from candidate GWGENs by microarray data GSE117468 
through system order detection and system identification. The core GWGENs were extracted from 
real GWGENs by the PNP method. Core GWGENs of psoriasis and non-psoriasis are annotated by 
KEGG pathways to obtain core signaling pathways of psoriasis and non-psoriasis, respectively. The 
pathogenic biomarkers were identified for the pathogenesis of psoriasis by comparing the core sig-
naling pathways of psoriasis and non-psoriasis. Finally, the potential drugs were discovered by the 
prediction of the DNN-based DTI model and the screening of drug design specifications. Then, the 
screened molecular drugs were combined as a multi-molecule drug for the therapeutic treatment of 
psoriasis. 

Figure 1. Flowchart of systems biology methods to identify significant biomarkers of pathogenic
mechanism as drug targets of psoriasis and the outline of systematic drug discovery design of
psoriasis. Candidate GWGEN is composed of a protein–protein interaction network (PPIN) and
gene regulatory network (GRN), which are constructed by PPIN and GRN datasets. Real GWGENs
were obtained by pruning false positives from candidate GWGENs by microarray data GSE117468
through system order detection and system identification. The core GWGENs were extracted from
real GWGENs by the PNP method. Core GWGENs of psoriasis and non-psoriasis are annotated
by KEGG pathways to obtain core signaling pathways of psoriasis and non-psoriasis, respectively.
The pathogenic biomarkers were identified for the pathogenesis of psoriasis by comparing the core
signaling pathways of psoriasis and non-psoriasis. Finally, the potential drugs were discovered by
the prediction of the DNN-based DTI model and the screening of drug design specifications. Then,
the screened molecular drugs were combined as a multi-molecule drug for the therapeutic treatment
of psoriasis.
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Figure 2. (a) The real GWGEN of psoriasis; (b) the real GWGEN of non-psoriasis. The green lines 
represent the PPI, and the red lines represent the gene regulations. Numbers indicate the number 
of nodes. 

Figure 2. (a) The real GWGEN of psoriasis; (b) the real GWGEN of non-psoriasis. The green lines
represent the PPI, and the red lines represent the gene regulations. Numbers indicate the number
of nodes.
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represent the PPI, and the red lines represent the gene regulations. Numbers indicate the number
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Figure 4. The common and specific core signaling pathways and their downstream cellular dysfunc-
tions between psoriasis and non-psoriasis. The figure shows the core genetic and epigenetic signal-
ing pathways and pathogenic mechanisms of psoriasis. The left block contains the specific core sig-
naling pathways of psoriasis. The middle block contains the overlapping core signaling pathways 
between psoriasis and non-psoriasis. The right block contains the specific core signaling pathways 
of non-psoriasis. The gene symbols in red or green font denote the selected significant biomarkers 
of the pathogenesis of psoriasis as drug targets of psoriasis. 

Figure 4. The common and specific core signaling pathways and their downstream cellular dys-
functions between psoriasis and non-psoriasis. The figure shows the core genetic and epigenetic
signaling pathways and pathogenic mechanisms of psoriasis. The left block contains the specific core
signaling pathways of psoriasis. The middle block contains the overlapping core signaling pathways
between psoriasis and non-psoriasis. The right block contains the specific core signaling pathways of
non-psoriasis. The gene symbols in red or green font denote the selected significant biomarkers of
the pathogenesis of psoriasis as drug targets of psoriasis.
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Figure 5. The flowchart of design and discovery of a multi-molecule drug for therapeutic treatment 
of psoriasis. Drug-target interaction data were obtained from drug-target interaction databases. 
Then, the drug and target feature vectors were pre-processed, including downsampling, standard-
ization, and PCA, respectively. After data preprocessing, drug target feature vectors were divided 
into training data and testing data for training the DNN-based DTI model. The well-trained DNN-
based DTI model was used to predict candidate drugs for these biomarkers (drug targets). The po-
tential molecule drugs were selected from predicted candidate drugs according to the drug design 
specifications and combined as multi-molecule drugs for the therapeutic treatment of psoriasis. 

Figure 5. The flowchart of design and discovery of a multi-molecule drug for therapeutic treatment
of psoriasis. Drug-target interaction data were obtained from drug-target interaction databases. Then,
the drug and target feature vectors were pre-processed, including downsampling, standardization,
and PCA, respectively. After data preprocessing, drug target feature vectors were divided into
training data and testing data for training the DNN-based DTI model. The well-trained DNN-
based DTI model was used to predict candidate drugs for these biomarkers (drug targets). The
potential molecule drugs were selected from predicted candidate drugs according to the drug design
specifications and combined as multi-molecule drugs for the therapeutic treatment of psoriasis.
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2. Results
2.1. An Overview of Systems Biology Approaches for the Study of Pathogenic Mechanisms and
Systematic Drug Discovery and Design for the Treatment of Psoriasis

In this study, the goal is to investigate the pathogenic mechanism of psoriasis by sys-
tems biology methods in Sections 4.3–4.5 to identify significant biomarkers of pathogenesis
as drugs targets of psoriasis and then use the drug-target interaction data to train DNN-
based drug-target interaction (DTI) model to predict potential multi-molecule drug to target
the significant biomarkers as shown in Figure 5. First, in order to realize the pathogenic
mechanism to identify its significant biomarkers as drug targets for the therapeutic treat-
ment of psoriasis, we constructed candidate GWGEN from the database (GSE117468)
through the big data mining method. Candidate GWGEN is a binary matrix. The matrix
will record 1 if there is an interaction between two proteins/genes and record 0 if two nodes
have no interaction. The nodes of the candidate GWGEN are divided into several groups:
proteins, receptors, transcription factors (TFs), genes, miRNAs, and lncRNAs. Then, candi-
date GWGENs are pruned to real GWGENs of psoriasis and non-psoriasis in Figure 2 using
their corresponding microarray data by system identification in Equations (1)–(20) to trim
off false positives in candidate GWGEN. Here, we utilize the Akaike information criteria
(AIC) [21] in Equations (21)–(28) to perform the system order detection method to trim
off the false-positive interactions and obtain real GWGENs of psoriasis and non-psoriasis.
Although real GWGENs have been condensed, they are still too complex to be annotated
by the KEGG pathways, which can only annotate 6000 molecules at most. Third, core
GWGENs with 6000 nodes are extracted from real GWGENs. To investigate the significant
pathways of psoriasis and non-psoriasis, we extract 6000 key nodes from real GWGENs and
obtain core GWGENs in Figure 3 through the principal network projection (PNP) method
in Equations (29)–(34). In the study, the top-ranked 6000 nodes of core GWGENs contain
85% network energy of real GWGENs. We plot the real and core GWGENs of psoriasis
and non-psoriasis with the network visualization software Cytoscape in Figures 2 and 3,
respectively. The detail of nodes and edges in the candidate, real, and core GWGENs
are given in Table 1. Fourth, based on the enrichment analysis of KEGG pathways in
Tables 2 and 3 for core GWGENs of psoriasis and non-psoriasis, respectively, we have
established common and specific core signaling pathways for psoriasis and non-psoriasis
and investigated the pathogenic mechanisms involved in the pathogenesis of psoriasis as
shown in Figure 4. Important biomarkers of the pathogenesis of psoriasis were identified
as drug targets based on the investigation of these core pathways and their targeted genes
leading to downstream cellular dysfunctions of psoriasis. Fifth, for drug discovery and
design, we proposed a DNN-based DTI model using the existing drug-target interaction
(DTI) database as the training set in Equations (35)–(45) to predict candidate drugs for the
drug targets of psoriasis as shown in Figure 5. Furthermore, we consider the regulation
ability, sensitivity, and toxicity of candidate drugs as drug design specifications to select
potential drugs to be combined as a multi-molecule drug for the therapeutic treatment
of psoriasis. The flowchart in Figure 1 illustrates the process of establishing candidate,
real, and core GWGENs, and then identifying core signaling pathways in psoriasis and
non-psoriasis to investigate significant biomarkers of pathogenic mechanisms as drug
targets and then predicting psoriasis. A more detailed description of the result will be
given in the following subsections.
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Table 1. The statistics of the nodes and edges in real GWGENs of psoriasis and non-psoriasis.

Nodes Candidate GWGENs
of Psoriasis

Real GWGENs
of Psoriasis

Real GWGENs
of Non-Psoriasis

Receptor 2092 2081 2085

TF 1481 1472 1461

Protein 13,781 13,748 13,759

miRNAs 42 31 34

LncRNAs 436 416 420

Total 17,832 17,748 17,759

Edges Candidate GWGEN Real GWGEN
of psoriasis

Real GWGEN
of non-psoriasis

PPIs 3,872,294 1,711,359 1,712,333

TF-Receptor 14,159 5513 5517

TF-TF 11,808 4289 4439

TF-Protein 79,424 32,426 32,384

TF-miRNA 120 43 52

TF-lncRNA 583 359 356

miRNA-Receptor 694 7 8

miRNA-TF 579 4 9

miRNA-Protein 3969 63 73

miRNA-miRNA 3 1 1

miRNA-lncRNA 22 2 2

lncRNA-Receptor 719 84 74

lncRNA-TF 610 62 77

lncRNA-Protein 4259 852 821

lncRNA-miRNA 2 0 0

lncRNA-lncRNA 15 4 4

Total edges 3,989,260 1,755,068 1,756,150

Table 2. KEGG pathways enrichment analysis of core GWGEN of psoriasis.

Pathway Gene Number p-Value

Pathways in cancer 251 1.2 × 10−12

Cellular senescence 92 3.6 × 10−11

FoxO signaling pathway 78 7.1 × 10−10

Focal adhesion 107 3 × 10−9

Cell cycle 74 7.6 × 10−9

Table 3. KEGG pathways enrichment analysis of core GWGEN of non-psoriasis.

Pathway Gene Number p-Value

FoxO signaling pathway 76 3.1 × 10−10

Colorectal cancer 52 7.8 × 10−8

Hippo signaling pathway 82 9.2 × 10−8

Cellular senescence 80 3.6 × 10−7

Endometrial cancer 38 3.6 × 10−7
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2.2. The Core Signaling Pathways and Their Downstream Cellular Dysfunctions to Investigate
Molecular Pathogenesis of Psoriasis

In Figure 4, the common and specific core signaling pathways and their downstream
cellular dysfunctions between psoriasis and non-psoriasis are given. Then, the specific core
signaling pathways and their downstream cellular dysfunctions of psoriasis were inves-
tigated to identify biomarkers of the pathogenesis of psoriasis. The microenvironmental
factor interleukin 6 (IL-6) is produced by keratinocytes and leukocytes. It is a cytokine that
is a major mediator of the host response to tissue injury and infection. High expression of
IL6 could directly cause psoriatic epidermal hyperplasia and affect the function of dermal
inflammatory cells [22]. It plays a significant role in psoriasis by linking keratinocyte prolif-
eration with immune activation and tissue inflammation. The receptor IL6R receives the
microenvironment factor IL6 to activate JAK1 and STAT3 to upregulate TF STAT3 [23]. The
Janus Kinase–Signal Transducer and Activator of Transcription (JAK–STAT) pathway plays
a significant role in the intracellular signaling of cytokines of numerous cellular processes,
which is important in both normal and pathological states of immune-mediated inflamma-
tory diseases [24]. The transduction of STAT3 is involved in the maintenance of postnatal
interactions between epithelial and mesenchymal compartments [25]. The upregulated TF
STAT3 will overexpress target genes VEGF, COX-2, and BCL-XL [26]. The overexpression
of VEGF induces angiogenesis in psoriasis [27,28]. BCL-XL is an anti-apoptotic gene. Over-
expression of BCL-XL prevents apoptosis and thickens the epidermis [29,30]. COX-2 has
been reported to be involved in acute inflammation [31].

In Figure 4, another microenvironment factor is IGF1. The pathogenesis of psoriasis is
due to the activation of immune cells and their secretion of cytokines, chemokines, growth
factors, and IGF-1, which may lead to psoriatic epidermal hyperplasia and therefore it is
considered one of the causes of psoriasis [32]. The receptor IGF1R receives the IGF1 and
activates the downstream pathways, P13K/AKT, and the well-known estrogen-mediated
Ras/Raf/MEK/ERK pathway [33]. The phosphatidylinositol 3-kinase (PI3K) and protein
kinase B (AKT) signaling pathway play a central role in multiple cellular functions, such as
cell proliferation and survival. In psoriasis, the PI3K/AKT signaling pathway is crucial
in regulating various cellular processes including cell survival and proliferation. One of
its key effects is the inhibition of cell proliferation through the negative regulation of TF
FOXO. In keratinocytes, PI3K signaling pathway promotes cell proliferation by activating
AKT and other targets, and this is accomplished by decreasing the expression of FOXO [34].
TF FOXO affects two genes, BCL6 and IL7R. Genetic polymorphisms in IL7R are associated
with susceptibility to various autoimmune diseases. Studies have suggested that IL7R is
involved in the pathogenesis of psoriasis [35,36]. The inactivation of Foxo1 leads to the
release of the target gene Bcl6 expression [37]. The B-cell lymphoma 6 (Bcl6) is selectively
expressed by TFH cells, which affects the regulation of B-cell-mediated humoral immunity
and thus affects the development of psoriatic disease [38,39].

In addition to affecting FOXO, AKT also phosphorylates the downstream protein
IKBKB, which in turn phosphorylates the protein NFKBIA and causes its ubiquitination
and degradation. After NFKBIA is phosphorylated, it initiates TF RELA to phosphorylate
and transport to TF NF-kB. Nuclear factor kappa B (NF-κB) is a protein transcription factor
that coordinates inflammation and other complex biological processes. It is a key regulatory
element of multiple immune and inflammatory pathways, cell proliferation and differen-
tiation, and apoptosis. Therefore, many studies believe that TF NF-κB is a key mediator
involved in the pathogenesis of psoriasis [40,41]. TF NF-κB plays an important role in
the inflammatory response, and it affects many target genes, including VEGF, IL6, CXCL,
COX-2, TNF-α, and BCL-XL [42,43]. Interleukin 6 (IL-6) is a cytokine. Highly expressed IL-6
was reported to directly promote epidermal hyperplasia in psoriatic epithelial cells [22].
The target gene, Chemokine ligand (CXCL), is involved in the pathogenesis of psoriasis.
Studies have demonstrated that CXCR3 and CXCL10 are present in keratinocytes and
dermal infiltrates of active psoriatic plaques; effective treatment of active plaques reduces
CXCL10 expression in plaques [44].
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The third microenvironment factor is IL17A. In psoriasis, IL-17A mainly acts on
non-hematopoietic cells, especially epithelial cells, and continues to participate in the
protective immunity of marginal tissues. In the skin, IL-17A leads to increased prolif-
eration and abnormal differentiation of keratinocytes and disrupts the skin barrier by
downregulating the expression of molecules involved in keratinocyte differentiation, such
as filaggrin [45,46]. IL-17A is received by the receptor IL-17RC to activate the signaling
cascade ACT1/TRAF6/MAP3K7/IKBKB [47]. In addition, the signaling protein TRAF6
also upregulates TF CEBPB. CEBPB family members are involved in epidermal keratinocyte
differentiation. The TF CEBPB is an additional transcriptional regulator of IL-17A. Both
NF-κB and CEBPB binding sites are overexpressed in the promoters of target genes IL-17R
in psoriasis [48]. After ACT1 ubiquitination traf6, TF CEBPB will regulate target genes
IL6, CXCL, COX-2, and TNF-α. The target gene TNF-α has multiple effects ranging from
inflammation to apoptosis. Microenvironment factor IL-17A induces miR-378a expres-
sion in primary keratinocytes through NF-κB and CEBPB. Induction of miR-378a leads to
the suppression of TF NFKBIA/IκBα, which allows for activation of the NF-κB pathway,
leading to further induction of inflammatory mediators, such as CXCL8 [49].

Another microenvironment factor is PGE2. Prostaglandin E 2 (PGE 2) is a major
mediator of inflammatory disease and is produced by virtually all cells in the body. PGE2 is
increased in the epidermis of psoriatic lesions and is associated with pruritus, and patients
with psoriasis may experience pruritus secondary to PGE2 vasodilation and a decreased
pruritus threshold [50–52]. After PGE2 is produced by the cell, the receptor EP1-4 receives
it and begins to affect the protein Gby. It then affects both P13k/AKt/IKBKB/NF-κB
signaling pathway and the MAPK signaling pathway Ras/Raf/MEK/ERK.

Tumor necrosis factor- α (TNF-α) is a pro-inflammatory cytokine that coordinates
tissue homeostasis by regulating cytokine production, cell survival, and cell death. It is a
key cytokine in the innate immune response and is increased in psoriatic lesions. Many
studies considered it as the key cytokine to psoriasis [53–55]. The receptor TNFR1 receives
signal TNF-α in the microenvironment and affects downstream protein RIP1, which is a key
upstream regulator controlling the inflammatory signaling and the activation of multiple
cell death signaling pathways, including apoptosis and necroptosis. RIP1 regulates the
NF-κB-mediated inflammatory response along the signaling pathway MAP3K7/IKBKB in
response to TNF stimulation [56]. In addition, TNF-α is also received by the EGF receptor
(EGFR), which triggers the phosphorylation of downstream protein SRC and enters the
P13K/AKT signaling pathway. In addition, EGFR also activates another signaling pro-
tein, GRb2, and enters the well-known estrogen-mediated Ras/Raf/MEK/ERK signaling
pathway. Many experiments have established that mitogen-activated protein kinases p38
(p38 MAPKs) and extracellular signal-regulated kinase 1/2 (ERK1/2) are involved in the
pathogenesis of psoriasis. They control several important cellular functions in cells, such
as cell proliferation, differentiation, gene expression, and apoptosis [57–59]. Finally, TF
ERK will regulate the target genes c-jun and VEGF. C-jun has been reported to be involved
in proliferation, apoptosis, survival, tumorigenesis, and tissue morphogenesis. Further-
more, overexpression of TF ERK and gene c-jun are associated with hyperproliferation and
abnormal differentiation of the psoriatic epidermis [60,61].

2.3. The Specific Molecular Pathogenesis of Non-Psoriasis

In tissues without psoriasis, we found that Wnt/β-catenin signaling regulated by
the Hippo pathway plays an important role in anti-cell proliferation. Wnt ligands bind
coreceptors of the Frizzled family and the LRP/arrow family. This binding activates
intracellular Dishevelled (Dvl), which in turn regulates the activity of the serine-threonine
protein kinase glycogen synthase kinase 3β (GSK-3β). The activation of Dvl inhibits GSK-
3β in this complex, resulting in the stabilization and accumulation of β-catenin in the
cytoplasm. After nuclear translocation, β-catenin interacts with members of the TCF/LEF
family of DNA-binding molecules to affect target gene Axin2 expression [62,63]. Axin2
plays an important role in regulating β-catenin stability in the Wnt signaling pathway. The
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study pointed out that the expression of gene Axin2 in normal tissue was significantly
higher than that of psoriasis tissue [64].

2.4. Using Systems Drug Discovery and Design to Identify Potential Molecular Drugs to Combine
as Multi-Molecule Drug for Psoriasis by the Prediction of Deep Neural Network-Based
Drug-Target Interaction Model and Drug Design Specifications

By investigating the significant pathogenic mechanism of psoriasis based on core
signaling pathways and their downstream cellular dysfunctions in the previous section, we
selected NF-κB, STAT3, FOXO1, CEBPB, and ERK1/2 in Table 4 as significant biomarkers of
pathogenic mechanism for psoriasis. Then according to the pharmacological properties of
the molecular drugs, including regulatory ability, sensitivity, and toxicity as a drug design
specification, some suitable potential drugs are discovered and designed to reverse the
expression level of significant biomarkers.

Table 4. The selected potential molecular drugs based on their regulatory ability, toxicity, sensitivity,
and their binding of drug targets for the therapeutic treatment of psoriasis.

Drug
Target

FOXO1 NF-kB STAT3 CEBPB ERK1/2
Toxicity
(LC50)

Sensitivity
(PRISM)

Betulinic acid • • • 6.712 −0.103441

Butein • • 5.776 −0.054450

naringin • • • 6.921 0.132488

Chemical structure of multiple molecules drug

Betulinic acid Butein naringin
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To develop a systematic drug design and discovery process, as shown in Figure 5,
we first pre-trained a deep neural network (DNN)-based DTI model by DTI databases
in Section 4.6 to predict potential molecular drugs to target the identified biomarkers
(drug targets) of psoriasis. The trained DNN-based DTI model allowed us to efficiently
estimate the probability of interaction between candidate drugs and identified drug targets
(biomarkers) for psoriasis in Table 5. We then filtered the candidate drugs in Table 6 based
on their pharmacological properties, such as regulatory ability, sensitivity, and toxicity
as a drug design specification, to obtain potential molecular drugs in Table 4, which are
combined to form a multi-molecule drug for the treatment of psoriasis.

As shown in Figure 5, the training dataset consisted of 80,291 proven and 100,024
unproven drug-target interactions. To avoid imbalanced class distribution issues, we
randomly selected an equal number of both types of interactions from the DTI database,
as shown in Section 4.6. We also standardized the features in Equations (36) and (37) and
reduced the dimensionality using principal component analysis (PCA) to obtain 996 of
the 1359 features before training the DNN-based DTI model because the input layer of
DNN we employed is only 996 nodes. The DNN-based DTI model consisted of an input
layer with 996 nodes, four hidden layers with 512, 256, 128, and 64 neurons, and an output
layer with one node, using ReLU activation for the neurons in hidden layers and sigmoid
activation for the output layer. Dropout layers were also added to prevent overfitting. The
learning curve of accuracy and loss during the DNN-based DTI model training process
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is shown in Figures 6 and 7, respectively. The model achieved an average test accuracy
of 98.2% with a standard deviation of 0.142% in five-fold cross-validation, as shown in
Table 5. We also evaluated the model using ROC curves, with an AUC of 0.982, indicating
significantly better performance than random prediction (AUC = 0.5), as shown in Figure 8.
Finally, we used the best-performing DNN-based DTI model to predict candidate drugs
based on the interaction probabilities with our identified drug targets in Table 6.

Table 5. Prediction performance of the DNN-based DTI model with five-fold cross-validation (early
stopping at epoch 70).

Validation Loss Validation Accuracy Testing Loss Testing Accuracy

1 0.210332 0.933680 0.216158 0.979626
2 0.201320 0.927631 0.187810 0.983853
3 0.210199 0.925092 0.199039 0.982904
4 0.192665 0.928918 0.214739 0.982421
5 0.198525 0.929007 0.189671 0.982708

average 0.202608 0.928866 0.201483 0.982302

Standard deviation 0.006848 0.002792 0.012029 0.001422

In order to identify viable candidate drugs, we utilize predictions based on the like-
lihood of the candidate drug binding (docking) to the chosen biomarkers. However, it is
important to maintain a balance between drug efficacy and potential adverse effects, as
potent molecular drugs can often come with a higher risk of harm. To ensure the safety
and efficacy of the candidate molecular drugs predicted by the DNN-based DTI model,
we incorporated some pharmacological properties of drug design specifications, including
regulation ability, sensitivity, and toxicity. To evaluate the molecular drug regulation ability,
we used the LINCS L1000 Level 5 dataset, which contains data on 12,328 genes treated
with 19,811 small molecule compounds across 76 different human cell lines [65,66]. Posi-
tive values in the accommodation ability data represent an increase in expression levels,
while negative values represent a decrease in expression levels. We used this dataset to
identify potential molecular drugs from the candidate drugs that can restore the drug
targets (biomarkers) to their normal expression levels. For drug sensitivity, we utilized
the primary PRISM repurposing dataset, which includes information on 4518 compounds
across 578 human cell lines [67]. We selected compounds with sensitivity values close to
zero, indicating that the cell line is insensitive to chemical perturbations. In addition, we
considered drug toxicity (LC50) using the ADMETlab 2.0 tool [68]. A higher LC50 value
indicates lower toxicity and fewer side effects. Table 6 presents several candidate drugs
that were predicted by the DNN-based DTI model for the identified biomarkers, along with
their pharmacological information on regulatory ability, toxicity, and sensitivity. Based on
the drug design specifications of suitable regulation ability, less sensitivity close to 0, and
low toxicity, potential molecular drugs such as Naringin, Butein, and Betulinic-acid were
selected. These molecular drugs were then combined as a multiple-molecule drug for the
therapeutic treatment of psoriasis, as shown in Table 4.
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Table 6. The pharmacological information of candidate molecular drugs predicted by the DNN-
based DTI model in Figure 5 for biomarkers of psoriasis. (+) means overexpression; (−) means low
expression in psoriasis.

STAT3 (+)

Drug Regulation Ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

CCT-018159 −0.68150 0.068573 5.187
Mofezolac −0.34939 0.027005 5.684
Eliprodil −2.14303 −0.00262 5.23
Butein −1.46898 −0.05445 5.776
LY-303511 −0.57210 −0.44921 5.075

CEBPB (+)

Drug Regulation ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

Limonin −3.138645411 −0.10563 6.726
Mofezolac −0.427841723 0.027005 5.684
Betulinic-acid −0.934850574 −0.10344 6.712
Tangeritin −0.260343373 −0.00037 5.488
SB-415286 −0.291000009 0.011518 6.282

ERK1/2 (+)

Drug Regulation ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

Naringin −0.12728 0.132488 6.921
Mofezolac −0.4780038 0.027005 5.684
Betulinic-acid −0.65759182 −0.10344 6.712
Quercetin −0.297982544 −0.03326 5.222
BIBU-1361 −0.908186227 0.155512 6.201

NF-kB (+)

Drug Regulation ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

Naringin −0.12728 0.132488 6.921
Mofezolac −1.00891 0.027005 5.684
Butein −1.46898 −0.05445 5.776
Ro-04-5595 −0.2619 −0.00387 5.443
Flavoxate −0.75315 0.107694 5.861

FOXO1 (−)

Drug Regulation ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50, mol/kg)

Naringin 0.579085 0.132488 6.921
Mofezolac 0.748792 0.027005 5.684
Betulinic-acid 0.756684 −0.10344 6.712
Penfluridol 0.892637 0.144082 6.202
Dexamethasone 0.763925 0.122088 5.128
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Figure 6. The training and validation accuracy (five-fold cross-validation). ”-o-” line in different
colors denotes the training accuracy, “-♦-” line in different colors denotes the validation accuracy.
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3. Discussion

In this study, we aimed to discover a potential multi-molecule drug for the therapeutic
treatment of psoriasis. To achieve this, we utilized core GWGENs by genome microarray
data via the system identification and PNP method and then employed KEGG annotations
to construct the core signaling pathways and to identify the biomarkers of pathogenesis
as drug targets for the therapeutic treatment of psoriasis. We then employed DNN-based
DTI model prediction and drug design specification to find potential molecular drugs
to combine as a multi-molecule drug that possesses the proper toxicity, sensitivity, and
regulation ability. With these system medicine approaches, consequentially, we were able
to predict Butein, Naringin, and Betulinic-acid to combine as a potential multi-molecule
drug for the therapeutic treatment of psoriasis.

Betulinic acid, or 3β-hydroxy-lup-20(29)-en-28-oic acid, is a naturally occurring pen-
tacyclic lupane-type triterpenoid widely distributed in plants [69]. Previous studies used
various experimental models to demonstrate the anti-inflammatory activity of betulinic
acid [70]. Betulinic acid can inhibit the expression of NF-κB by reducing the activation of
IKKβ, which is an inhibitor of TF NF-κB, and by decreasing the phosphorylation of IκBα,
another inhibitor of NF-κB [71]. Furthermore, Betulinic acid acts as a natural inhibitor of
the CEBP family [72]. Betulinic acid has been reported to inhibit TF ERK1/2, affecting
COX-2 expression [73]. In addition to the direct effects, other studies have reported that
Betulinic acid can indirectly lower TF STAT3 and affect the regulation of gene VEGF [73].
For the treatment of psoriasis, although there are no clinical trials yet, the studies have
confirmed that betulinic acid ameliorates psoriasis-like murine skin inflammation.

Butein (3,4,20,40-tetrahydroxychalcone) is present in numerous plants, including the
stem-bark of cashews, herbs, such as caragana jubata, and rhus verniciflua, as well as the
heartwood of Dalbergia odorifera. These plants have been used as herbal medicines for
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cancer treatment in many Asian countries, and the anti-cancer effects of these plant extracts
are well-established [74]. Butein has been shown to exert various biological activities, such
as antioxidant, anti-inflammatory, and anti-tumor activities [75]. For regulation on biomark-
ers, previous reports demonstrated that Butein induces anti-proliferative or pro-apoptotic
effects in hepatic cells by downregulating signal transducer and activator of transcription-3
(STAT-3)-related gene expression and stimulating mitochondria-dependent caspase-3 acti-
vation [76]. In addition, studies have pointed out that in the human keratinocyte cell line,
Butein inhibits TNF-α-induced expression of pro-inflammatory mediators by inhibiting
NF-κB activation. In terms of treatment, Butein has immunomodulatory activity by in-
hibiting the expression of pro-inflammatory mediators in keratinocytes and is considered
a therapeutic agent for the treatment of inflammatory skin diseases [77]. Butein has been
shown to be a promising therapeutic agent for preventing adipose tissue inflammation and
obesity-linked insulin resistance [78].

Naringin, chemically 4,5,7-trihydroxyflavanone-7-rhamnoglucoside, is a major fla-
vanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. A wide
spectrum of beneficial effects has been attributed to Naringin, including cardiovascular,
hypolipidemic, anti-inflammation, antidiabetic, neuroprotective, hepatoprotective, and
anti-cancer activities [79,80]. For the regulation of biomarkers (drug targets), a previous
study demonstrated that naringenin inhibits oxidative stress and inflammation, rescuing
neuronal cell death. The mechanism was involved in the promotion of the SIRT1/FOXO1
signaling pathway. It has also been reported that Naringin stimulated the mitochondrial
biogenesis pathway through regulation of the LKB1/AMPK/PGC-1α signaling pathway
and upregulated FOXO1-mediated autophagy [81]. Naringin has been demonstrated to
exert its anti-inflammatory effects by inhibiting the secretion, as well as inhibiting the
phosphorylation of ERK1/2, JNK, and p38 MAPK, by blocking the activation of the NF-κB
and MAPK signaling pathways [82]. In terms of therapeutic treatment, much research
has demonstrated that Naringin exerts an anti-inflammatory effect on numerous chronic
inflammatory diseases, including chronic bronchitis and inflammatory bowel disease [83].
In addition, Naringin combined with sericin significantly decreased the expression of
mRNA and the production of all pro-inflammatory cytokines in hPBMCs from patients
with psoriasis [84].

4. Materials and Methods
4.1. General Review of Constructing Core Genome-Wide Genetic and Epigenetic Networks
(GWGENs) of Psoriasis and Non-Psoriasis

In order to construct the core genome-wide genetic and epigenetic networks (core
GWGENs) for psoriasis and non-psoriasis, we first divided the data into a disease group
and a healthy control group from the GSE117468 dataset. We then followed a four-step
process, as shown in Figure 1. In the first step, we used a big database mining approach to
construct a candidate PPIN (protein–protein interaction network) and a candidate GRN
(gene regulatory network), which included the regulations of genes, miRNAs, and lncRNAs.
In the second step, we identified the real GWGENs of psoriasis and non-psoriasis by using
the microarray data of psoriasis and non-psoriasis to solve the constrained linear least
squares estimation problems for the interaction parameters of PPIN and the regulation
parameters of GRN using the system identification method. We pruned the false positives
in the candidate GWGEN using the AIC method to obtain the real GWGENs of psoriasis
and non-psoriasis [18]. In the third step, we extracted the core GWGENs by using the
principal network projection PNP approach, which involves computing a projection value
for each node in the real GWGENs to identify the top 6000 nodes, which is the largest
number of nodes allowed for annotation by KEGG pathways with the higher projection
values based on singular value to principal network structures with 85% energy of real
GWGENs as the core GWGENs [85]. In the fourth step, we annotated the KEGG pathways
of core GWGENs of psoriasis and non-psoriasis to construct their respective core signaling
pathways. We then compared the upstream micro-environmental factors, core signaling



Int. J. Mol. Sci. 2023, 24, 10033 19 of 33

pathways, and their corresponding downstream abnormal cellular functions of psoriasis
and non-psoriasis to investigate the molecular mechanisms of carcinogenesis of psoriasis.
Finally, we will identify significant biomarkers in core signaling pathways in response to
cellular dysfunctions in pathogenic mechanism of psoriasis.

4.2. Data Preprocessing for Constructing the Candidate GWGEN

In this study, we obtained the dataset with accession number GSE117468 from NCBI,
which contains microarray data of both psoriasis and non-psoriasis. We divided the
microarray dataset into two groups: a disease group and a healthy control group. The
dataset samples contain 128 samples of psoriasis and 128 samples of non-psoriasis. The
dataset consists of mRNA, miRNA, and lncRNA data. To construct the candidate GWGEN,
we used a binary matrix with a value of 1 assigned to nodes that showed interactions
or regulation and a value of 0 assigned to nodes that did not. For the construction of
the candidate PPIN, we referred to various databases, including DIP [86], IntAct [87],
BioGRID [88], and MINT [89]. Similarly, we used several databases, such as HTRIdb [90],
ITFP [91], TRANSFAC [92], CircuitDB [93], TargetScanHuman [94], and StarBase 2.0 [95] to
construct the candidate GRN.

4.3. Building the Stochastic System Models of Candidate GWGEN to Identify Real GWGENs of
Psoriasis and Non-Psoriasis

Based on the database and collected microarray data, we established candidate GW-
GEN. Next, we needed to identify the real GWGENs of psoriasis and non-psoriasis by
their microarray data. Here, we constructed stochastic interaction and regulation models
of candidate GWGEN, including protein–protein interactions, transcriptional regulations,
miRNA and lncRNA regulations, as well as the basal level and stochastic noise due to
model residuals and data measurement noise.

First, we established the following interaction equations between the a-th protein and
its interacting proteins in the candidate PPIN of candidate GWGEN [96].

pa[n] =
Ra
∑

r=1
τar pa[n]pr[n] + σa,PPIN + λa,PPIN[n]

For a = 1, 2 . . . , A, n = 1, 2 . . . , N
(1)

where pa [n] and pr[n] indicate the expression level of the a-th and the r-th protein in the
n-th sample; τar represents the interaction ability between the a-th protein and the r-th
protein; Ra stands for the total number of proteins interacting with the a-th protein; A
is the total number of proteins in the candidate PPIN; N is the total number of the data
samples (patients); σa,PPIM represents the basal level of the a-th protein expression due to
unknown interactions of histone modifications, such as phosphorylation and acetylation;
λa,PPIN[n] indicates the stochastic noise of the a-th protein in the n-th sample because of
data measurement noise.

After the protein interaction equations are completed, we need to establish the gene
regulation equations. For gene regulation, the expression levels of TFs, lncRNAs, and
miRNAs all have a great impact. For the gene regulatory model, the transcriptional
regulation of the b-th gene in the n-th sample is described by the following Equation:

gb[n] =
Hb
∑

h=1
αbhth[n] +

Ib
∑

i=1
βbili[n]−

Jb
∑

j=1
δbjmj[n]gb[n] + σb + λb[n]

For b = 1, 2 . . . , B, n = 1, 2 . . . , N
(2)

where gb[n], th[n], li[n], and mj[n] denote the expression level of the b-th gene, the h-th TF,
the i-th lncRNA, and the j-th miRNA for the n-th sample; αbh and βbi respectively indicate
the transcriptional regulatory ability of the h-th TF and the i-th lncRNA on the b-th gene;
δbj > 0 is the post-transcriptional regulatory ability of the j-th miRNA to inhibit the b-th
gene; Hb, Ib and Jb represent the total binding number of TFs, lncRNAs and miRNAs of
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the regulation on the b-th gene, respectively; B is the total number of genes in candidate
GRN; N is the total number of the data samples (patients); σb is the basal level of the b-th
gene expression caused by unknown gene regulations, such as methylation; λb[n] is the
stochastic noise of the b-th gene in the n-th sample owing to model uncertainty and data
noise.

Next, we established the lncRNA regulation Equation. The expression levels of TFs,
lncRNAs, and miRNAs all have a great impact on the expression level of lncRNA. For the
lncRNA regulatory model, the transcriptional regulation of the c-th lncRNA in the n-th
sample is described by the following Equation [17]:

lc[n] =
Hc
∑

h=1
εchth[n] +

Ic
∑

i=1
κcili[n]−

Jc
∑

j=1
γcjmj[n]lc[n] + σc + λc[n]

For c = 1, 2 . . . , C, n = 1, 2 . . . , N
(3)

where lc[n], th[n], li[n], and mj[n] denote the expression level of the c-th lncRNA, the h-th TF,
the i-th lncRNA, and the j-th miRNA in the n-th sample, respectively; εch and κci separately
indicate the transcriptional regulatory ability of the h-th TF and the i-th lncRNA on the
c-th lncRNA; γcj ≥ 0 is the post-transcriptional regulatory ability of the c-th miRNA to
inhibit the c-th lncRNA; Hc, Ic, and Jc individually represent the total binding number of
TFs, lncRNAs and miRNAs on the c-th lncRNA; C is the total number of lncRNA; N is
the total number of the data samples (patients); σc is the basal level of the c-th lncRNA
expression caused by unknown regulations, such as methylation; λc[n] is the stochastic
noise of the c-th lncRNA in the n-th sample owing to model uncertainty and data noise.

Similarly, the expression levels of miRNAs are also regulated by TFs, lncRNAs, and
other miRNAs. The regulatory model of miRNAs in candidate GWGEN is described in the
following Equation:

md[n] =
Hd
∑

h=1
xdhth[n] +

Id
∑

i=1
ydili[n]−

Jd
∑

j=1
zdjmj[n]md[n] + σd + λd[n]

For d = 1, 2 . . . , D, n = 1, 2 . . . , N
(4)

where md[n], th[n], li[n], and mj[n] denote the expression level of the d-th miRNA, the
h-th TF, the i-th lncRNA and the j-th miRNA in the n-th sample, sequentially; xdh and ydi
separately indicate the transcriptional regulatory ability of the h-th TF and the i-th lncRNA
on the d-th lncRNA, respectively; zdj ≥ 0 is the post-transcriptional regulatory ability of
the d-th miRNA to inhibit the d-th miRNA; Hd, Id, and Jd individually represent the total
binding number of TFs, lncRNAs and miRNAs on the d-th miRNA; D is the total number
of miRNA; N is the total number of the data samples (patients); σd is the basal level of the
d-th lncRNA expression caused by unknown regulations; λd[n] is the stochastic noise of
the d-th miRNA in the n-th sample owing to model uncertainty and data noise.

4.4. Using the System Identification Scheme and System Order Detection Method to Prune False
Positives of the Candidate GWGEN and Identify Real GWGENs of Psoriasis and Non-Psoriasis

According to the stochastic interaction and regulatory model, we constructed four
models for candidate GWGENs above, including the candidate PPI model [96], gene regula-
tory model, lncRNA regulatory model, and miRNA regulatory model in Equations (1)–(4),
respectively. Then, we used system identification and system order detection method to
prune the false positive interactions in candidate GWGENs and obtain the real GWGENs
of psoriasis and non-psoriasis by their microarray data. To estimate the interactive and
regulative parameters, we needed to rewrite Equations (1)–(4) into the following linear
regression form [97]:
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pi [n] =
[

pa[n]p1[n] pa[n]p2[n] . . . pa[n]pRa [n] 1
]
×


τa1
τa1
...

τaRa
σa,PPIN

+ λa,PPIN [n]

, φa[n]·θa + λa,PPIN [n], for a = 1, 2, · · · , A, n = 1, . . . , N

(5)

gb[n] =
[

t1[n] . . . tHb [n] w1[n] . . . wIb [n] s1[n]gb[n] . . . sJb [n]gb[n] 1
]
×



αb1
...

αbHb
βb1

...
βbIb
−δb1

...
−δbJb

σb



+ λb[n]

, φb[n]·θb + λb[n], for b = 1, 2, · · · , B, n = 1, . . . , N

(6)

lc[n] =
[

t1[n] . . . tHc [n] w1[n] . . . wIc [n] s1[n]gb[n] . . . sJc [n]gc[n] 1
]
×



εc1
...

εcHc
κc1

...
κIc
−γc1

...
−γcJc

σc



+ λc[n]

, φc[n]·θc + λc[n], for c = 1, 2, · · · , C, n = 1, . . . , N

(7)

md[n] =
[

t1[n] . . . tHd [n] w1[n] . . . wId [n] s1[n]gd[n] . . . sJd [n]gd[n] 1
]
×



xd1
...

xdHd
yd1

...
ydId
−zd1

...
−zdJd

σd



+ λd[n]

, φd[n]·θd + λd[n], for d = 1, 2, · · · , D, n = 1, . . . , N

(8)

where φa[n], φb[n], φc[n], φd[n] are regression vectors of the expression data of the a-th
protein, the b-th gene, the c-th lncRNA, and the d-th miRNA in the n-th sample, respectively;
θa denotes the parameter vector of protein–protein interactions and the basal level of the
a-th proteins; θb, θc, θd indicate the parameter vector of the transcriptional regulatory
ability and basal level of the b-th gene, the c-th lncRNA, and the d-th miRNA, respectively;
λa[n],λb[n],λc[n],λd[n] are the stochastic noise due to model residue and data noise of the
a-th protein, the b-th gene, the c-th lncRNA, and the d-th miRNA for n samples, respectively.
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Then, linear Equations (5)–(8) can be further rewritten with N microarray data samples
as the following Equations:

pa[1]
pa[2]

...
pa[N]

 =


φa[1]
φa[1]

...
φa[N]

θa,P +


λa[1]
λa[2]

...
λa[N]

, for a = 1, 2, · · · , A (9)


gb[1]
gb[2]

...
gb[N]

 =


φb[1]
φb[2]

...
φb[N]

θb,G +


λb[1]
λb[2]

...
λb[N]

, for b = 1, 2, · · · , B (10)


lc[1]
lc[2]

...
lc[N]

 =


φc[1]
φc[2]

...
φc[N]

θc,G +


λc[1]
λc[2]

...
λc[N]

, for c = 1, 2, · · · , C (11)


md[1]
md[2]

...
md[N]

 =


φd[1]
φd[2]

...
φd[N]

θd,M +


λd[1]
λd[2]

...
λd[N]

, for d = 1, 2, · · · , D (12)

The Equations (9)–(12) can be simply expressed as the following equations, respectively:

Pa = Φa·Θa + Ωa, for a = 1, 2, · · · , A (13)

Gb = Φb·Θb + Ωb, for b = 1, 2, · · · , B (14)

Lc = Φc·Θc + Ωc, for c = 1, 2, · · · , C (15)

Md = Φd·Θd + Ωd, for d = 1, 2, · · · , D (16)

Then, we can estimate the parameter vectors Θa, Θb, Θc, Θd by their corresponding
microarray data of N samples (patients). If the component number of the parameter vector
of protein in PPIN and genes in GRN is larger than half (N/2) of the dataset samples, it
may cause an overfitting problem in the parameter estimation. Therefore, we estimated
the parameter vector by solving the constrained linear least-squares parameter estimation
problem as follows [97]:

Θ̂a = argmin
Θa

1
2
‖Φa·Θa − Pa‖2

2 (17)

Θ̂b = argmin
Θb

1
2‖Φb·Θb − Gb‖2

2,

subject to



0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0︸ ︷︷ ︸

Hb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0︸ ︷︷ ︸

Ib

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 1︸ ︷︷ ︸

Jb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
...
0


Θb ≤


0
...
...
0


(18)
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Θ̂c = argmin
Θc

1
2‖Φc·Θc − Lc‖2

2,

subject to



0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0︸ ︷︷ ︸

Hc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0︸ ︷︷ ︸

Ic

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 1︸ ︷︷ ︸

Jc

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
...
0


Θc ≤


0
...
...
0


(19)

Θ̂d = argmin
Θd

1
2‖Φd·Θd −Md‖2

2,

subject to



0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0︸ ︷︷ ︸

Hd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0︸ ︷︷ ︸

Id

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 1︸ ︷︷ ︸

Jd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
...
0


Θd ≤


0
...
...
0


(20)

The constraints in Equations (18)–(20) ensure that the estimated post-transcriptional
regulatory ability of miRNAs on genes, lncRNAs, and miRNAs is negative. Therefore, we
can estimate the optimal vectors Θ̂a,Θ̂b,Θ̂c,Θ̂d of the protein interaction, gene, lncRNA, and
miRNA regulation by solving the constrained least squares parameter estimation problems
in Equations (17)–(20) with the MATLAB Optimization Toolbox, respectively.

After solving the constrained least squares parameter estimation problems above, we
obtained the parameters of interactive ability, regulatory ability, and basal level for each
protein, gene, miRNA, and lncRNA in candidate GWGENs of psoriasis and non-psoriasis
by their microarray data. Then, we pruned false positives in candidate GWGENs to obtain
real GWGENs of psoriasis and non-psoriasis through the system order detection method
via the Akaike Information Criterion (AIC) method. The AIC method for detecting the
order of protein, gene, lncRNA, and miRNA in candidate GWGENs is given as follows [96]:

AIC(Ra) = log(ρ2
a) +

2(Ra+1)
N

where ρa =

√
(Pa−Φa ·Θ̂a)

T
(Pa−Φa ·Θ̂a)

N

(21)

and ρa is the estimated residual error of the a-th protein, which was calculated from the least
square estimated parameter Θ̂a in Equation (17). Ra is the number of protein interactions
with the a-th protein.

AIC(Hb, Ib, Jb) = log(ρ2
b) +

2(Hb+Ib+Jb+1)
N

where ρb =

√
(Gb−Φb ·Θ̂b)

T
(Gb−Φb ·Θ̂b)

N

(22)

and ρb is the estimated residual error of the b-th gene, which was calculated from the
least square estimated parameter Θ̂b in the constrained estimation parameter problem
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Equation (18). Hb, Ib, and Jb are the number of regulations of genes, lncRNAs, and miRNAs
on the b-th gene.

AIC(Hc, Ic, Jc) = log(ρ2
c) +

2(Hc+Ic+Jc+1)
N

where ρc =

√
(Gc−(Φc ·Θ̂c)

T
(Gc−(Φc ·Θ̂c)

N

(23)

and ρc is the estimated residual error of the c-th lncRNA, which was calculated from the
least square estimated parameter Θ̂c in the constrained estimation parameter problem
Equation (19). Hc, Ic, and Jc are the number of regulations of genes, lncRNAs, and miRNAs
on the c-th gene, respectively.

AIC(Hd, Id, Jd) = log(ρ2
d) +

2(Hd+Id+Jd+1)
N

where ρd =

√
(Gd−(Φd ·Θ̂d)

T
(Gd−(Φd ·Θ̂d)

N

(24)

and ρd is the estimated residual error of the d-th miRNA, which be calculated from the
least square estimated parameter Θ̂d in the constrained estimation parameter problem
Equation (19). Hd, Id, and Jd are the number of regulations of genes, lncRNAs, and miRNAs
on the d-th gene, respectively.

Akaike Information Criterion (AIC) is an index used to compare the pros and cons of
different statistical models. The smaller the AIC value, the better the predictive ability of the
model. To obtain the real GWGENs, we minimize the four AICs by equations as follows:

R∗a = argmin
Ra

AIC(Ra) for a = 1, . . . , A (25)

H∗b , I∗b , J∗b = argmin
Hb ,Ib ,Jb

AIC(Hb, Ib, Jb), for b = 1, . . . , B (26)

H∗c , I∗c , J∗c = argmin
Hc ,Ic ,Jc

AIC(Hc, Ic, Jc), for c = 1, . . . , C (27)

H∗d , I∗d , J∗d = argmin
Hd ,Id ,Jd

AIC(Hd, Id, Jd), for d = 1, . . . , D (28)

where R*
a means the real number of protein interactions with the a-th protein. H*

b, I*
b, and

J*
b denote the real number of regulations of TFs, lncRNAs, and miRNAs on the b-th gene.

H*
c, I*

c, and J*
c denote the real number of regulations of TFs, lncRNAs, and miRNAs on

the c-th lncRNA. H*
d, I*

d, and J*
d denote the real number of regulations of TFs, lncRNAs,

and miRNAs on the d-th miRNA. After solving the above AIC minimum problem, the
false positives out of the real number of interactions and regulations must be removed
from candidate GWGENs and obtain the real GWGENs of psoriasis and non-psoriasis in
Figure 2.

4.5. Extracting the Core GWGENs from the Real GWGENs by the Principal Network Projection
(PNP) Method

After system order detection and identification method by the corresponding microar-
ray data, we successfully obtained real GWGENs of psoriasis and non-psoriasis in Figure 2.
However, it is still too complicated to figure out the molecular mechanisms of psoriasis.
Therefore, we needed to employ KEGG pathways to annotate signaling pathways of real
GWGENs. However, at present, KEGG pathways can only annotate GWGENs with 6000
nodes at most. Therefore, we used the PNP method to extract 6000 nodes from real GW-
GENs of psoriasis and non-psoriasis for pathway annotation by KEGG. The PNP method
is based on singular value decomposition (SVD) of real GWGENs in Figure 2 to extract
k = 6000 important nodes in real GWGENs to construct core GWGENs in Figure 3. The
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procedure of the PNP method is given as follows: First, in order to employ the singular
value decomposition technique, we constructed a network matrix W from real GWGENs.

W =


wprotien↔protien 0 0

wTF→gene wlncRNA→gene wmiRNA→gene
wTF→lncRNA wlncRNA→ln cRNA wmiRNA→lncRNA
wTF→miRNA wlncRNA→miRNA wmiRNA→miRNA

 (29)

where wprotien↔protien is a sub-matrix which records the estimated protein interaction abil-
ities of PPIN. The bidirectional arrow means the protein interaction is bidirectional; the
sub-network matrices wTF→gene, wlncRNA→gene, and wmiRNA→gene record the estimated
transcriptional regulation abilities of TFs, lncRNAs, and miRNAs on genes, respectively;
wTF→lncRNA, wlncRNA→ln cRNA, and wmiRNA→lncRNA indicate matrices of the estimated tran-
scriptional regulation abilities of TFs, lncRNAs, and miRNAs on lncRNAs, respectively;
wTF→miRNA, wlncRNA→miRNA, wmiRNA→miRNA are the matrices of the estimated transcrip-
tional regulation abilities of TFs, lncRNAs and miRNAs on miRNAs, respectively. The
following matrix is the detail on the network matrix of W of real GWGENs:

W =



τ̂11 · · · τ̂1r · · · τ̂1Ra 0 · · · 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

τ̂a1 · · · τ̂ar · · · τ̂aRa 0 · · · 0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

τ̂A1 · · · τ̂Ar · · · τ̂ARa 0 · · · 0 · · · 0 0 · · · 0 · · · 0
α11 · · · α1h · · · α1Hb β11 · · · β1i · · · β1Ib −δ11 · · · −δ1j · · · −δ1Jb

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
αb1 · · · αbh · · · αbHb

βb1 · · · βbi · · · βbIb
−δb1 · · · −δbj · · · −δbJb

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
αB1 · · · αBh · · · αBHb βB1 · · · βBi · · · βBIb −δB1 · · · −δBj · · · −δBJb
ε11 · · · ε1h · · · ε1Hc κ11 · · · κ1i · · · κ1Ic −γ11 · · · −γ1j · · · −γ1Jc
...

. . .
...

. . .
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

εc1 · · · εch · · · εcHc κc1 · · · κci · · · κcIc −γc1 · · · −γcj · · · −γcJc

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
εC1 · · · εCh · · · εCHc κC1 · · · κci · · · κCIc −γC1 · · · −γCj · · · −γCJc
x11 · · · x1h · · · x1Hd y11 · · · y1i · · · y1Id −z11 · · · −z1j · · · −z1Jd

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
xd1 · · · xdh · · · xdHd

yd1 · · · ydi · · · ydId
−zd1 · · · −zdj · · · −zdJd

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
xD1 · · · xDh · · · xDHd yD1 · · · yDi · · · yDId −zD1 · · · −zDj · · · −zDJd



∈ R(A∗+B∗+C∗+D∗)×(H∗+I∗+J∗) (30)

Then, we performed a singular value decomposition of the network matrix W as
follows:

W = UΣVT

U ∈ R(A∗+B∗+C∗+D∗)×(A∗+B∗+C∗+D∗)

Σ ∈ R(A∗+B∗+C∗+D∗)×(H∗+I∗+J∗)

V ∈ R(H∗+I∗+J∗)×(H∗+I∗+J∗)

(31)



Int. J. Mol. Sci. 2023, 24, 10033 26 of 33

Σ =



σ1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · σk · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · σH∗+I∗+J∗

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


∈ R(A∗+B∗+C∗+D∗)×(H∗+I∗+J∗) (32)

In order to extract the core GWEN from the real GWEN, we only retained the top
K singular values of matrix Σ in Equation (32), which have at least 85% energy of real
GWGENs. Similarly, the matrix U retains the top K rows, and VT retains the top-K columns
to construct a significant network structure with at least 85% energy as follows [18,96]:

Ek =

K
∑

x=1
σ2

x

H∗+I∗+J∗
∑

m=1
σ2

m

≥ 0.85 (33)

Next, we project each node of the real GWGENs (i.e., each row of network matrix W)
separately to the top K principal singular vectors and apply the 2-norm projection value of
each node such as protein, gene,miRNA, and lncRNA in the real GWGENs of psoriasis and
non-psoriasis to the top K principal singular vectors as follows:

proj(a, b) = wa·vb
T

P(a) =

√
K
∑

b=1
proj(a, b) ,

for a = 1, . . . , (A∗ + B∗ + C∗ + D∗) , b = 1, . . . , K

(34)

where proj(a,b) denotes the projection value of the a-th node to the b-th principal singular
vector; wa and vb are the a-th row of the W vector and the b-th principal singular vector.
P(a) represents the 2-norm projection value of the a-th node to the top K singular vectors.
The larger the P(a), the more influence the a-th node of real GWGENs is on the network
structure. Conversely, if P(a) is very close to zero, then the a-th node of real GWGENs is
almost independent of the significant network structure.

The core GWGENs of psoriasis and non-psoriasis were identified, as shown in Figure 3,
by extracting the top 6000 significant nodes based on their projection values P(a) in Equa-
tion (34). These core GWGENs were then annotated by KEGG pathways, which allowed
us to identify the core signaling pathways of psoriasis and non-psoriasis in Figure 4. We
compared these two core signaling pathways in Figure 4 to gain insights into the patho-
genesis underlying the development of psoriasis. Based on the investigated pathogenic
mechanism in Figure 4, we selected essential biomarkers as potential drug targets for the
therapeutic treatment of psoriasis.

4.6. Design and Discovery of Multi-Molecule Drug through the Prediction of DNN-Based DTI
Model for Treatment of Psoriasis by DNN-Based DTI Model

After finding the essential biomarkers as drug targets for the pathogenesis of psoriasis,
we needed to identify the corresponding candidate molecular drugs to target these essential
biomarkers. DNN-based DTI model has been effectively employed to predict candidate
drugs to interact with significant biomarkers (drug targets) [96].

To train a DNN-based DTI model to predict the interactions of drug candidates
with significant biomarkers of psoriasis, we integrated multiple DTI databases, including
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STITCH, BIDD, UniProt, DrugBank, ChEMBL, PubChem, and KEGG [98–103], which
provide information about molecular interactions, drug and target features. Drug features
include structure, topology, geometric descriptors, and other molecular properties, while
the sequence of the target protein is representative because the complete target protein
information is usually encoded in the sequence. Target features are calculated from the
structural and physicochemical features of proteins and peptides in amino acid sequences.
After converting the properties of drugs and targets into features, we used the Python
package PyBioMed under the Python 3.7 environment [104], and each drug-target pair was
represented as a feature vector by concatenating the corresponding feature vectors. The
feature vector of the drug-target pair is as follows [105]:

xdrug−target = [D, T] = [d1, . . . , dM, t1, . . . , tN ] (35)

where xdrug-target refers to the feature vector for the drug-target pair, while D and T represent
the feature vectors for the drug and target, respectively, dm and tn refer to the m-th drug
feature and n-th target feature, respectively, where M and N indicate the total number of
drug and target features, respectively.

Before using the drug-target vector in Equation (35) as training data for a deep neural
network (DNN) as a DTI model to predict candidate molecular drugs for significant
biomarkers (drug targets) of psoriasis, we needed to pre-process the data to make it suitable
as an input to the DNN. Because there were more negative data with unknown interactions
than positive data with known interactions, it was necessary to downsample the negative
data to reduce the imbalance problem between the numbers of positive and negative data.
The purpose of downsampling is to randomly reduce the amount of negative data to the
same number as positive data, allowing the model to learn equally from both types of
training data. Furthermore, since the variables of the feature vectors in Equation (35) in
each drug-target pair are measured in different units, we need to normalize each feature
vector to normalize the importance among the feature vectors. In other words, the purpose
of preprocessing the training data is to enable DNN to better learn the model of drug-target
interaction. The mathematical formulas for the normalization of the features of the drug
and target are as follows:

d∗m =
dm − µm

σm
,∀m = 1, . . . , M (36)

t∗n =
tn − µn

σn
,∀n = 1, . . . , N (37)

where dm* represents the m-th drug feature represents the m-th drug feature after stan-
dardization, and dm represents the original m-th drug feature. Similarly, tn* represents the
n-th target feature after standardization, and tn represents the original n-th target feature.
The mean and standard deviation of each drug feature are represented by µm and σm, re-
spectively. Likewise, the mean and standard deviation of each target feature is represented
by µn and σn, respectively. Equations (36) and (37) refer to a standardization process for
drug and target features, respectively.

Since the DNN, which is employed as a DTI model, has only 996 inputs, we needed
to reduce the dimension of drug target features in the feature vectors in Equation (35)
so that they could be input into the DNN. To reduce the input number of features to
DNNs as the DTI model, we downsample the feature vectors of the drug-target pair to
reduce their dimension using the principal component analysis (PCA) method. After data
preprocessing, we use 75% of the data as training data and 25% of the data as testing
data. The DNN-based DTI model in Figure 5 has four hidden layers containing 512, 256,
128, and 64 neurons, respectively. We used binary cross entropy as the loss function, the
learning rate is 0.001, and we used the Adam algorithm as the optimizer. In addition,
we set epochs to 100 and batch size to 100. Each hidden layer has a rectified linear unit
(ReLU) activation function to avoid the vanishing gradient problem in deep learning. We
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also use the five-fold cross-validation method for learning data to check the stability and
prediction performance of the DNN-based DTI model. We applied the early stopping
approach to avoid the overfitting problem. The activation function of the output layer is a
sigmoid function, which can limit the output value in the range of 0 to 1 as the probability
predicted by the DNN-based DTI model. Because the drug-target interaction (DTI) is a
binary classification issue, the cost function which we chose to calculate the model loss is
the binary cross-entropy as follows [97]:

Cn(pn, p̂n) = −[pn log p̂n + (1− pn) log(1− p̂n)] (38)

L(w, b) =
1
N

N

∑
n=1

Cn(w, b) (39)

For the n-th sample, we have a true positive interaction probability pn and a predicted
positive interaction probability p̂n, and a true negative interaction probability 1 − pn and a
predicted negative interaction probability 1− p̂n. We use binary cross-entropy as the loss
function to compute the total loss Cn(pn, p̂n) by averaging the loss L(w,b) per sample. w
denotes the weighting vector; b indicates the bias vector of DNN. N is the total number of
training data.

We utilized the backward propagation algorithm [106] to update the parameter vector
θ of the weight vector w and bias vector b based on the cost function. This involves
calculating the gradient to obtain the optimal parameter vector θ* for the DNN-based DTI
model as follows:

θ =

[
w
b

]
(40)

θ∗ = argmin
θ

L(θ) (41)

θy = θy−1 − η∇L(θy−1) ,

where ∇L(θy−1) =

[
∂L(θy−1)

∂w
∂L(θy−1)

∂b

]
(42)

and y means the y-th interaction of the learning process by training of the y-th drug-target
feature vector; η is the learning rate which is set as 0.001 in this study; ∇L(θy−1) means the
gradient of L(θy−1).

After training the DNN-based DTI model by feature vectors of drug-target pairs in
Equation (35), we used the area under the curve (AUC) and receiver operating character-
istic (ROC) curves in Figure 8 to evaluate the prediction performance of the model. For
classification problems, this is one of the most useful evaluation metrics to visualize the
performance of the DNN-based DTI model. The larger the area under the ROC curve, the
higher the AUC and the higher the accuracy of the DNN-based DTI model in predicting
true positive and true negative drug-target interactions. The mathematical formulas for
AUC and ROC curves are as follows [96]:

TPR =
TP

TP + FN
(43)

TNR =
TN

TN + FP
(44)

FPR =
FP

TN + FP
= 1− TNR (45)

where TP means the judgment is true and the fact is also true; TN means the judgment is
false and real value is also false; FP means the judgment is true, but the real value is false;
FN means the judgment is false, but the real value is true;
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By using the DNN-based DTI model, we successfully obtained five candidate molecu-
lar drugs in Table 6, which can be pruned by drug design specifications to obtain potential
molecular drugs for psoriasis. We screened out the potential molecular drugs from candi-
date molecular drugs in Table 6 based on some pharmacological properties such as adequate
regulation ability, sensitivity, and toxicity as drug design specifications. Specifically, we
referred to regulatory capacity data from the L1000 Level 5 dataset [65], from which molec-
ular drugs were selected against selected biomarkers (drug targets). For example, if the
gene expression of the selected biomarkers (drug targets) is abnormally upregulated, we
will select the drug with a negative correlation. Conversely, if the gene expression of the
selected biomarkers (drug targets) is abnormally downregulated, a drug with a positive
correlation is selected. At the same time, we selected molecular drugs with sensitivity
values close to zero corresponding datasets obtained from primary PRISM repurposing
datasets [67]. A sensitivity value close to zero indicates that the cell is not sensitive to
the molecular drug. In consideration of drug toxicity, we used the ADMETlab 2.0 tool
to refer to the LC50 value and selected compounds with lower toxicity [68]. Finally, we
screened out the potential molecular drugs of psoriasis following the above three drug
design specifications and proposed three potential molecular drugs which are combined
as a multi-molecule drug in Table 4. Overall, we have successfully selected a suitable
combination of molecular drugs as a multi-molecule drug for the therapeutic treatment
of psoriasis.

5. Conclusions

In this study, we first constructed candidate GWGENs via big data mining. Second,
we used an AIC system order detection and system identification scheme to obtain the real
GWGENs of psoriasis and non-psoriasis by their microarray data of 128 patients. Third, we
extracted the core GWGENs of psoriasis and non-psoriasis by employing the PNP method.
Afterward, core signaling pathways for psoriasis and health control were identified by
KEGG pathways annotation of core GWGENs. After identifying the significant biomarkers
for the pathogenesis of psoriasis as drug targets, with the help of the DNN-based DTI
model trained by DTI databases, we could predict the candidate molecular drugs of the
significant biomarkers. Finally, we selected potential molecular drugs to combine as a
multi-molecule drug for the therapeutic treatment of psoriasis according to the drug design
specifications of adequate regulatory ability, toxicity, and sensitivity between drugs and
drug targets.

In this study, we identified NF-κB, FOXO1, CEBPB, STAT3, and ERK1/2 as the drug
targets for the treatment of psoriasis. Then based on the prediction of the DNN-based DTI
model and the proposed drug design specifications, Naringin, Butein, and Betulinic acid
are selected and combined as the multiple-molecule drug to target multiple biomarkers of
the pathogenesis of psoriasis. With more clinical and experimental verification, it is hoped
that the multi-molecule drug proposed in this study can benefit patients with psoriasis.
Finally, it is appealing to extend the novelty of this systems medicine approach in the search
for new candidate molecules in the therapy of other diseases since, with the proposed work,
the therapeutic expectations of the drugs thus identified are high.
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