
Citation: Valle-Mendiola, A.;

Gutiérrez-Hoya, A.; Soto-Cruz, I.

JAK/STAT Signaling and Cervical

Cancer: From the Cell Surface to the

Nucleus. Genes 2023, 14, 1141.

https://doi.org/10.3390/

genes14061141

Academic Editor: Amanda Harvey

Received: 1 April 2023

Revised: 13 May 2023

Accepted: 22 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Review

JAK/STAT Signaling and Cervical Cancer: From the Cell
Surface to the Nucleus
Arturo Valle-Mendiola 1 , Adriana Gutiérrez-Hoya 1,2 and Isabel Soto-Cruz 1,*

1 Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National
University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico;
arturo.valle@zaragoza.unam.mx (A.V.-M.); adrianagh85@hotmail.com (A.G.-H.)

2 Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
* Correspondence: sotocruz@unam.mx; Tel.: +52-555-623-0796

Abstract: The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling
pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates
different cellular responses, such as proliferation, survival, migration, invasion, and inflammation.
When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT
proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling
may be necessary to induce tumor cell death. Several cancers show continuous activation of different
STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a
poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7
play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and
other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a
crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora
of different proteins activate to induce gene transcription and cell responses that contribute to tumor
growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer
treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of
the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other
signaling pathways to induce tumor growth.
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1. Introduction

Cervical cancer is the fourth cancer with the highest incidence and mortality world-
wide, and its prognosis continues to be poor, especially when the disease is detected at a
late stage. In 2020, GLOBOCAN reported 604,127 cervical cancer cases and 341,831 deaths,
with a high prevalence in the last five years [1,2]. Treatment options for patients with
cervical cancer vary depending on the stage at which they are detected but still are limited.
For example, stage IA1 can be treated with conization or hysterectomy. Stages IA2, IB,
and IIA can receive treatments that include radical hysterectomy and lymphadenectomy,
and patients with local or advanced cancer are treated with cisplatin-based chemother-
apy. However, the risk of relapse is 10–20% for early phases of the disease and 50–70%
for advanced phases of the disease. Nevertheless, cisplatin has a response rate of 13%
(monotherapy) and 36% with dual therapy; for this reason, new strategies are generated
combining chemotherapeutic drugs with monoclonal antibodies that recognize molecules
that are essential for tumor growth, such as antibodies anti-vascular endothelial growth fac-
tor (Bevacizumab), which improves the response rate by up to 48%. However, the options
are limited in the case of relapses, which makes it necessary to look for new therapeutic
targets to improve the prognosis in patients with advanced disease [3]. Vaccination has
helped to reduce cervical cancer prevalence. Three prophylactic vaccines for the human
papillomavirus (HPV) have been approved, although they do not have therapeutic effects

Genes 2023, 14, 1141. https://doi.org/10.3390/genes14061141 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14061141
https://doi.org/10.3390/genes14061141
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-6782-4547
https://orcid.org/0000-0001-5115-3654
https://doi.org/10.3390/genes14061141
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14061141?type=check_update&version=2


Genes 2023, 14, 1141 2 of 31

on existing infections: Gardasil® (quadrivalent vaccine against HPV16, HPV11, HPV16, and
HPV18), Cervarix® (bivalent vaccine against HPV16 and HPV18), and Gardasil 9® (non-
avalent vaccine against HPV6, HPV11, HPV16, HPV18, HPV31, HPV33, HPV45, HPV52,
and HPV58). It is clear that cervical smears and HPV vaccination have helped reduce cases
in developed countries; however, cervical cancer still represents a public health burden
affecting middle-aged women, mainly in countries with low incomes [2,4]. Persistent high-
risk papillomavirus (hrHPV) infection is the leading cause of cervical cancer development;
the most common hrHPV types are 16, 18, 31, 33, 35, 45, 52, and 58. Among them, two
types (HPV16 and HPV18) cause between 70 and 72% of invasive cervical cancers [5].
hrHPV has two oncoproteins, E6 and E7, necessary for establishing and development of
cervical cancer. Regulatory proteins pRB and p53 are the best-known targets of E6 and
E7. However, there are other targets: E6 and E7 also regulate epigenetic marks, splice
changes, and generate regulatory RNAs—regulators of the transcription—among other
changes that allow the virus to proliferate in an uncontrolled manner and generate cell
transformation and carcinogenesis [6–9]. After HPV infection, tumor development does not
progress uniformly; precancerous lesions may relapse without any treatment for uncertain
reasons [10]. Regardless, the constant HPV infection triggers molecular changes that silence
the cell-mediated immune responses blocking clearance of the infection and elimination
of abnormal cells [11]. However, a hrHPV infection is considered a necessary but insuffi-
cient cause for cervical cancer development [12]. There are different risk factors, such as
initiation of sexual activity at an early age, sexual multiparity, vaginal irrigation or sexual
intercourse, and biological factors, such as bacterial vaginosis [13,14], malnutrition, or
sexually transmitted infections [15] that alter the vaginal microenvironment and contribute
to the persistence of an HPV infection [16].

The JAK/STAT pathway induces the expression of critical mediators of cancer and
inflammation, and dysregulation of this pathway is associated with several cancers. Persis-
tent activation of different STATs is shown in various cancers, including cervical cancer,
and the overactivation may be related to a poor prognosis and poor overall survival. The
oncoproteins E6 and E7 play a central role in cervical cancer progression and may mediate
the activation of the JAK/STAT signaling pathway [17,18]. In this review, we describe the
JAK/STAT main players, its relationship to cervical cancer activation, and the crosstalk
with other signaling pathways associated with HPV oncoproteins and cancer development.

2. The Discovery of the JAK/STAT Pathway

In recent years, an emergent field of investigation has been signal transduction path-
ways; this field has multiple applications, particularly in developing specific inhibitors for
controlling the aberrant activation of some signal transduction pathways.

The destiny of cells is mainly determined by the intracellular signaling pathways that
regulate mechanisms involved in responses to ligands. These pathways are frequently
activated through cell membrane receptors that bind to their cognate ligands to promote
the mechanisms involved in controlling a wide variety of phenomena such as proliferation,
apoptosis, hematopoiesis, tissue repair, adipogenesis, inflammation, and metabolic changes,
among others [19].

The JAK/STAT pathway is well-conserved in metazoan cells [20]; several reports
include more than 50 cytokines and growth factors that participate in the JAK/STAT sig-
naling; for example, interleukins (ILs), interferons (IFN), colony-stimulating factors (CSF),
and hormones [21]. At the beginning of the twentieth century, some studies associated
mutations in JAK and STAT proteins (resulting in persistent pathway activation) with
several disorders [22] and, moreover, the loss of JAK/STAT components with different
diseases in humans; for example, severe combined immunodeficiency (SCID) [23].

The discovery of the JAK/STAT pathway dates back to 1989; however, some authors
track its origin to 1950 [22]. JAK1 and JAK2 were described in 1989, and the first protein
of the JAK family was cloned in 1990 [24]. The gene was named Tyk2; the most attractive
characteristic of this molecule was the presence of a kinase-like domain next to the protein
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tyrosine kinase domain [25]. Because of this feature of the protein having one kinase-like
domain next to the tyrosine kinase domain, or “two faces”, the name (JAK or Janus kinases)
was derived from the Roman God of doorways with two faces, Janus. The protein functions
with one domain including the kinase activity and a second domain that negatively regu-
lates the kinase activity [22,26]. In 1992, Harpur et al. cloned the DNA sequence that was
complementary for JAK2 and showed that this protein had a similar structure, including
both a kinase domain and the kinase-like domain (“pseudo-kinase” domain) [27]; in the
same year, Shuai et al. reported cDNA clones named the signal transducer and the activator
of transcription (STAT1 isoforms α and β, at that time known as STAT91 and STAT84)
and STAT2 (or STAT113) [28,29]. Posteriorly, Darnell et al. obtained the clones for STAT3
and STAT4 from a lymphocyte cDNA library, demonstrating that IL-6 and EGF induced
the phosphorylation of STAT3 [30,31]. The gene named mammary gland factor (MGF),
encoding STAT5, was cloned and sequenced by Wakao et al. in 1994 [32]. The relationship
between the proteins is revealed in the in the JAK/STAT pathway data from the early
90s. In 1992, Velazquez et al. showed that TYK2 is required in the IFN-α/β signaling
pathway [33]; in 1993, Müller et al. demonstrated that IFN-dependent signaling needed
JAK kinases to activate STAT proteins [34]. In later years, different elements and functions
of the JAK/STAT signaling pathway were elucidated. Intensive research on the JAK/STAT
signaling pathway function has continued, making the JAK/STAT an imperative target for
research, along with the search for specific inhibitors to treat different diseases.

3. The JAK/STAT Pathway

The canonical pathway initiates when the ligand binds to its cognate receptor to induce
dimer or trimerization; however, some receptors, such as gp130 [35], erythropoietin recep-
tor (EpoR) [36,37], TNF-R1 [38], IL-17R [39], IL-10R [40], and Growth Hormone receptor
(GHR) [41], among others, can form inactive dimers before binding to the ligand, thus
facilitating a rapid activation of different molecules that participate in the cellular response.
The union between the receptor and its ligand induces transphosphorylation of JAKs,
which activates them; these activated JAKs phosphorylate specific tyrosine residues of the
receptor, originating docking sites for STATs. At these sites, JAK phosphorylates specific
tyrosine residues of the STAT protein, which separates from the receptor and forms homo
or heterodimers by an interaction between the SH2 domain of one STAT and a specific
phosphotyrosine residue of the other STAT. These dimers translocate to the nucleus, where
they can regulate the transcription of specific genes (Figure 1) [20,22,42,43]. Nonetheless,
the JAK/STAT pathway is also involved in the non-canonical signal transduction pathway.
In the canonical JAK-STAT interaction, there is a specific correspondence between the activ-
ity of the STAT protein and its tyrosine phosphorylation; nevertheless, unphosphorylated
STAT (U-STAT) has relevant functions such as control of the metabolism in different cell
compartments and specific control in mitochondria or Golgi apparatus [44–51]. U-STAT1
was necessary for the TNF-mediated apoptosis of U3A cells; however, the phosphorylation
of the S727 at the C-terminal is required for this activity [52]. Some of the U-STAT pool
is associated with the heterochromatin in the nucleus, in particular with heterochromatin
protein-1 (HP1). It has been shown that STAT92E associates with HP1 to keep the structure
of heterochromatin and gene repression (Figure 1) [53,54]. JAK or other kinases activate
STAT proteins and induce HP1 to separate from the heterochromatin; then, phosphorylated
STAT binds to specific sites on chromatin to change the structure to euchromatin and regu-
late gene transcription. This non-typical JAK/STAT signaling is necessary for maintaining
the stability of heterochromatin [54–56]. In mammals, U-STAT5A binds to HP1α to keep
the stability of heterochromatin to STAT92E in order to repress the genes involved in cancer
development [57]. Another function of U-STAT5 is repressing the transcriptional program
necessary for megakaryocytic differentiation by preventing the interaction of the transcrip-
tion factor ERG (ETS-related gene), thus acting as an antagonist of the biological activity of
pSTAT5 [58]. U-STAT3 competes with IκB for the union with non-phosphorylated NFκB,
translocating to the nucleus and activating several NFκB-dependent genes [59]. U-STAT6,
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in addition to p300, binds to a consensus STAT6 binding site in the promoter of the Cox-2
gene to regulate its constitutive expression [60].
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Figure 1. The JAK/STAT pathway players. In the canonical pathway, the ligand binds to its receptor
to activate JAKs that phosphorylate specific TYR sites in the receptor to interact with STAT proteins.
Then, JAKs phosphorylate STATs, forming protein dimers through SH2 domains to translocate
into the nucleus to promote gene transcription to induce cellular responses such as proliferation or
survival. In the non-canonical pathway, the non-phosphorylated STAT proteins (U-STAT) can go to
the mitochondria or Golgi apparatus to control metabolic reactions. Moreover, they can enter the
nucleus to repress gene transcription.

The understanding of the mechanism used by the U-STATs to translocate into the
nucleus awaits further analysis. The nuclear export rate keeps most U-STATs in the cyto-
plasm at a steady-state; some of these molecules may be confined in the nucleus by DNA or
chromatin association. There are other possible mechanisms which do not include U-STATs,
such as the interaction with different transcription factors such as Interferon Regulatory
Factor 1 (IRF1) or direct association with the nuclear pore complex [61–63].

JAK proteins can also be activated by tyrosine kinases with tumorigenic activity
that do not interact with cytokine receptors [64]. It has been reported that the v-Abl
(Abelson murine leukemia virus) can affect the JAK/STAT pathway by interfering with
the association between suppressors of cytokine signaling (SOCS)-1 and JAK proteins [65].
The BCR-ABL, another tumorigenic kinase produced by the translocation of chromosomes
9 and 22, can exert anti-apoptotic effects and synergize with different hematopoietic growth
factors maintaining the active form of JAK proteins through permanent phosphorylation,
which helps to regulate STAT activation [66]. STATs can be phosphorylated by different
non-receptor tyrosine kinases; for example, the tyrosine kinase c-Src phosphorylates STAT3,
which increases tumor-related gene expression [67]. Moreover, STATs can be directly
activated by other receptors that do not signal through JAK proteins. The epidermal
growth factor receptor (EGFR) can activate STAT1, STAT3, and STAT5; in the same way, the
platelet-derived growth factor receptor (PDGFR) directly activates STAT5 [68–70].

The JAK/STAT pathway crosstalks with different signaling pathways. In 2007, Levine
et al. showed the role of JAK2 in myeloproliferative neoplasms in which the PI3K/Akt
and the Ras/Raf/MAPK/ERK signaling pathways were activated [71]. In the transforming
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growth factor-β (TGFβ) pathway, STAT3 forms active molecular complexes to induce
astrocyte differentiation. For example, STAT3 interacts with SMAD1 forming a complex
through p300, leading to cell differentiation. After TGFβ stimulation, JAK 1 activates
STAT3 in a SMAD-independent manner. Moreover, STAT3 is activated after TGFβ binding
in a SMAD-dependent manner, including the participation of JAK1. Activated STAT3
and SMAD bind to their respective DNA sequences in the JUNB promoter to increase
the expression of genes related to TGFβ responses [72]. Moreover, STAT3 attenuates the
interaction between SMAD3–SMAD4 to form a complex and suppresses SMAD3-DNA
binding [73]. The phosphorylation state of STAT3 and SMAD3 determines the function of
the protein complex that can cooperate or antagonize the response [72].

IL-6 is an essential ligand which connects the NF-κB signaling pathway with STAT3,
which has a central function in the activation of the NF-κB pathway. STAT3, when constitu-
tively active, drives hyperacetylation of RelA, depending upon the presence of p300. Thus,
NF-κB remains in the nucleus and promotes the activation of NF-κB in transformed cells
and tumor-related hematopoietic cells [74].

4. Players of the JAK/STAT Signaling Pathway
4.1. Cell Surface Receptors

JAK/STAT signaling initiates when JAK proteins are activated after ligand binding (for
example, interleukins, growth factors, or interferons) to specific cell membrane receptors.
Many transmembrane receptors have been related to the JAK/STAT pathway activation;
the most common receptors associated with the JAK/STAT signaling pathway are the
cytokine receptors [19,20,22].

Cytokine receptors initiate the JAK/STAT signaling pathway through a diverse combi-
nation of different JAKs and STATs, giving such a versatile nature to this pathway. The most
common receptors that can trigger the JAK/STAT pathway are interleukin receptors (ILR),
interferon receptors (IFNR), and colony-stimulating factor receptors (CSFR). The receptors
for interleukins 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 20, 21, 22, 23, 27, 31, and Leptin and gp
130 subunit activate specific members of the JAK family. JAK1 functions as a common factor
among the JAK proteins but there are many combinations of downstream effectors [75]. For
instance, heterodimerization of the IL-2Rβ subunit and γ common subunit (γc) through
their cytoplasmic domains activates JAK1 (associated with IL-2Rβ) and JAK3 (associated
with γc) [76]. When IL-2 binds to its receptor, it is followed by the activation of STAT5 in
cervical cancer cell lines [77,78]. An essential function of IL-2 and its receptor has been
reported in breast and cervical cancer growth, correlating malignancy of the tumor and
expression of this receptor [77,79–81].

The erythropoietin receptor (EPOR) shares extra-cellular structure arrangements with
the cytokine receptor family; for example, EPOR and IL-2Rβ share 45% amino acid sim-
ilarity in their cytoplasmic regions [82] and can induce a rapid JAK2 phosphorylation
which depends on the dose [83]. EPOR is expressed in cervical cancer, and the binding
of erythropoietin (Epo) to its receptor induced cell proliferation; such cell response was
related to the activation of JAK2, JAK3, STAT3, and STAT5, but not JAK1 and STAT1 in
cervical cancer [84].

The cytokine receptors IL-4R [85] and IL-13R [86] send signals through STAT6 and
activate the transcription of a different set of genes to synthesize proteins necessary for T
cells proper function in contrast to non-lymphoid cells [87].

G protein-coupled receptors (GPCR) can also activate JAKs [88]. Among GPCRs,
the chemokine receptor CXCR4 has a central role in cancer cell growth. The CXCR4
activates in response to stromal cell-derived factor (SDF-1alpha). JAK2 and JAK3 phospho-
rylate specific tyrosines of CXCR4 to recruit multiple STATs and activate them by tyrosine
phosphorylation [89]. Other GPCRs with the ability to activate the JAK/STAT pathway
are platelet-activating factor receptor (PAFR), angiotensin II receptor type 1 (AT1R), and
bradykinin B2 receptor (B2R), all of which activate TYK2 (including JAK2 for PAFR and
AT1R) to initiate the JAK/STAT pathway [75].
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Some tyrosine kinase receptors (TKR), such as EGFR, induce STAT1 phosphorylation,
initiating the complex formation of STAT1 and STAT3 with JAK1 and JAK2, respectively [90].
Other receptors, such as vascular endothelial growth factor receptor (VEGFR), fibroblast
growth factor receptor (FGFR), and PDGFR, have also been related to the JAK/STAT
pathway. FGFR stimulates STAT1/STAT3 through JAK2 [91]; the activation of STAT3 by
tyrosine phosphorylation induced by this receptor is JAK-dependent, forming a complex
between JAK2, c-Src, and the receptor FGFR1 [92]. Zhao et al. have shown that VEGFR-
2 recruited JAK2 and STAT3 to initiate the JAK2/STAT3 signaling pathway, leading to
over-expression of MYC and SOX2 [93].

Some reports indicate that Toll-like Receptors (TLRs) could stimulate STAT3 activity;
this pathway plays a role in tumor development induced by these receptors [94]. Never-
theless, their involvement is controversial. For example, overexpression of TLR4 leads to
increased STAT3 activity in epithelial cells of the gut, which is associated with the clinical re-
sults of colon adenocarcinoma [95]. Moreover, TLR4 upregulates IL-6 in lymphomas [75,96].
Furthermore, it was proposed that JAK2 is activated by TLR9 through Frizzled 4, resulting
in the phosphorylation of STAT3 [97].

4.2. JAKs

The JAK family includes four members: JAK1, JAK2, JAK3, and TYK2. These JAK
proteins have a similar structure which consists of seven domains that share a high ho-
mology (the JAK homology domain, JH). JH1 is the first JH at the carboxyl terminus that
contains the kinase domain, formed by approximately 250 amino acids. JH2 is the pseu-
dokinase (PK) domain; JH2 and the kinase domain have a similar structure, but JH2 does
not have kinase activity. The main function of the PK domain is to control the tyrosine
kinase activity by binding to the kinase domain. The PK domain also participates in the
JAK-STAT interaction. JH3 combines with the JH4 domain and integrates the Src-homology
2 (SH2) domain. The FERM (four-point-one, ezrin, radixin, moesin) domain is formed
by combining the JH5, JH6, and JH7 domains. An important function of SH2 and FERM
domains at the amino-terminal end is to control the specific interaction between JAK and
cytokine-receptor membrane-proximal box1/2 motifs (Figure 2) [98–101].
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The conserved tyrosines Y1038/Y1039 in JAK1 constitute an essential motif in the
activation loop. Phosphorylation of both tyrosine residues in the kinase domain of each
JAK protein generates a very stable conformation for substrate interaction [102]. JAK1
is broadly expressed in different cell types and can phosphorylate all STAT proteins [42].
Three cytokine-receptor families activate JAK1: Cytokine receptors with the γ common (γc)
receptor subunit (also known as IL-2 family receptors) such as IL-2R, IL-4R, IL-7R, IL-9R,
and IL-15R receptors; class II cytokine receptors, which include the IFNα/βR, IFN-γR,
and IL-10 family cytokine receptors; and cell membrane receptors that contain the gp130
subunit, such as the IL-6R, IL-11R, oncostatin M (OSM) receptor, cardiotrophin-1 CT-1)
receptor, ciliary neurotrophic factor (CNTF) receptor, and leukemia inhibitory factor (LIF)
receptor [103,104]. JAK2 has two conserved tyrosine residues, Y1007 and Y1008 [102].
JAK2 can be activated by different components of the class II cytokine receptor and gp130
receptor families. Furthermore, JAK2 participates in the transduction of signals initiated by
some members of the IL-3 receptor family (such as IL-3R, IL-5R, and GM-CSF receptor) and
other receptors such as growth hormone receptor (GH), prolactin receptor, erythropoietin
receptor (EPO), and thrombopoietin (TPO) receptor, which have only one transmembrane
chain [105]. The two conserved phosphorylation sites in JAK3 are Y980 and Y981 [102].
JAK3 activates the signal transduction of the receptors that share the γ common subunit
(γc); for example, IL-2R, IL-4R, IL-7R, IL-9R, IL-15R, and IL-21R [106]. In the case of
Tyk2, Y1054/Y1055 are conserved phosphorylation sites [101] and can transmit IFN-α/β
signals [107]; also, it initiates signals by IL-6, IL-10, IL-12, IL-13, and IL-23 [108–111].

4.3. STATs

The STAT family comprises seven different proteins—STAT1, STAT2, STAT3, STAT4,
STAT5a, STAT5b, and STAT6—that have a common structure with highly conserved
domains. STATs consist of 750–900 amino acids forming defined domains that give
structure and function to the protein: the amino-terminal domain, coiled-coil domain,
DNA-binding domain, linker domain, SH2 domain, and Carboxy-terminal domain, in-
cluding the transcriptional activity; these domains control all the different activities of
STATs [30,31,112–116]. A complete review of the detailed structures of STATs has been
published [117]. Here, we briefly describe the different STAT domains. The N-terminus,
formed by approximately 50 amino acids, participates in the formation of STAT dimers,
which translocate to the nucleus. Some reports have shown that the N-terminal domain
promotes the interaction of STATs with transcription co-activators of the protein-inhibitor of
activated STAT (PIAS family) and regulates nuclear translocation [118–121]. The structure
of the coiled-coil domain comprises the four-helix bundle and is associated with regulatory
proteins; its function is to control nuclear import and export processes. The sequence of the
coiled-coil domain is the most variable between different STATs. This domain can interact
with different regulators such as Nmi, c-Jun, and p48/IRF9, among others [122–128]. Next
to the coiled-coil domain is the DNA-binding domain, which binds to DNA sequences
in the regulatory region of the target gene. Moreover, it regulates nuclear import and
export [129,130]. This domain regulates STAT selectivity for DNA recognition and partici-
pates in anti-parallel dimer contacts [21]. All STAT proteins can bind to DNA except STAT2,
which only binds to DNA when it interacts with STAT1 to form a heterodimer. There is a
consensus sequence for STATs, TTNNNNNAA, where N represents any nucleotide. There
is an optimal DNA binding sequence reported for each STAT. The sequence for optimal
DNA binding for STAT2 differs from the other members of the family; this difference could
explain why STAT2 monomers cannot bind DNA. This sequence is related to a specific
amino acid sequence in each STAT protein that can bind to DNA (Table 1) [131]. The
differences in binding affinities for each STAT protein confer specificity to gene activation
mediated by STATs. [21].
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Table 1. DNA binding motif sequence of STATs and their DNA target.

DBD Sequence (Protein)
Optimal Binding

Sequence
(DNA) [131]

STAT1
317-FVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVKVLFDKDVNE RNTV

KGFRKFNILGTHTKVMNMEESTNGSLAAEFRHLQLKEQKNAGTRTNEGPLIVTEELHSL
SFETQLCQPGLVIDLETTSLPVVVISNVSQLPSGWASILWYNML-437

TTCCCGTA

STAT2
312-FVVETQPCMPQTPHRPLILKTGSKFTVRTRLLVRLQEGNESLTVEVSIDRNPPQLQ

GFRKFNILTSNQKTLTPEKGQSQGLIWDFGYLTLVEQRSGGSGKGSNKGPLGVTEE
LHIISFTVKYTYQGLKQELKTDTLPVVIISNMNQLSIAWASVLWFNLL-432

GGGAAAC-
CGAAACTG

STAT3
321-FVVERQPCMPMHPDRPLVIKTGVQFTTKVRLLVKFPELNYQLKIKVCIDKDSGDV

AALRGSRKFNILGTNTKVMNMEESNNGSLSAEFKHLTLREQRCGNGGRANCDA
SLIVTEELHLITFETEVYHQGLKIDLETHSLPVVVISNICQMPNAWASILWYNMLT-421

TTCCCGTAA

STAT4
316-FVVERQPCMPTHPQRPLVLKTLIQFTVKLRLLIKLPELNYQVKVKASIDKNVSTLS

NRRFVLCGTNVKAMSIEESSNGSLSVEFRHLQPKEMKSSAGGKGNEGCHMVTEE
LHSITFETQICLYGLTIDLETSSLPVVMISNVSQLPNAWASIIWYNVS-436

TTCCCAGAA

STAT5
332-FIIEKQPPQVLKTQTKFAATVRLLVGGKLNVHMNPPQVKATIISEQQAKSLLKNE
NTRNECSGEILNNCCVMEYHQATGTLSAHFRNMSLKRIKRADRRGAESVTEEKFT

VLFESQFSVGSNELVFQVKTLSLPVVVIVHGSQDHNATATVLWDNAFA-452
TTCCTGGAA

STAT6
273-FLVEKQPPQVLKTQTKFQAGVRFLLGLRFLGAPAKPPLVRADMVTEKQARELSVP

QGPGAESTGEIINNTVPLENSIPGNCCSALFKNLLLKKIKRCERKGTESVTEEKCAV
LFSASFTLGPGKLPIQLQALSLPLVVIVHGNQDNNAKATILWDNAF-393

TTCTGGAA

All STATs can bind to canonical STAT-binding site TTNNNNNAA.

The linking domain functions as a connector between the DNA-binding domain and
the SH2 domain. The linking domain regulates the transcriptional activity of STAT1 and
nuclear export and dimerization [124,132]. The SH2 domain is highly conserved in the
STAT family [133]; however, the tertiary structure of this domain is the most variable.
The main function of the SH2 domain is to recognize phosphotyrosine motifs in cytokine
receptors. Moreover, the SH2 domain helps an active JAK to induce the interaction of the
SH2 domain of one STAT monomer with the tail of another STAT monomer after tyrosine
phosphorylation to form a functional homodimer or heterodimer [134–137]. The C-terminal
domain, which includes the transcriptional activation domain, is necessary to bind to DNA
transcription elements and recruit co-activators by a conserved serine phosphorylation site
to regulate transcription and protein stability. This domain is highly variable and contains
a serine residue that is phosphorylated to enhance transcriptional activation. [20,22,75].
STAT proteins have different activities, but their molecular function can be redundant.
These different activities and pathway interactions can be explained by their functional
structure. All STAT members have a similar polypeptide structure, which can be described
as one single polypeptide with a tri-dimensional structure consisting of six domains with
specific secondary and tertiary structures [138]. This characteristic structure of the STAT
family derives from the gene structure. The genomic structure of STATs has a complex
organization with a large number of exons. For example, there are 24 exons in Stat1, Stat2,
and Stat3 genes [139,140]. Transcription of Stat genes can produce spliced transcripts coding
for multiple STAT variants. Some of these variants are truncated at the carboxy-terminal;
for example, STAT1b1, STAT3b, STAT5a-2, and STAT5b-2. These truncated proteins lack
some essential tyrosine or serine residues; therefore, their activation varies, and they can
have different transcriptional activities on target genes [141,142]. STAT proteins share the
six domains, but the differences within these domains define the specific activity of each
member of the family, and the differences are also present in the genes; thus, the gene
structure defines the protein domains.

STAT1 has two splice variants: STAT1α, a 91 kDa protein, which shares similar charac-
teristics to other members of the STAT family; this splice variant has a complete C-terminal
domain because it has two phosphorylation sites (position 701 and 727); and STAT1β,
which has a size of 84 kDa and only one phosphorylation site (701) [143]. STAT1β lacks
most of the transcription-activation domain and the serine 727 phosphorylation site at
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the C-terminus; consequently, its functionality is reduced [144]. It has been shown that
IFN-type 1 ligands activate STAT1β, but its response to IFN-γ is deficient [104]. STAT1
is activated by IFN, IL-2, IL-6, PDGFR, EGFR, hepatocyte growth factor (HGF), tumor
necrosis factor (TNF), and angiotensin II. The function of STAT1 is diverse; alongside cell
growth inhibition [145,146], it regulates cell differentiation [147,148], promotes cell apopto-
sis [149–151], inhibits tumor occurrence [152], and is involved in the antigen presentation
processes depending on the major histocompatibility complex (MHC) [153]. In cervical
tissues, overexpression of STAT1 mRNA and protein have been reported in cervical cancer
samples compared to normal cervical tissues [154]. In 2011, Rajkumar et al. observed that
STAT1 was overexpressed in cervical intraepithelial neoplasia (CIN) 1 and 2 as well as
in invasive cancers; however, in CIN3 and cervical carcinoma in situ (CIS), there was a
decrease in STAT1 expression [155]. In 2020, Yi et al. reported the overexpression of STAT1
in CIN1, CIN2, CIN3, and cervical cancer, but this overexpression did not significantly
affect overall survival [156]. However, STAT1 was not determined in its phosphorylated
form in these studies. STAT1 could play an important role by increasing the sensitivity of
cervical tumor cells to chemotherapy drugs and radiation. Buttarelli et al. reported that
high levels of STAT1 are expressed in patients with cervical cancer sensitive to chemoradia-
tion compared to those resistant to chemoradiation treatment [157]. Since 99.7% of cervical
cancer cases are the result of persistent genital HPV infection, it is important to mention the
effect of the virus and its oncoproteins on the JAK/STAT pathway. For example, it has been
observed that the expression of the hrHPV E6/E7 oncoproteins, individually or together in
keratinocytes, induces a decrease in the expression of STAT1α/β [158–160]. Viral oncopro-
teins can affect the signaling cascade for STAT1 activation at different levels; it has been
reported that HPV18 E6 can bind to Tyk2, avoiding its interaction with IFNAR1 and thus
preventing STAT1 phosphorylation and inhibiting the IFN-α pathway [161]. It has also
been observed that HPV16 E6 and E7 alone or together diminish the expression of STAT1,
its translocation to the nucleus, and its union to ISRE elements [162]. The involvement of
STAT1 could be necessary for the viral cycle; it is reported by Hong et al. that the decrease
of STAT1 is required for the amplification of the viral genome at the beginning of the
infection, probably to suppress the genes inducible by interferon and evade the immune
system and achieve an effective infection [160].

STAT2 cannot bind to DNA and cannot form homodimers despite possessing all
six complete domains [163]. STAT2 differs from other STATs since it is the only member
of the STAT family that does not interact with the original γ-activated site in the DNA.
STAT2 activates in response to type I interferons, including IFN-α and IFN-β. The known
biological functions include antiviral effects and immune regulation [164,165]. The role of
STAT2 in cervical cancer is poorly studied, a higher expression of STAT2 has been observed
in adenocarcinoma samples compared to normal tissue. In samples with CIN, there is a
higher expression of STAT2 compared to samples from patients with cervicitis; however,
no correlation was found between the expression of STAT2 and the severity of the lesion.
In the 5-year survival analysis, no significant differences were observed between patients
with positive samples for STAT2 versus negative samples for STAT2 [166]. The effect of
HPV and its viral oncoproteins on STAT2 is also poorly understood and what we know is
that the response given by STAT2 is due to the formation of a heterodimer with STAT1. For
example, as previously mentioned, the HPV-18 E6 oncoprotein can physically interact with
Tyk2 to inhibit its interaction with IFNAR1, thus affecting the formation of phosphorylated
STAT1 and STAT2 heterodimers, their binding to IRF9 (preventing the formation of the
ISGF3 complex), and its translocation to the nucleus [161,167]. These mechanisms affect
the response to IFN type I.

STAT3 has two splicing variants, STAT3α and STAT3β, with remarkable structural
differences. At the C-terminal, STAT3α has a full-size domain, while STAT3β is missing
55 amino acids, replaced only by seven amino acid residues, and both have different
functions [168,169]. STAT3 activates when the specific phosphosites are phosphorylated:
either Y705 or S727; however, STAT3β only activates when Y705 is phosphorylated. This
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splice variant lacks the other activating residue S727. Due to the absence of S727, STAT3β
has a better specific DNA-binding activity than STAT3α, but STAT3α is better at induc-
ing transcription [169,170]. STAT3 activates in response to ligands of the IL-6 family:
IL-10 family, IL-21, IL-27, G-CSF, leptin, IFN, and IL-2 [30,68,171,172]. STAT3 is mainly
involved in multiple effects cell growth, differentiation, and apoptosis [173]; regulation of
the immune response and tumor occurrence and metastasis [174–177]; regulation of tumori-
genesis [172,178–180]; and regulation of cancer stem cells (CSCs) [181]. The expression of
STAT3 in cervical cancer has acquired great relevance due to various reports that associate
its activity with the malignancy grade of cervical lesions [182–186]. There is a close relation-
ship between STAT3 and high-risk HPVs. In cervical cancer cell lines, it has been observed
that HPV-positive lines have higher levels of STAT3 and pSTAT3 compared to HPV-negative
cell lines [183,187,188]. In addition, an association has been found between pSTAT3 levels
with high HPV genome copy numbers and viral genome integration [189]. STAT3 is a
transcription factor that has a central role in tumor development. Various studies show that
its inhibition decreases cell proliferation, favoring its sensitivity to chemotherapeutic drugs,
increasing autophagy levels, and inhibiting the capacity of tumor cells to metastasize and
tumorigenesis [182,190–193]. The E6 and E7 viral oncoproteins are also widely related to
STAT3 and its phosphorylation. It has been shown that STAT3 inhibition in tumor cells
decreases the expression of E6 and E7 proteins. On the contrary, transfection of C33A
(HPV-) cells with E6 or E7 positively regulates STAT3 expression and its phosphorylation.
However, the HPV18 E6 protein affects serine and tyrosine phosphorylation of STAT3,
which generates the fully active form of this signal transducer [190]. Another strategy
tumor cells use to keep STAT3 active is the production of large amounts of IL-6, which
is used in an autocrine manner to signal via its receptor (IL6R) and maintain sustained
STAT3 phosphorylation [188]. STAT3 is a central player in cancer because it controls the
transcription of genes involved in the cell cycle, survival, metabolism (Warburg effect),
epithelial–mesenchymal transition, chemoresistance, immunosuppression, angiogenesis,
migration, and invasion. For this reason, a large number of studies analyze the molecular
mechanisms to inhibit STAT3 to use them as therapeutic targets in cervical cancer [17].

STAT4 activates in response to type I interferons: IL-12 and IL-23 [194,195]. STAT4
is fundamental in differentiating and developing Th1 cells and helper T cells. Moreover,
STAT4 participates in the response of the germinal centre [196]. The role of STAT4 in cervical
cancer has been poorly studied and understood; however, a higher expression of STAT4
has been reported in histological sections of patients with squamous cell carcinoma and
adenocarcinomas compared to non-cancerous lesions. In addition, the expression of STAT4
correlated with metastasis to lymph nodes, which could indicate an association between
the expression of STAT4, the process of tumorigenesis and metastasis [197]. Furthermore,
the study with K14E7 transgenic mice showed increased STAT4 gene expression in the skin
of the mice, suggesting a likely regulation by the E7 oncoprotein [198].

STAT5 includes STAT5a and STAT5b, and both show a 91% amino acid homology.
STAT5a comprises 794 amino acids, while STAT5b comprises 787 amino acids [85,199].
There are reports showing that STAT5a form dimers, but also can form tetramers. On
the contrary, STAT5b only form dimers to bind to DNA [200]. STAT5 is activated by cy-
tokines such as IL-3, prolactin, the IL-2 cytokine family, EGF, EPO, GM-CSF, TPO, GH, and
PDGF [31,85,116,199,201]. STAT5 is capable of performing the following functions: regu-
lation of growth and development [202,203], regulation of the immune system [200,204],
regulation of tumor immunity [202,205], and regulation of cell growth, differentiation, and
apoptosis [206,207]. A high expression of STAT5 has been reported in cervical tumour
lesions and cancerous tissues compared to samples from the cervix without lesions. In
addition, there is a correlation between STAT5 phosphorylation and the degree of cervical
lesion. HPV-positive cervical cancer cell lines express higher levels of STAT5 [208,209].
Thus, high-risk viruses and their viral oncoproteins also affect STAT5; for example, the
presence of HPV or the E7 oncoprotein promotes an increase in STAT5 phosphorylation,
which is essential for the amplification of the viral genome [210]. On the other hand, the
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inhibition of STAT5b in HeLa (HPV18) and CasKi (HPV16) cervical cancer cells induces a
reduction in proliferation, in the colony formation capacity, in the expression of cyclin D1,
and in the anti-apoptotic protein Bcl-xL, which correlates with an increase in the expression
of the cell cycle regulatory protein p21, the presence of cleaved PARP, and an increase in
apoptosis. These data imply the relevance of STAT5b in cervical cancer. It is important to
note that JAK2 or STAT3 inhibition show similar behaviors [190,208].

STAT6 comprises 850 amino acids, with tyrosine 641 as its phosphorylation site [211];
however, S407 could be the critical phosphorylation point for the total activation of STAT6
in response to a viral infection [212]. STAT6 participates mainly in transducing IL-4 and
IL-13 signals [213]. STAT6 activation induced by IL-4 is essential to Th2 cell differentiation
and immunoglobulin isotypes conversion [214–216]. STAT6 promotes different functions,
such as the proliferation and maturation of B cells, mediates the expression of MHC-II and
IgE, and plays an essential function in the activation of mast cells [217]. The role of STAT6
in cervical cancer is poorly studied, and very few reports indicate that HeLa cells express
STAT6 constitutively and that a small proportion is in its phosphorylated form. Zhang’s
group in 2017 showed that expression of HPV-16 E6 and E7 in non-small lung cancer cells
increased levels of phosphorylated STAT6. On the other hand, Li et al., in 2013, showed that
the treatment of HeLa cells with co-immobilized IFN-γ/TNF-α nanoparticles promoted an
increase in the expression of STAT6 and its phosphorylation, the induction of apoptosis,
the expression of p53 and Bax and the decrease of Bcl-2. However, when they treated
silenced-STAT6 (shSTAT6) HeLa cells with co-immobilized IFN-γ/TNF-α nanoparticles,
they observed the opposite effect, a decrease in apoptosis and the expression of p53 and
Bax, in addition to an increase in the antiapoptotic protein Bcl-2 [218,219]. These data show
the importance of studying STAT6 in the induction of cell death in cervical cancer.

5. Negative Regulators

Many negative regulators participate in regulating the JAK/STAT signal transduction.
These regulators keep the balance and steady state of the JAK/STAT pathway. Several re-
ports have shown that there are different mechanisms to negatively regulate the JAK/STAT
signaling: suppressors of cytokine signaling (SOCS/CIS family), protein inhibitor of acti-
vated STAT (PIAS), and protein tyrosine phosphatases (PTPs) (Figure 1) [104].

5.1. SOCS/CIS Family

The SOCS protein family includes eight elements: CIS, SOCS1, SOCS2, SOCS3, SOCS4,
SOCS5, SOCS6, and SOCS7. Activated STATs induce the expression of SOCS proteins,
which bind to the complex of phosphorylated JAK and its cognate receptor to control
the JAK/STAT pathway negatively. The SOCS family controls the JAK/STAT signaling
pathway by different mechanisms: (a) SOCS proteins bind to the phosphotyrosine residue
(pTyr) on the cell membrane receptor to interfere with the binding of the STAT protein [220];
direct and specific binding to the kinase or its receptor inhibits the catalytic activity of the
JAK kinase [221,222]. For instance, overexpression of SOCS3 interferes with the activity of
STAT5; also, SOCS3 can inhibit the Th1 response of the immune cells and stimulates a Th2
response by inhibiting the activity of STAT4 in response to IL-12 [223]. (b) SOCS proteins
bind to JAK and STAT proteins and can induce their degradation in the proteasome. An
elongation complex is formed by SOCS, the elongation protein BC, the cullin5-scaffold
protein, and a ubiquitin-linked enzyme. This polyubiquitinated protein complex allows
the proteasome to degrade JAKs and STATs binding to SOCS. This process can control the
signals induced by the JAK/STAT pathway [224]. In precancerous lesions and different
stages of cervical cancer, an undetectable or reduced expression of SOCS1 was reported
compared to the expression in the normal cervix. In addition, Sobti’s group, in 2011,
associated this decrease with the severity of the lesions [225]. Later, in 2015, Kim’s group
analyzed SOCS1, SOCS3, and SOCS5 in cervical cancer samples and HPV+ cervical cancer
cell lines; they found that the expression of these three SOCS proteins decreased compared
to tissues from the normal cervix. They report that the decrease in the expression of SOCS1
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is due to the inactivation of its gene by hypermethylation of its promoter and by histone
acetylation. In contrast, the inhibition in the expression of SOCS3 is regulated only by
histone acetylation. However, they also show that overexpression of SOCS1 or SOCS3
confers radioresistance to cervical cancer cells [226]. On the other hand, Kamio’s group in
2004 reported that the constitutive expression of SOCS1 in HeLa and CasKi cell lines inhibits
proliferation, arrests the cell cycle, decreases the expression of the E7 oncoprotein, increases
the amount of Rb protein, and inhibits the tumorigenicity, in addition to decreasing STAT3
phosphorylation. SOCS1 is essential in inhibiting the tumor transformation process because
it can bind to the HPVE7 oncoprotein and induce its ubiquitination and proteasomal
degradation [227].

5.2. PIAS

The PIAS family includes four proteins in mammals: PIAS1 (PIASx), PIAS2, PIAS3,
and PIAS4 (PIASy). They have different splice variants: two splice variants for PIAS1
(PIASx-α and PIASx-β), one splice variant for PIAS3 (PIAS3b), and one splice variant for
PIAS4 (PIASyE6) [228]. PIAS members are specific STAT inhibitors since specific PIAS
can interact with specific STATs. For example, PIAS1 and PIAS4 usually bind to STAT1,
while PIAS3 and PIAS1 typically bind to STAT3 and STAT4. PIAS proteins cannot interact
with STAT monomers; thus, STATs must be tyrosine phosphorylated by JAKs, and then
STAT dimers can interact with PIAS [104]. The PIAS family regulates signal transduction
of the JAK/STAT pathway by inhibiting the DNA-binding activity of transcription fac-
tors [229,230], promoting transcription factor sumoylation [231], recruiting histone deacety-
lases to avoid STAT proteins binding to DNA, thus failing to induce the transcription
of target genes [232], and chelating transcription factors to form repressor complexes to
negatively regulate transcription [233].

5.3. PTPs

Protein tyrosine phosphatases (PTPs) function as tyrosine-specific or dual-specific and
dephosphorylate both tyrosine and serine/threonine residues. The SH domain in protein
PTPs functions as a docking site to interact with different signal transductors, activated
cell membrane receptors, and JAK proteins to hydrolyze their phosphate group. Moreover,
PTPs can remove phosphate groups from STATs to inhibit their activity, thus inhibiting the
JAK/STAT signal transduction [234]. SH2-containing protein tyrosine phosphatase (SHP-1)
is an essential element of the PTP family. Different receptors may activate SHP1; once it
is activated, SHP-1 translocates to the nucleus, where it dephosphorylates STAT5 [235].
PTPs can also remove phosphates from JAK proteins; if JAKs are inactive, the JAK/STAT
signaling pathway can be regulated. CD45 is a transmembrane PTP that inhibits the
phosphorylation of JAK2 induced by IL-3 and negatively regulates JAK/STAT signal trans-
duction, thereby inhibiting IL-3-mediated cell proliferation [236]. The non-receptor PTP1B
mainly dephosphorylates STAT5 in order to regulate the JAK/STAT signal transduction
cascades; nevertheless, it can remove phosphate groups from JAK2 and TYK2 from specific
tyrosine motifs in the activation loop of the kinase domain of these proteins in the cyto-
plasm of the cell [237]. PTP1C binds via its SH2 domain to pY429 in the cytoplasmic region
of the EPOR to remove phosphate groups from JAK2, negatively regulating its activity
to terminate proliferative signals [238]. SH2-containing protein tyrosine phosphatase-2
(SHP-2) can negatively regulate STATs to avoid the cytotoxic effect of IFN to promote cell
growth [239].

6. Signaling Pathways and HPV

HPVs have a double-stranded circular DNA enclosed in a capsid with an icosahedral
structure that preferentially infect basal epithelial cells. A small group of HPVs are classified
as high risk (hrHPVs) because they express the oncogenes E6 and E7 required to inhibit the
immune system response and to deregulate other cellular processes such as proliferation.
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E6 and E7 oncoproteins of hrHPVs are usually found in precursor lesions and advanced
stages of the tumor and can be considered tumor-specific antigens [240].

Signal transduction pathways are the molecular mechanisms by which cells transduce
an extracellular stimulus to the cytoplasm to control the transcription of genes that can
regulate a wide variety of biological effects [241]. The tumor viruses (like HPV) manipulate
many different signaling pathways to induce oncogenesis; this phenomenon initiates
diverse cellular responses, which lead to the immortalization and proliferation of the
infected cells [242]. HPV virus can activate several signal transduction cascades that are
implicated in the release of the normal control of critical molecular processes that affect cell
proliferation and differentiation. Here, we describe and discuss various signal transduction
pathways deregulated by HPV (Figure 3).
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immune surveillance escape of cancer cells.

6.1. Interferon (IFN) Pathway

The interferon pathway is a central component of the innate immune system that
senses the presence of DNA in the cells’ cytosol and triggers the activation of defense
mechanisms through IFN pathways. Interferons (IFNs) are very active cytokines which
play a central role in eliminating pathogen infections by controlling inflammation and
immune response. HPVs are DNA viruses; thus, the IFN pathway directly induces anti-
virus molecular countermeasures by the cyclic GMP–AMP synthase (cGAS)–stimulator
of interferon genes (STING) pathway (cGAS-STING). The activation of cGAS after DNA
binding generates cyclic GMP–AMP (cGAMP), which is a second messenger that binds
to the adaptor protein STING located in the endoplasmic reticulum [243,244]. HPV on-
coproteins can support persistent infection, counteract the cGAS/STING/IRF3 axis, and
activate interferon-stimulated gene (ISG) responses [245–247]. Viral proteins E2 and E6
can downregulate the expression of STING and IFNκ [248,249]. The inhibition of IFNκ
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expression downregulates ISGs transcription and could play a critical role by promoting
tumors induced by HPVs [248].

E6 oncoprotein from HPV-16 binds to interferon regulatory factor (IRF) 3, thus sup-
pressing its transcriptional activity [250]. E7 oncoprotein from HPV-16 represses the tran-
scription of IFNβ by binding to IRF1 and recruiting histone deacetylases (HDACs) to
the promoter [251,252]. HrHPV synergized with hyperactivated yes-associated protein 1
(YAP1) (from HIPPO/YAP1 pathway) to promote the initiation and progression of cervical
cancer. The hyperactivation of YAP1 oncogene in cervical epithelial cells restrained the
activation of transcription factors such as IRF1, IRF3, and IRF7, decreasing IFNA1, IFNB1,
and IFNE, which are necessary for the production of type I IFNs in primary cultures of
human cervical epithelial cells. He et al. have shown that when the Hippo pathway is
interrupted, subsequent activation of YAP1 oncogene in the cervical epithelia leads to an
alteration in the innate antiviral immunity, allowing HPV to escape immune surveillance,
ending in persistent HPV infection [253].

It is important to note that activation of the IFN pathway is essential in the response
to HPV in cervical cancer. Some studies show that the treatment of HPV18 tumor cells
HeLa with IFN-a (Type I) induces a slight decrease in their proliferation and apoptosis
induction, while the treatment of SiHa (HPV16) and HeLa with IFN-γ (Type II) induces
autophagy [254,255]. Concerning the effect of IFN-type III on cervical cancer, there is only
one report showing that low-risk HPV-positive cervical cells express higher levels of the
IFN lambda1 and IFN-lambdaR1 genes compared with hrHPV-positive cervical cells and
HPV-negative cervical cells, suggesting a likely mechanism for the IFN-type III response
orchestrated by hrHPVs [256].

6.2. Wnt/β-Catenin Pathway

Activation of the Wnt/β-catenin pathway is essential to establishing the transforma-
tion and immortalization of HPV-positive epithelial cells and maintain tissue homeostasis
and pathologic phenotype [257]. E6 oncoproteins of high- and low-risk HPVs can activate
the Wnt/β-catenin pathway [258,259]. This signaling pathway plays an essential role
in cell proliferation and differentiation, as well as deregulation of the WNT/β-catenin
pathway leads to many types of human cancers [260,261]. Abnormal activation of the
Wnt pathway by disabled negative regulators or by overexpression of activators (Wnt-
ligands) leads to the inhibition of GSK3-β which causes accumulation of β-catenin in the
cytoplasm. β-catenin translocates to the nucleus, where it forms an active transcriptional
complex and induces the transcription of genes such as c-Jun, cyclin D, Axin2, survivin,
vascular endothelial growth factor (VEGF), COX-2, c-myc, and matrix metalloproteinase-7
(MMP-7) [260,262,263].

6.3. PI3K/AKT/mTOR Pathway

The PI3K/Akt/mTOR pathway is essential for cellular control and signal transduction:
it stimulates cell survival, growth, and proliferation, prevents apoptosis, and induces
migration and energy metabolism reprogramming [264,265]. The activated PI3K/Akt
pathway responsible for signal transduction from the cell surface to the nucleus is a main
cancer survival pathway [261]. Many reports demonstrate that PI3K signals are activated
and amplified in HPV-positive cervical cancers [266]. Moreover, mutations in PIK3CA (the
gene that codifies class I catalytic subunit) and PTEN (phosphatase and tensin homolog,
is a negative regulator of PI3K pathway) are more common in HPV-positive than HPV-
negative head and neck squamous cell carcinomas (HNSCC) [267,268]. The HPV-16 E7
oncoprotein attaches to protein phosphatase 2A (PP2A) subunits, interfering with p-Akt
interaction, thus avoiding its inactivation. This interaction explains how E7 oncoprotein
increases AKT activity and correlates with its capacity to disable Rb protein, leading to
intraepithelial lesions (high grade) [269]. E6 and E7 oncoproteins can activate Akt or
bind tuberous sclerosis 2 (TSC2), leading to its degradation, and as a result, it stimulates
mTORC1 [270,271,271,272].
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6.4. ERK/MAPK Pathway

The extracellular signal-regulated kinase (ERK) signal transduction pathway is po-
sitioned downstream of different growth factors, cytokines, and hormones; it activates
various substrates involved in different cell responses such as proliferation, differentiation,
survival, and motility, and plays a critical role in regulating tumorigenesis [273]. The
p21Ras (Rat sarcoma) GTPase recruits RAF1 (Rapidly Accelerated Fibrosarcoma), which
phosphorylates specific serine residues of MEK1/2 (MAPK/ERK kinase 1 and 2) [274,275].
MEK1/2 phosphorylates specific tyrosine and threonine residues of ERK1/2 kinase to acti-
vate several downstream signaling cascades [273,276]. On the other hand, ERK1 expression
is an early marker for cervical cancer [277]. Some reports have shown that HPVE5 can
promote cell proliferation and activate the MAPK/ERK cascade to activate their target
transcription factors, including Ets1/2, Elk-1, c-fos, c-myc, and c-jun [278–281]. E5 pro-
tein induces the expression of VEGF by activating ERK; this affects the regulation of the
phosphorylation of ERK so that E5 stabilizes VEGF. The HPV-infected cells are resistant to
autophagy and apoptosis activation due to the presence of HPVE5 protein and the constant
activation of the MAPK-ERK signaling cascades [282–284]. Liu et al. reported that HPV-16
E6 oncoprotein induced HIF-1α, VEGF, and IL-8 expression, having, as a result, enhanced
angiogenesis in non-small cell lung cancer (NSCLC) cells via ERK1/2 [285].

6.5. Ying and Yang 1 (YY1) Pathway

Dysregulated epigenetic pathways can be associated with cancer development. Tran-
scription factor YY1 belongs to the polycomb group protein family. This protein has a zinc
finger motif to bind to DNA; it functions as a repressor, activator, or an initiator element-
binding protein of the transcriptional control of different genomes depending upon the
context in which it binds; therefore, it is considered a master regulator of the transcription
of several cellular and viral genes. Transcription factor YY1 plays an essential role in the
epigenetic regulation of transcription and participates in stem-cell identity, differentiation,
survival, metastasis, and resistance to chemotherapy [286,287]. A few growth factors can
stimulate the expression of the YY1 gene, whilst antiproliferative signals inhibit its ex-
pression [288,289]. YY1 affects the LCRs of HPV-16 and -18 and regulates HPV E6 and E7
transcription [290]; furthermore, YY1 can bind to regulatory regions of HPV to regulate
the transcription of viral oncogenes and can regulate multiple cellular functions because
it contains different activator and repressor domains recognized by YY1 [291,292]. For
example, UCRBP, NF-E1, and CF1 are some targets of YY-1 and can regulate E6 and E7
oncogenes and helps to maintain HPV infection [293,294]. The suppression of YY1 induces
activation of p53 and apoptosis in the cervical cancer cell line HeLa [294]. In cervical carci-
nomas, YY1 is overexpressed and is essential in the progression of HPV-infected cervical
carcinomas. Moreover, inhibition of p53 and As2O3-induced apoptosis activated by YY1
were detected in HPV-infected cervical cancer cells; thus, this protein could be an effective
target for HPV-positive cervical cancer treatment [294].

6.6. EGFR Family Pathway

The epidermal growth factor receptor (EGFR/HER1) belongs to the ErbB/HER recep-
tor family; the other members are ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4 [295].
This family of receptors are transmembrane proteins with tyrosine kinase activity, which are
activated by the binding of different extracellular ligands; for example, epithelial growth fac-
tor (EGF), the transforming growth factor α (TGF α), and neuregulin-1, among others [296].
The functional structure of these receptors includes an extracellular domain containing
the ligand binding site, a transmembrane domain, and an intracellular domain containing
the catalytic domain with kinase activity. The member model of the family is EGFR, a
monomer; the binding of EGF activates the receptor, inducing the formation of homod-
imers. EGFR is a well-characterized receptor that activates signaling cascades that produce
diverse cellular responses, including proliferation, survival, differentiation, migration, and
angiogenesis [297–299]. After ligand binding, EGFR activates and forms homodimers that
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autophosphorylate specific tyrosine residues and promote extracellular mitogenic signals
to the nucleus. Many cellular pathways are activated, such as the MAPK, the p21Ras, and
the PI3K/Akt, which are implicated in proliferation, motility, and survival [297]. EGFR
has a central role in cancer cell proliferation: it can directly regulate diverse metabolic
processes, including glucose catabolism and fatty acids and pyrimidines synthesis, by
activating enzymes regulated by phosphorylation or by crosstalking to different signaling
pathways, such as the Akt pathway [300–302].

High expression of EGFR is associated with poor outcomes in cervical cancer [303].
The HPV oncoprotein E5 activates and increases the EGFR pathway depending on the
ligand [304]. HPV E5 can upregulate VEGF (vascular endothelial growth factor) and cy-
clooxygenase 2 through EGFR [305]. Moreover, E5 can activate the EGFR pathway to induce
a cytoplasmic molecular pathway that activates different proto-oncogenes. For example,
MAP kinases and the activating protein-1 (AP-1) are constitutively activated, sending
increased signals to activate the transcription of the viral oncoproteins E6/E7 [304,306].
Furthermore, HPV-16 E5 increases the recycling of the EGFR to the cell surface and, con-
sequently, the phosphorylation of EGFR augments, although the binding of its ligand is
still needed [307,308]. E5 induces an increased proliferation of keratinocytes, amplifying
EGFR signaling to delay cell differentiation [304]. It has been shown that an increased
EGFR expression correlates with low survival rates and radioresistance. When EGFR is
inhibited, cancer cells show a higher sensitivity to ionizing radiation in preclinical studies
on HNSCC [309–311]. It has been reported that the EGFR present in cervical cancer cell
lines CALO and INBL has putative mutations in the region αC of the kinase domain,
resulting in EGFR being present but not phosphorylated [312].

Other family members are deregulated in HPV-infected cells; for example, it has
been shown that HPV-positive tumors have a high expression of HER2 and HER3 recep-
tors [313,314]. It has been reported that HER2 expression in recurrent advanced cervical
tumors is often related to poor outcomes [315]. Some studies, including whole exome
sequencing analysis, found that HER2 is constitutively active due to somatic mutation,
amplification and the presence of HPV integration sites close to the ERBB2 gene in cervical
cancer [316]. There is an association between HER3 overexpression and HPV infection
in head and neck cancers which could be related to a poor survival rate. Other studies
found that HER3 expression is regulated by HPV E6/E7 oncoproteins and is associated
with downstream PI3K signaling, which strongly suggests an association between HER3
expression and HPV-associated cancer [317].

6.7. NF-κB Pathway

The family of transcription factors, nuclear factor-kappa B (NF-κB), consist of five
members, but the foremost is a heterodimer formed by p65 (RelA) and p50 subunits. These
dimers are inactive when they interact with the inhibitor of nuclear factor kappa B (IκB);
they are released from IκB in response to different stimuli that activate NF-κB to translocate
to the nucleus [318]. NF-κB is a pleiotropic transcription factor with essential roles in innate
immunity, inflammation, differentiation, viral replication, and tumorigenesis [319,320].
The canonical pathway is initiated by external stimuli such as antigens, growth factors, or
cytokines bound to their respective receptors. However, it depends on IκB release by the
enzyme complex that includes IκB kinases (IKK) and the accessory protein NEMO (NF-κB
essential modulator) [321]. NF-κB is implicated in the development of several cancers,
and it plays an essential role in controlling different gene functions to induce responses
such as cell proliferation, migration, angiogenesis, and apoptosis. It has been shown that
cervical cancer progression is associated with a high expression of NF-κB and its enhanced
DNA binding activity [322]. Mishra et al. showed the common presence of the homodimer
p50/p50, mostly in HPV tumors. In contrast, the presence of p65 was more abundant in
HPV infection, increasing differentiation in head and neck cancer cells with better outcomes
for the patients [323]. Selective crosstalk between the heterodimer NF-kB/c-Rel with AP-
1/Fra-2 induced an aggressive tumor phenotype and poor prognosis, mainly in patients
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with HPV-negative tongue squamous cell carcinoma (TSCC). On the contrary, patients
with HPV-positive TSCC had a better prognosis because the viral infection increased the
expression of p65, p27, and Fra-2, which induced cell differentiation [324].

In the case of cervical cancer, the presence of E6/E7 oncoproteins affects the activ-
ity of NF-κB, leading to an inadequate immune response [325]. As a consequence, the
viral infection cannot be cleared, and, if it persists, can develop into cancer. NF-κB is
reactivated after the cancerous lesions are formed in response to the cytokines released by
M2 macrophages in the tumor microenvironment [321,326,327]. Moreover, the persistent
infection can induce mutations in molecules, such as EGFR or RAS, which are upstream in
the cascade of NF-κB, affecting its function. This altered activity induces the expression
of genes, such as telomerase and c-myc, among others, which induce cell immortalization
and proliferation, as well as metastasis (epithelial-mesenchymal transition) and angiogene-
sis [318,328]. Its reactivation induces expression of the AID/APOBEC (activation-induced
cytokine deaminase) protein family known to participate in cancer development by causing
genomic damage [329].

6.8. miRNAs

Micro ribonucleic acids (miRNAs) are small non-protein-coding single-strand RNAs,
18–25 nucleotides in length, and participate in mRNA translation, therefore regulating
gene expression. miRNAs have a central role in regulating multiple cellular responses,
such as cell growth, proliferation, differentiation, apoptosis, cell migration, and metastasis.
Since miRNAs are non-coding, they modulate target gene expression by binding to RNA
to degrade its gene target or inhibit target gene translation. They interfere with RNA and
can have opposite functions by altering its expression towards an oncogenic or tumor
suppressor function [330]. Some of the main miRNAs expressed in HPV-infected cells
are miR-21 and miR-7a, which are upregulated in solid tumors, and have a central role
in oncogenic signaling. They are transcriptionally induced by AP-1, which is essential
for HPV transcription maintaining STAT3 activated in HPV-infected cells [331]. miR-29,
often downregulated, prevents cell cycle progression, induces apoptosis, and promotes
malignant transformation induced by HPV [332,333]. miR-218 can upregulate the expres-
sion of epithelial cell-specific marker LAMB3 through the PI3K/Akt pathway [334,335].
miR-34a expression is downregulated via E6/p53 and is associated with hrHPV infection
and cervical cancer develop [336,337]. Expression of Hsa-miR-139-3p is frequently down-
regulated in HPV-infected cells, and Sannigrahi et al. found that upon upregulation of
this miRNA, it restores p53 function, and chemoresistance can be reverted and inhibits
E6/E7 [338]. miRNAs are key regulators in cancer development. It is vital to find more
specific miRNAs for cervical cancer that can help in specific diagnoses and to develop a
miRNA-based therapy.

7. Conclusions

In the past thirty years, significant advances have helped us to understand the initial
transformation steps and the carcinogenesis process associated with HPV oncoproteins
in the cervix. However, recurring or persistent cervical cancer represents a public health
problem and is a significant cause of death related to this cancer in non-developed countries.
Thus, it is necessary to fully understand the molecular mechanisms associated with cervical
tumorigenesis to establish rapid diagnostic methods and more effective treatments for cervi-
cal cancer. The JAK/STAT signaling pathway is involved in cell surface receptor-mediated
signal transduction that accounts for diverse responses to extracellular signaling molecules
and is implicated in initiation, progression, metastasis, and resistance to treatment of cervi-
cal cancer. Soon, technological advances will help us understand this critical pathway for
cervical cancer development, including cell-extrinsic and cell-intrinsic factors that regu-
late JAK/STAT activity, as well as the molecular mechanisms of dysregulated JAK/STAT
signaling which could help us find specific targets to inhibit the pathway, leading to more
efficient and less severe cancer treatments.
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