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Abstract: Soybean is a high oil and protein-rich legume with several production constraints. Globally,
several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium
glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe
damage to soybean. The identification of resistant soybean genotypes and mapping of genomic
regions associated with resistance to CG is critical for developing improved cultivars for sustainable
soybean production. This study used single nucleotide polymorphism (SNP) markers generated
from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS)
analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of
6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model
Circulating Probability Unification (FarmCPU) with correction of the population structure and a
statistical test p-value threshold of 5%. A total of 19 significant marker–trait associations for resistance
to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately
113 putative genes associated with significant markers for resistance to red leaf blotch disease were
identified across soybean genome. Positional candidate genes associated with significant SNP loci-
encoding proteins involved in plant defense responses and that could be associated with soybean
defenses against CG infection were identified. The results of this study provide valuable insight
for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight
SNP variants and genes useful for genomics-informed selection decisions in the breeding process for
improving resistance traits in soybean.

Keywords: Coniothyrium glycines; red leaf blotch; soybean; GWAS; resistance

1. Introduction

Soybean is a cash crop used for animal feed, human consumption, soil fertility im-
provement, and industrial use for ethanol and biofuel production [1–3]. Soybean is a
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legume rich in oil and protein content [4]. Despite its importance, soybean production
is challenged by several abiotic and biotic constraints [5,6]. Across the world, 26 fungi,
9 viruses, 5 nematodes, and 3 bacteria have been identified to cause diseases in soybean
during production [6]. Among biotic constraints, pathogenic fungi have been reported to
cause severe foliar diseases that can result in a significant reduction in soybean productivity.

In Africa, many fungal diseases have been reported to reduce soybean productivity [7].
Over the last decades, soybean rust (Phakopsora pachyrhizi) has been the major disease
because of its economic importance and significant yield losses in soybean growing areas.
Since then, red leaf blotch caused by CG [8] has expanded and infected soybean in several
countries in Africa [5]. In addition to soybean, CG infects other legumes including the
perennial Neonotina wightii, which grows wild in many locations in sub-Saharan Africa [9].

Red leaf blotch disease is a soybean disease native to Africa, and it was first reported
in Ethiopia [10]. The disease has continued to spread in many countries in Africa including
Zambia and Nigeria, where significant yield losses of over 50% have been reported because
of red leaf blotch [11–13]. This coupled with other stress has led to many African countries
importing soybean to meet the rising market demand [14]. Whereas soybean production
has continued to expand [14,15], the rapid spread of red leaf blotch disease is an immense
challenge to the soybean sector in Africa. Current predictions indicate that red leaf blotch
is likely to cause significant damage to soybean production in many countries including
the USA [16,17].

To date, no resistant sources to red leaf blotch have been reported among soybean
genotypes [18,19]. Therefore, there is an urgent need to evaluate soybean germplasms for
their response to CG and to identify markers associated with resistance to accelerate breed-
ing for host resistance in soybean. In addition, soybean genotypes with genes conferring
resistance to CG would be useful for understanding the mechanisms of resistance to CG
and to facilitate faster integration of conventional or molecular breeding approaches in
soybean breeding programs. Although conventional breeding takes time, a combination of
modern breeding tools such as molecular markers with quality phenotyping shortens the
breeding cycle for developing new plant varieties [20]; hence, this would allow breeding
for host resistance to cope with the increasing expansion of the CG disease.

Recent advances in genomics, bioinformatics, and molecular biology techniques have
made it is possible to introgress and track genes of interest including resistance to diseases
such as CG more efficiently using marker-assisted selection, with great potential to increase
soybean production. The introgression of genes for resistance to CG into commercial
soybean varieties and elite lines will involve identifying new sources of resistance and
markers linked to resistance to accelerate the selection process. This also requires good
knowledge of how differences in the DNA levels relate to phenotypic differences in the
soybean genotypes.

Genome-wide association Analysis (GWAS) is one of the current methods for identi-
fying genomic regions associated with traits of interest for crop improvement [21,22]. It
uses germplasm or populations with diversity richness that have been morphologically
characterized and genotyped. GWAS detects genomic regions associated with key traits
with higher resolution using markers that are in linkage disequilibrium consisting of as-
sociation panels and or diversity populations [22]. Compared to QTL studies, GWAS has
an advantage in that it can detect smaller chromosomal regions affecting a trait of interest.
Furthermore, it provides accurate estimates of the size and direction of the effect of alleles
in identified loci [23].

Combining phenotypic and genotypic data to identify regions and genes associated
with a trait of interest is therefore more accurate compared to other mapping techniques.
Hence, this study aimed to identify the genomic regions responsible for resistance to CG, the
causal agent of the red leaf blotch disease in soybean. The identified genomic regions will
be useful to the soybean breeding program in the marker-assisted selection for resistance to
CG. This study provides information for the exploration of disease resistance-related genes
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and lays a foundation for genetic improvement and variety breeding for soybean resistance
to CG.

2. Materials and Methods
2.1. Planting Materials

Two hundred seventy-nine (279) soybean genotypes were collected from the National
Crops Resources Research Institute (NaCRRI) at Namulonge–Uganda and Makerere Uni-
versity, with sources from four different countries including Uganda, China, the USA, and
Zimbabwe (Table 1). Supplementary Materials, Table S1 provides details on the genetic
materials used in this study.

Table 1. Source, quantity, and summary description of the 279 soybean genotypes.

Origin Quantity Description

Uganda 192 Variable in height, number of days to maturity, and pubescence colors.
China 38 Variable in seed color, height, days to flowering, and seed size.
USA 40 Variable in leaf size and shape, plant color, and seeds.
Zimbabwe 9 Variable in lodging, height, seeds, and days to maturity.

2.2. Experimental Design

The 279 soybean genotypes were planted in a randomized complete block design
(RCBD) with 2 replications at the Makerere University Agricultural Research Institute
Kabanyoro (MUARIK) for two seasons (2021–2022) and at the Nakabango District farm in
Jinja–Uganda for the 2022 season. The experimental sites are known as hotspot areas for
red leaf blotch disease in soybean in Uganda. Twenty seeds were sown in a line plot of 1 m,
with a spacing from other plots of 0.6 m. Weeding was performed by hand twice at 20 and
55 days after planting.

2.3. Scoring of Soybean Red Leaf Blotch

Red leaf blotch disease was recorded seven times in a panel of varying soybean
genotypes from 30 days after planting up to reproductive stage 6 (R6). The stages R4 to
R6 are recognized as the best fit for disease scoring in soybean production [24,25]. The
severity of the red leaf blotch disease was evaluated using a 0–5 scale, which has previously
been used to score red leaf blotch disease in soybean [19,26,27]. This scale is based on the
observed damage, such as the percentage of the leaf area affected, fragmentation of the leaf,
presence of pycnidia on blotches, and the color and size of the blotches (Table 2).

Table 2. Scale to assess the severity of red leaf blotch disease in soybean production.

Category Description

0 No visible symptoms.
1 Few to many tiny purple–maroon spots (up to 2 mm in diameter), covering 1 to 10% of the leaf area.
2 Mainly large purple–maroon spots (up to 5 mm in diameter), covering 11 to 35% of the leaf area.
3 Purple–maroon or brown blotches (up to 10 mm in diameter) without pycnidia, covering 36 to 65% of the leaf area.

4 Dark brown blotches with pale, bleached centers and pycnidia present, covering 66 to 90% of the leaf, with
fragmentation of the leaf starting.

5 91 to 100% of the leaf area affected, extensive blotching and fragmentation of the leaf.

2.4. Genotyping and Quality Control

Fresh leaves were collected and kept on three 96-well plates at 15 days after germina-
tion. The three plates were expedited to the Integrated Genotyping Service and Support
(IGSS) of the Biosciences in Eastern and Central Africa—ILRI Hub, Kenya, for genotyping.
The DNA was extracted from the leaf tissues using the Nucleomag Plant Genomic DNA
extraction kit [28], and the DNA quality check was conducted on 0.8% agarose. Genotyping
was performed using Diversity Array Technology sequencing (DArTseq). Then, a genomic
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DNA library was constructed using genomic complexity reduction technology [29]. The
library was purified and quantified for cluster generation in an automated clonal amplifica-
tion system (cBOT Illumina). Thereafter, next-generation sequencing was performed using
the sequencer HiSeq 2500 (Illumina, San Diego, CA, USA).

3. Statistical Analysis
3.1. Phenotyping Analysis

Phenotypic data obtained from the three environments were pooled and subjected to
a linear mixed model analysis using the lme4 package implemented in R. The best linear
unbiased estimates (BLUEs) for three environments were obtained by considering the
genotypes’ effects as fixed and the environment and replication effects as random in the
mixed model as follows:

Yijk= µ + Bi + Gj + Ek + GEjk + εijk

where Yijk = phenotypic observation for a trait, µ = grand mean, E = environment effect,
B = replication effect, G = genotype effect, GE = genotype by environment interaction, and
ε = random residual error.

3.2. GWAS Analysis, Genes Annotation, and Linkage Disequilibrium

To perform the GWAS, a multilocus model Fixed and random model Circulating Prob-
ability Unification (FarmCPU) with correction of the population structure and a statistical
test p-value threshold of 5% was used [30]. The Manhattan and quantile–quantile (QQ) plots
were plotted using the R package “rMVP” (a memory-efficient, visualization-enhanced,
and parallel-accelerated tool for genome-wide association study) [31].

The SNP markers significantly associated with resistance to the red leaf blotch disease
identified through GWAS were annotated using the Phytozome 13.0 database (https://
phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1, accessed on 10 December 2022)
and used as the source for the candidate gene search. The linkage disequilibrium (LD) was
estimated among the significant SNPs using the “LDheatmap” library [32]. The LD decay
rate of 90 to 574 kb has been reported in soybean [33] and a ±574 kb region was used to
identify positional candidate genes [34].

In selecting candidate genes, the following criteria [34,35] were used as (i) genes of
known function in soybean related to the trait under study, (ii) genes with function-known
orthologs in Arabidopsis related to the trait under study, and (iii) genes pinpointed by
the peak SNPs. The public database InterPro, European Molecular Biology Laboratory–
European Bioinformatics Institute (EMBL-EBI), was used to determine the functions of the
genes associated with the different SNPs identified [36].

The SNPs’ contributions to the resistance to red leaf blotch disease based on the
observed alleles were plotted using the “ggplots”, and their confidence statistics were
calculated with “rstatix” in R.

4. Results
4.1. Phenotypic Variation

In this study, significant (p < 0.001) differences were observed among the soybean
genotypes for their response to the red leaf blotch disease under natural infestation. The
analysis of variance (ANOVA) revealed that genotypes, environments, and genotypes by
environment interaction were the main sources of variation (Table 3). Out of the 279 soybean
genotypes, approximately 10.75% were evaluated as resistant to red leaf blotch disease
(Figure 1). Figure 1 shows the resistant genotypes, represented by the dots on the bottom.
The heritability values observed from the studied traits ranged from 0.23 to 0.70, with the
lowest heritability identified for R1 (Table 3).

https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1
https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1
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Table 3. Analysis of the variance for the response to red leaf blotch disease under natural infestation
of 279 soybean genotypes at different scoring moments.

Source of Variation DF a R1
b R2 R3 R4 R5 R6

Rep 1 0.538 0.263 4.12 0.86 1.32 1.49
Genotypes 278 0.177 2.453 *** 3.67 *** 4.92 *** 5.8 *** 6.56 ***
Environment 2 12.836 *** 21.57 *** 39.32 *** 85.86 *** 86.58 *** 84.05 ***
Geno * Enviro 556 0.141 0.761 *** 1.21 *** 1.54 *** 1.84 *** 2 ***
Residuals 836 0.112 0.37 0.38 0.51 0.59 0.69

Grand Mean 0.27 1.09 1.25 1.49 1.63 1.73
LSD 0.29 0.82 1.02 1.17 1.27 1.34
CV 142.11 53.12 46.90 46.43 45.63 45.95
Heritability 0.23 0.69 0.67 0.69 0.68 0.70

a Degree of freedom. b Soybean reproductive stage. Significance level: * <0.05; *** <0.001.
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Figure 1. Soybean genotypes resistant to red leaf blotch disease and their origin. Dots on the bottom
represent resistant soybean accessions. The x-axis represents the origin, and the y-axis represents the
general mean of the disease scores. Additional information concerning the genotypes is available in
Supplementary Materials, Table S1.

4.2. Marker Coverage and Distribution

The number of Diversity Array Technology sequencing (DArTseq)-generated SNP
markers was 14,082. A large number (7687) were discarded after the filtering and impu-
tation of the raw data, and the remaining markers was 6395 SNPs, approximately 45.41%
of the DArTseq-generated SNP markers. The 6395 SNPs markers matched the criteria of
the data for use in the GWAS. The 6395 SNPs were distributed across the 20 Glycine max
chromosomes. Chromosome 12 and chromosome 18 have, respectively, a small (201) and
high (476) number of SNPs (Figure 2, Table 4). The MAF (minor allele frequency) and
PIC (polymorphism information content) of these SNPs ranged from 0.043 to 0.5, with an
average of 0.22, and 0.08 to 0.74, with an average of 0.29, respectively.
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Table 4. Chromosomes size and number of SNPs for Glycine max chromosomes after filtering
alongside the average polymorphism information content.

Chr a FSNPs b MAF c GD d PIC e

1 239 0.144 0.37 0.30
2 353 0.143 0.33 0.28
3 298 0.045 0.35 0.30
4 291 0.144 0.37 0.30
5 257 0.171 0.37 0.31
6 402 0.143 0.32 0.27
7 285 0.125 0.33 0.28
8 330 0.137 0.34 0.29
9 370 0.166 0.37 0.31
10 276 0.125 0.33 0.28
11 235 0.114 0.33 0.28
12 201 0.133 0.35 0.30
13 362 0.147 0.36 0.30
14 346 0.135 0.32 0.27
15 341 0.159 0.38 0.32
16 348 0.138 0.34 0.29
17 351 0.147 0.33 0.28
18 476 0.152 0.36 0.30
19 332 0.153 0.37 0.31
20 302 0.113 0.33 0.28

Total/Average 6395 0.783 0.348 0.293
a Chromosome. b Filtered single nucleotide polymorphism. c Minor allele frequency. d Gene diversity. e Polymor-
phism information content.
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4.3. Association Results

The FarmCPU model was used in this study to reveal the loci associated with the
resistance to CG causing the red leaf blotch disease of soybean. In total, 19 significant
association signals were found at various reproductive stages of the crop growth (Table 5).
At R1, four signals were identified on chromosomes 1, 13, 15, and 16 (Table 5, Figure 3A).
At R2, four signals were identified on chromosomes 12, 16, 17, and 19 (Table 5, Figure 3B).
At R3, two signals were identified on chromosome 6 (Table 5, Figure 3C). At R4, five signals
were identified on chromosomes 1, 6, 16, and 20 (Table 5, Figure 3D). At R5, four signals
were identified on chromosomes 5, 6, 16, 17, and 19 (Table 5, Figure 3E). At R6, five signals
were identified on chromosomes 1, 6, 9, 10m and 19 (Table 5, Figure 3F). The quantile–
quantile plots (QQ plots) produced by displaying the negative logarithms (−log10) for
the p-values against their p-values demonstrated that the genome-wide association study
analysis model was reasonable in this research. Differences between observed and expected
values of the traits studied in this research were identified, and they indicate a link between
the phenotypic and SNPs, as demonstrated by the QQ plots (Figure 3).

Table 5. Summary of significant SNPs associated with resistance to Coniothyrium glycines evaluated
at six soybean reproductive stages (R1-6) in the germplasm of 279 soybean genotypes.

RS a SNPs ID b CHR c POS d Alleles Effect SE

R1 Gm01_36009335 Gm01 36,009,335 A/T −0.017 0.004
Gm13_40079851 Gm13 40,079,851 A/T 0.022 0.005
Gm15_12688260 Gm15 12,688,260 T/A 0.022 0.005
Gm16_3302971 Gm16 3,302,971 A/G 0.037 0.009

R2 Gm12_34424219 Gm12 34,424,219 G/G −0.104 0.024
Gm16_34649045 Gm16 34,649,045 G/A −0.213 0.048
Gm17_8014133 Gm17 8,014,133 T/C 0.132 0.026

Gm19_35502386 Gm19 35,502,386 G/T 0.148 0.034

R3 Gm06_20112134 Gm06 20,112,134 A/G −0.320 0.034
Gm06_38404808 Gm06 38,404,808 A/G −0.259 0.056

R4 Gm01_17813710 Gm01 17,813,710 A/G −0.183 0.061
Gm06_20112134 Gm06 20,112,134 A/G −0.318 0.045
Gm16_3302971 Gm16 3,302,971 A/G 0.472 0.086

Gm16_34649045 Gm16 34,649,045 G/T 0.489 0.122
Gm20_34576213 Gm20 34,576,213 G/T 0.209 0.051

R5 Gm05_30968142 Gm05 30,968,142 A/C 0.135 0.034
Gm06_20112134 Gm06 20,112,134 A/G −0.450 0.044
Gm16_31759458 Gm16 31,759,458 C/T 0.789 0.190
Gm17_14222127 Gm17 14,222,127 T/C 0.265 0.059
Gm19_44916522 Gm19 44,916,522 T/C 0.238 0.037

R6 Gm01_17813710 Gm01 17,813,710 A/G −0.222 0.072
Gm06_19862041 Gm06 19,862,041 G/A −0.620 0.047
Gm09_4708504 Gm09 4,708,504 G/A 0.476 0.104

Gm10_48178692 Gm10 48,178,692 C/G 0.150 0.041
Gm19_44916522 Gm19 44,916,522 T/C 0.261 0.040

a Reproductive stage for disease scoring. b Single nucleotide polymorphism. c Chromosome number. d Position.

Some SNPs were significant at more than one scoring time. This was the case for
Gm01_17813710 at R4 and R6; Gm06_20112134 at R3, R4, and R5; Gm16_3302971 at R1
and R4; Gm16_34649045 at R2 and R4; and Gm19_44916522 at R5 and R6 (Table 5). The
Manhattan plot reveals the results of the GWAS significance levels (−log10 of the p-value
of each SNP) by chromosome position, where each chromosome has a different color.
Significant SNPs in the Manhattan plot are strongly associated with resistance to red leaf
blotch disease in soybean (Figure 3).
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Figure 3. Manhattan plots for the genome-wide diagnosis of association signals for resistance to
red leaf blotch disease in soybean (left) and quantile–quantile (QQ) plots of the p-values (right).
(A–F) reproductive stages 1, 2, 3, 4, 5, and 6, respectively. Manhattan plots: The x-axis is the genomic
position of the SNPs in the genome, and the y-axis is the negative log base 10 of the p-values. The
red horizontal line indicates the significance level. QQ plot: the y-axis is the observed negative base
10 logarithm of the p-values, and the x-axis is the expected observed negative base 10 logarithm of
the p-values.



Genes 2023, 14, 1271 9 of 23

4.4. Genes Identity, Discovery, and Annotations

Positional candidate genes associated with the significant SNP markers were identified
using soybean reference genome Gmax_Wm82_a4_v1 available in Phytozome 13.0 (https:
//phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1 (accessed on 9 March 2023)).
This resulted in the discovery of 113 candidate genes that encode for proteins that were
characterized. Functional annotation of these proteins suggests their involvement in the
plant’s growth and response to various abiotic and biotic stress. Several candidate genes
associated with significant markers for resistance to red leaf blotch disease were distributed
in the soybean genome on chromosomes 1 (6 genes), 5 (5 genes), 6 (19 genes), 9 (6 genes), 10
(7 genes), 12 (5 genes), 13 (7 genes), 15 (7 genes), 16 (17 genes), 17 (11 genes), 19 (14 genes),
and 20 (9 genes) (Table 6).

Table 6. Annotation for the significant SNPs associated with resistance to red leaf blotch disease
in soybean.

SNP ID a Chr b Gene_ID c Function Pfam d References

Gm01_17813710 1
Glyma.01G075900 Squamosa promoter-binding

protein-like 8 PF03110 [37]

Glyma.01G076100 Plastid lipid-associated protein
PAP/fibrillin family protein PF04755 [38]

Gm01_36009335 1

Glyma.01G104100 Isochorismate synthase 2 PF00425 [39]
Glyma.01G105500 Proteasome subunit PAB1 PF10584, PF00227 [40]

Glyma.01G105900 RHO guanyl-nucleotide exchange
factor 7 PF03759 [41]

Glyma.01G106000 Glutathione S-transferase TAU 8 PF00043, PF13417 [42]

Gm05_30968142 5

Glyma.05G115700 RING domain ligase 2 PF13920, PF07002 [43]
Glyma.05G117233 Alternative oxidase 2 PF01786 [44]
Glyma.05G117500 K+ uptake permease 7 PF02705 [45]
Glyma.05G118200 Pumilio 7 PF00806 [46]
Glyma.05G119600 BRI1-associated receptor kinase PF08263, PF00069 [47]

Gm06_19862041 6

Glyma.06G207701 Chaperone DnaJ-domain
superfamily protein IPR036869 [48,49]

Glyma.06G206800 Transducin family protein/WD-40
repeat family protein PF00400, PF12341 [50]

Glyma.06G208200 Enolase 1 PF03952 PF00113 [51]
Glyma.06G206700 UDP-glucosyl transferase 89B1 PF00201 [52]

Glyma.06G208800 EF-hand calcium-binding
protein family PF13499 [53]

Glyma.06G207900 Glycine-rich protein-containing
protein-like PF07173 [54]

Glyma.06G207800 AP2/B3-like transcriptional factor
family protein IPR017392 [55]

Glyma.06G207751 Tetratricopeptide repeat
(TPR)-containing protein PF13236 [56]

Gm06_20112134 6

Glyma.06G207701 Chaperone DnaJ-domain
superfamily protein IPR036869 [48]

Glyma.06G208200 Enolase 1 PF03952, PF00113 [51]
Glyma.06G206700 UDP-glucosyl transferase 89B1 PF00201 [52]

Glyma.06G207800 AP2/B3-like transcriptional factor
family protein IPR017392 [55]

Glyma.06G207751 Tetratricopeptide repeat
(TPR)-containing protein PF13236 [56]

Glyma.06G208800 EF hand calcium-binding
protein family PF13499 [53]

Glyma.06G207900 Glycine-rich protein PF07173 [54]

Glyma.06G206800 transducin family protein/WD-40
repeat family protein PF00400, PF12341 [50]

https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1
https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1
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Table 6. Cont.

SNP ID a Chr b Gene_ID c Function Pfam d References

Gm06_38404808 6
Glyma.06G239026 Disease resistance protein

(TIR-NBS-LRR class) family PF13676, PF00931 [57]

Glyma.06G239500 UDP-glucosyl transferase 72E1 PF00201 [52]
Glyma.06G238700 Phytosylfokine- α receptor 2 PF08263, PF00069 [58]

Gm09_4708504 9

Glyma.09G051600 Ubiquitin-protein ligase 1 [59]

Glyma.09G052400 PLATZ transcription factor
family protein PF04640 [60]

Glyma.09G052700 K+ uptake permease 11 PF02705 [45]

Glyma.09G056400 Disease resistance protein
(TIR-NBS-LRR class), putative PF13676, PF00931 [57]

Glyma.09G057500 Transducin family protein/WD-40
repeat family protein PF00400 [50]

Glyma.09G057800 Pumilio 5 PF00806 [46]

Gm10_48178692 10

Glyma.10G250000 Leucine-rich repeat (LRR)
family protein PF08263, PF12819 [61]

Glyma.10G252200 Chaperone DnaJ-domain
superfamily protein PF00226 [48]

Glyma.10G257600 RING/U-box superfamily protein PF12906 [62]

Glyma.10G257700 Transducin/WD40 repeat-like
superfamily protein PF00400 [50]

Glyma.10G257900 Zinc-finger protein 1 PF13912 [63]

Glyma.10G258800 Leucine-rich repeat (LRR)
family protein PF08263, PF13855 [61]

Glyma.10G260000 Pumilio 9 PF00806 [46]

Gm12_34424219 12

Glyma.12G171232 Transducin/WD40 repeat-like
superfamily protein PF00400 [50]

Glyma.12G173300 RING/U-box superfamily protein PF12906 [62]

Glyma.12G173800 FASCICLIN-like
arabinogalactan-protein 11 PF02469 [64]

Glyma.12G175351 Zinc finger (C3HC4-type RING finger)
family protein PF17123, PF14624 [63]

Glyma.12G172800 PDI-like 1–4 PF13899, PF13848 [65]

Gm13_40079851 13

Glyma.13G310100 WRKY family transcription factor PF03106 [66]

Glyma.13G311000 FASCICLIN-like
arabinogalactan protein 17 precursor PF02469 [64]

Glyma.13G311300 Ubiquitin-specific protease 8 PF13423 [67]

Glyma.13G312400 Chaperone DnaJ-domain
superfamily protein PF00226 [48]

Glyma.13G313400 CLAVATA3 IPR039618 [68]

Glyma.13G314800 Leucine-rich repeat (LRR)
family protein PF13855 [61]

Glyma.13G317200 WIP domain protein 3 PF13912 [69]

Gm15_12688260 15

Glyma.15G152400 Disease resistance protein
(TIR-NBS-LRR class) family PF13676, PF00931 [57]

Glyma.15G155900 Transducin/WD40 repeat-like
superfamily protein PF00400 [50]

Glyma.15G155400 Fasciclin-like arabinogalactan
family protein PF02469 [64]

Glyma.15G155500 RING/U-box superfamily protein PF13920 [62]

Glyma.15G155600 Leucine-rich repeat transmembrane
protein kinase

PF08263, PF00560,
PF00069, PF13855 [61]

Glyma.15G154200 CW-type zinc finger PF07496 [70]
Glyma.15G154000 Cullin 1 PF10557, PF00888 [71]
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Table 6. Cont.

SNP ID a Chr b Gene_ID c Function Pfam d References

Gm16_31759458 16

Glyma.16G152400 RING/U-box superfamily protein PF13639 [62]
Glyma.16G153100 Transducin family protein/WD-40 repeat family protein [50]

Glyma.16G156100 Leucine-rich repeat transmembrane
protein kinase family protein

PF00560, PF00069,
PF13855 [61]

Glyma.16G156400 C2H2 and C2HC zinc fingers
superfamily protein PF13912 [63,72]

Glyma.16G157200 Ubiquitin carboxyl-terminal hydrolase
family protein PF11955 [67]

Glyma.16G159100 Disease resistance protein
(TIR-NBS-LRR class) family PF13676, PF00931 [57]

Glyma.16G159500 Disease resistance protein
(TIR-NBS-LRR class), putative PF00931 [57]

Glyma.16G155400 Acyl-CoA N-acyltransferases (NAT)
superfamily protein PF00583 [73]

Glyma.16G031600 NB-ARC domain-containing disease
resistance protein PF00931 [74]

Gm16_3302971 16

Glyma.16G035000.1 Ubiquitin-conjugating enzyme 5 PF00179 [67]

Glyma.16G033900
Disease resistance protein

(TIR-NBS-LRR class), putative

PF07725
[57]PF13676

PF00931

Glyma.16G034400 Transducin/WD40 repeat-like
superfamily protein PF04564 [50]

Glyma.16G035800 DnaJ/Hsp40 cysteine-rich domain
superfamily protein IPR036410 [49]

Glyma.16G038500 Cupredoxin superfamily protein PF02298 [75]
Glyma.16G031400 WRKY DNA-binding protein 56 PF03106 [66]

Gm16_34649045 16
Glyma.16G181700 C2H2-like zinc finger protein PF13912 [72]

Glyma.16G182900 Disease resistance family protein/LRR
family protein PF13855, PF08263 [76]

Gm17_8014133 17

Glyma.17G101800 RING/U-box superfamily protein PF13639 [62]
Glyma.17G106000 Ubiquitin-like superfamily protein PF00240 [67]

Glyma.17G106300 PLATZ transcription factor
family protein PF04640 [60]

Glyma.17G107100 Ubiquitin-associated (UBA)/TS-N
domain-containing protein PF02148 [67]

Glyma.17G107400 Leucine-rich repeat family protein PF13855 [61]
Glyma.17G109100 Ubiquitin-specific protease 22 PF02148, PF13423 [67]

Glyma.17G109200 Avirulence-induced gene (AIG1)
family protein PF04548, PF11886 [70]

Gm17_14222127 17

Glyma.17G162200 F-box family protein PF07734 [77]
Glyma.17G162100 Myb domain protein 79 PF00249 [78]

Glyma.17G162400 TTF-type zinc finger protein with HAT
dimerization domain PF05699, PF14291 [79]

Glyma.17G161700 Acyl-CoA N-acyltransferases (NAT)
superfamily protein PF00583 [80]

Gm19_35502386 19

Glyma.19G102400 CCR-like PF07207 [81]

Glyma.19G102300 Pentatricopeptide repeat (PPR)
superfamily protein

PF14432, PF01535,
PF13041 [82]

Glyma.19G100900 AP2/B3-like transcriptional factor
family protein PF02362 [83]

Glyma.19G102800 UDP-Glycosyltransferase
superfamily protein PF00201 [52]

Glyma.19G103000 RING/U-box superfamily protein PF00097 [62]
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Table 6. Cont.

SNP ID a Chr b Gene_ID c Function Pfam d References

Gm19_44916522 19

Glyma.19G186200 C2H2-type zinc finger family protein PF13912 [72]

Glyma.19G191100 Zinc finger C-x8-C-x5-C-x3-H type
family protein PF00076, PF00642 [63]

Glyma.19G180600 Homolog of mammalian P58IPK PF13371, PF13414,
PF00226 [84]

Glyma.19G180700 FASCICLIN-like arabinogalactan
protein 11 PF02469 [64]

Glyma.19G185100, Transducin/WD40 repeat-like
superfamily protein PF00400 [50]

Glyma.19G182151 NRAMP metal ion transporter
family protein PF01566 [85]

Glyma.19G184600 Thioredoxin superfamily protein PF00085 [86]

Glyma.19G188200 PLATZ transcription factor
family protein PF04640 [60]

Glyma.19G189100 Ubiquitin-protein ligase 7 PF00632 [87]

Gm20_34576213 20

Glyma.20G103300 Prefoldin 5 PF02996 [88]
Glyma.20G098700 F-box family protein PF00646 [89]

Glyma.20G099100 C2H2 and C2HC zinc fingers
superfamily protein PF13912 [72]

Glyma.20G099800 RING/U-box superfamily protein PF13639 [63]

Glyma.20G100500 Leucine-rich repeat (LRR)
family protein

PF08263, PF00560,
PF13855 [61]

Glyma.20G100800
SNF2 domain-containing

protein/helicase domain-containing
protein/zinc finger protein-related

PF00097, PF00271,
PF00176 [87]

Glyma.20G104000 thioredoxin X PF00578 [90]

Glyma.20G104200 Tetratricopeptide repeat (TPR)-like
superfamily protein

PF13812, PF01535,
PF13041 [56]

Glyma.20G107900 AP2/B3-like transcriptional factor
family protein PF02362 [55]

a Single nucleotide polymorphic marker identity. b Chromosome number. c Gene identity. d Protein family.

4.5. SNPs’ Contribution to the Resistance to Red Leaf Blotch Disease in Soybean

Five common significant SNPs were identified for at least two scoring times including
Gm01_17813710 at R4 and R6; Gm06_20112134 at R3, R4, and R5; Gm16_3302971 at R1 and
R4; Gm16_34649045 at R2 and R4; and Gm19_44916522 at R5 and R6. Further dissection
of the five significant SNP loci associated with resistance to red leaf blotch showed that
accessions with the homozygous allele AA and/or heterozygous allele AG on chromosome
1 possessed higher resistance than the homozygous allele GG (Figure 4A,B). On chromo-
some 6, resistance is associated with the homozygous allele GG (Figure 4C–E). The marker
effect on chromosomes 16 and 19 revealed that, respectively, the homozygous alleles GG
and TT (Figure 4F–I) and CC and TT (Figure 4J,K) are linked with resistance in the studied
population, while the heterozygous allele accounted for low resistance. The SNP confidence
statistics revealed an allelic significative difference (p < 0.001) at SNPs Gm01_17813710
and Gm06_20112134 (Figure 4A–E). At p < 0.001, the other SNPs did not show an allelic
significative difference (Figure 4).

In general, resistance to red leaf blotch disease in soybean is characterized by ho-
mologous allele GG at positions Gm06_20112134 and Gm16_34649045. The position
Gm16_3302971 is dominated by the homologous allele TT, except for two soybean geno-
types (UGSOY143 and UGSOY236) that are characterized by the heterozygous allele TA.
The position Gm19_44916522 is predominated by homologous alleles CC or TT, but one
genotype (UGSOY195) has a heterozygous allele TC (Table 7, Figure 4)
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Table 7. Profile of the alleles at the significant SNPs for the highly resistant (mean score less than 0.5)
soybean genotypes to red leaf blotch recorded out of the 279 genotypes.

Genotypes ** Gm01_17813710 * Gm06_20112134 * Gm16_3302971 * Gm16_34649045 * Gm19_44916522 *

UGSOY143 GG GG AT GG CC
UGSOY148 AG GG TT GG CC
UGSOY157 AA GG TT GG TT



Genes 2023, 14, 1271 14 of 23

Table 7. Cont.

Genotypes ** Gm01_17813710 * Gm06_20112134 * Gm16_3302971 * Gm16_34649045 * Gm19_44916522 *

UGSOY158 AA GG TT GG TT
UGSOY165 AA GG TT GG TT
UGSOY170 AG GG TT GG CC
UGSOY174 GG GG TT GG CC
UGSOY183 AG GG TT GG CC
UGSOY186 AA GG TT GG TT
UGSOY189 AG GG TT GG TT
UGSOY190 AA GG TT GG TT
UGSOY194 AA GG TT GG TT
UGSOY195 AG GG TT GG TC
UGSOY197 AG GG TT GG TT
UGSOY203 AG GG TT GG TT
UGSOY212 AA GG TT GG TT
UGSOY214 AA GG TT GG TT
UGSOY217 AA GG TT GG TT
UGSOY218 AG GG TT GG TT
UGSOY228 AG GG TT GG TT
UGSOY229 AG GG TT GG TT
UGSOY231 AA GG TT GG CC
UGSOY232 AA GG TT GG TT
UGSOY233 AA GG TT GG TT
UGSOY234 AG GG TT GG TT
UGSOY235 AA GG TT GG TT
UGSOY236 AG GG AT GG TT
UGSOY238 AG GG TT GG TT
UGSOY240 AA GG TT GG TT
UGSOY241 AA GG TT GG CC

* Position of the significant SNPs at chromosome 1 at R4 and R6; 8 at R3, R4, and R5; 16 (3302971) at R1 and R4;
16 (34649045) at R2 and R4; and 19 at R5 and R6 in the soybean genome. ** Codes of soybean genotypes with
resistance to red leaf blotch disease.

4.6. Haplotype Analysis

Linkage disequilibrium (LD) block heatmaps based on the LD of each identified
common SNP loci are shown in Figure 5. The LD analysis of the common loci (two on
chromosomes 1 and 19 and three on chromosomes 6 and 16) showed that these markers had
a relatively average to high LD parameter (R2 > 0.8), showing a relatively high correlation.

Genes 2023, 14, x FOR PEER REVIEW 16 of 25 
 

 

UGSOY218 AG GG TT GG TT 

UGSOY228 AG GG TT GG TT 

UGSOY229 AG GG TT GG TT 

UGSOY231 AA GG TT GG CC 

UGSOY232 AA GG TT GG TT 

UGSOY233 AA GG TT GG TT 

UGSOY234 AG GG TT GG TT 

UGSOY235 AA GG TT GG TT 

UGSOY236 AG GG AT GG TT 

UGSOY238 AG GG TT GG TT 

UGSOY240 AA GG TT GG TT 

UGSOY241 AA GG TT GG CC 

* Position of the significant SNPs at chromosome 1 at R4 and R6; 8 at R3, R4, and R5; 16 (3302971) at 

R1 and R4; 16 (34649045) at R2 and R4; and 19 at R5 and R6 in the soybean genome. ** Codes of 

soybean genotypes with resistance to red leaf blotch disease. 

4.6. Haplotype Analysis 

Linkage disequilibrium (LD) block heatmaps based on the LD of each identified 

common SNP loci are shown in Figure 5. The LD analysis of the common loci (two on 

chromosomes 1 and 19 and three on chromosomes 6 and 16) showed that these markers 

had a relatively average to high LD parameter (R2 > 0.8), showing a relatively high cor-

relation. 

 

Figure 5. Linkage disequilibrium (LD heatmap) showing the pairwise LD among the SNP markers 

covering entirely chromosome 1 (A), 6 (B), 16 (C), and 19 (D), carrying the genes encoding re-

sistance to red leaf blotch. The red color shows the markers with high LD followed by yellow. 

Figure 5. Cont.



Genes 2023, 14, 1271 15 of 23

Genes 2023, 14, x FOR PEER REVIEW 16 of 25 
 

 

UGSOY218 AG GG TT GG TT 

UGSOY228 AG GG TT GG TT 

UGSOY229 AG GG TT GG TT 

UGSOY231 AA GG TT GG CC 

UGSOY232 AA GG TT GG TT 

UGSOY233 AA GG TT GG TT 

UGSOY234 AG GG TT GG TT 

UGSOY235 AA GG TT GG TT 

UGSOY236 AG GG AT GG TT 

UGSOY238 AG GG TT GG TT 

UGSOY240 AA GG TT GG TT 

UGSOY241 AA GG TT GG CC 

* Position of the significant SNPs at chromosome 1 at R4 and R6; 8 at R3, R4, and R5; 16 (3302971) at 

R1 and R4; 16 (34649045) at R2 and R4; and 19 at R5 and R6 in the soybean genome. ** Codes of 

soybean genotypes with resistance to red leaf blotch disease. 

4.6. Haplotype Analysis 

Linkage disequilibrium (LD) block heatmaps based on the LD of each identified 

common SNP loci are shown in Figure 5. The LD analysis of the common loci (two on 

chromosomes 1 and 19 and three on chromosomes 6 and 16) showed that these markers 

had a relatively average to high LD parameter (R2 > 0.8), showing a relatively high cor-

relation. 

 

Figure 5. Linkage disequilibrium (LD heatmap) showing the pairwise LD among the SNP markers 

covering entirely chromosome 1 (A), 6 (B), 16 (C), and 19 (D), carrying the genes encoding re-

sistance to red leaf blotch. The red color shows the markers with high LD followed by yellow. 

Figure 5. Linkage disequilibrium (LD heatmap) showing the pairwise LD among the SNP markers
covering entirely chromosome 1 (A), 6 (B), 16 (C), and 19 (D), carrying the genes encoding resistance
to red leaf blotch. The red color shows the markers with high LD followed by yellow.

5. Discussion

Identifying novel sources of resistance in soybean germplasm to key biotic and abiotic
stress is an essential determinant for enhancing productivity [91,92]. Extensive work on
the genetic improvement of soybean to resistance to selected diseases and pests [92] and
other nutritional value [93] has been conducted across the world, but limited efforts have
been made in the area of red leaf blotch disease in soybean [26]. In this study, a GWAS was
conducted to map genomic regions associated with CG resistance. A total of 19 significant
GWAS signals were reported for resistance to red leaf blotch disease in soybean. In addition,
putative candidate genes associated with resistance were also identified. The markers
identified in this study provide a means to accelerate the development of soybean cultivars
with resistance and with other acceptable end-user attributes.

The ability of a GWAS to dissect complex traits has been demonstrated in soybean
quality improvement and breeding for seed composition [37] and for resistance to soybean
rust [38]. The consumption of soybeans is increasing and, consequently, breeding programs
need to be encouraged and optimized with new knowledge. The current GWAS was in-
tended for the discovery of QTLs and potential candidate genes linked to genetic diversity
for resistance to red leaf blotch disease in soybean. The knowledge of the population
structure and familial relationships (i.e., kinship) in an association panel is important to
prevent false associations in a GWAS [39]. Population structure and admixture for this
population were reported in a previous study [40]. From our study, 113 putative candi-
date genes encoding for several proteins (Table 6) were discovered as major contributors
to the resistance to Coniothyrium glycines, the causal agent of red leaf blotch disease in
soybean production.

Squamosa promoter-binding protein-like (SPL) genes play vital regulatory roles in
plant growth, development, and stress responses [41,42] and show potential applica-
tion in crop improvement by genetic modification for abiotic stress in Alfalfa (Medicago
sativa L.) [43]. SPL genes are reported to play a role in toxin resistance in plants [44]. Plastid
lipid-associated proteins, also termed fibrillin, are known for their role in response to
biotic stress in Solanaceae plants, especially for bacterial infections [45]. Isochorismate
synthase 2 contributes to the biosynthesis of salicylic acid [46], which is involved in plant
defenses [47]. In soybean, the defense responses to the pathogens Pseudomonas syringae
and Phytophthora sojae is conferred by the accumulation of salicylic acid [48]. Proteasome is
reported to contribute to the tolerance of heat or oxidative stresses in plants [49,50]. The
RING/U-box superfamily protein promotes resistance to biotic stress through ubiquitina-
tion and leaf senescence [51]. The U-box protein is known to play a major role in responses
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to abiotic and biotic stresses in rice [52] and regulates drought tolerance in Arabidopsis
thaliana [53]. The action of the RHO guanyl-nucleotide exchange factor 7 was demonstrated
in the development, pathogenesis, and stress responses of Colletotrichum higginsianum,
which causes anthracnose disease of crucifers [54]

The chaperone DnaJ-domain superfamily protein has been reported in pepper (Cap-
sicum annuum L.) to play a role in plant growth and development and heat stress [55].
Hence, it is called heat shock protein 40 based on molecular weight [55]. In wheat, the
chaperone DnaJ-domain is reported in the regulation of resistance to yellow mosaic virus in-
fection [56]. Earlier, in 2013, a critical role of the nuclear-localized DnaJ domain-containing
GmHSP40.1 in cell death and disease resistance in soybean was demonstrated through the
screening for candidate genes stimulating cell death in soybean, and silencing GmHSP40.1
enhanced the susceptibility of soybean plants to soybean mosaic virus, confirming its
positive role in pathogen defense [57]. Another positive role of the DnaJ-domain is that it is
involved in the alkaline-salt, salt, and drought tolerance in Arabidopsis and soybean [58].
The chaperone DnaJ-domain plays a critical function in protein folding and regulation of
several physiological processes, and it participates in numerous pathological processes [59].
DnaJ-domain superfamily proteins have been recognized for their diverse functions within
cells and extensively studied in many species, including humans, drosophila, Arabidopsis,
mushrooms, and tomatoes [60]. Furthermore, this information on the role played by the
chaperone DnaJ-domain may guide practical actions in soybean breeding for resistance to
red leaf blotch disease.

Enolase is involved in the growth and development of various species [61]. In soybean,
the flooding stress is controlled by enolase with the contribution of other proteins [62].
UDP-glucosyl transferase 89B1 plays a vital role in diverse plant functions, and its re-
sponse to drought, salt, and heat stress in Populus trichocarpa (Black cottonwood) has been
revealed [63]. The potential role of the EF-hand calcium-binding protein family in the
implementation of resistance to environmental and nutritional stress in soybean was de-
scribed [64]. This calcium-dependent protein has a function in the soybean–herbivore insect
interaction and in drought adaptation [65]. Glycine-rich protein-containing protein-like con-
fer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth
at low temperatures), and these proteins could play a promising role in agriculture [66].

AP2/B3-like transcriptional factor family proteins were analyzed for their role in
stress tolerance in soybean [67], tree plants [68–70], and A. thaliana [71]. A member of the
AP2/ERF transcription factor family, GmERF3, was isolated from soybean. There was an
enhanced resistance against infection by Ralstonia solanacearum, Alternaria alternata, and
tobacco mosaic virus, as well as tolerance to high salinity and dehydration stresses in
transgenic tobacco plants [72]. The tetratricopeptide repeat (TPR)-containing protein has
functions in plant hormone signaling, and the protein TTL1, containing TPR motifs, is
required for abscisic acid responses and osmotic stress tolerance in plants [73,74].

The Transducin/WD40 repeat-like superfamily protein is a functional group that has
been reported in plant cell wall formation [75]. In soybean, Transducin/WD40 repeat-like
proteins were reported to putatively control the total number of flower and pods [76], while
in Arabidopsis, they control seed germination, growth, and biomass accumulation [89].
A gene that encodes for Transducin/WD40 repeat-like proteins were identified in wheat
and associated with plant tolerance to abiotic stresses [77]. The genes that encode for
Transducin/WD40 repeat-like superfamily protein in soybean may play a role in controlling
red leaf blotch by rehabilitating the cells damaged by the pathogen during the employment
of the disease epidemic’s mechanism. Therefore, the soybean genotypes that present the
QTLs involving Transducin/WD40 repeat-like superfamily protein production could be
used as future resources for breeding efforts aimed at improving resistance to red leaf
blotch disease.

The leucine-rich repeat (LRR) family protein is well-known for controlling disease
resistance in crops, including soybean [78]. In soybean, LRR has been reported to regulate
the immune response to Phytophthora root rot [79], coordinate the responses against



Genes 2023, 14, 1271 17 of 23

root-lesion nematode [80], and mediate the response to soybean mosaic virus [81]. This
study also revealed the contribution of the LRR domain in the resistance to red leaf blotch
disease in soybean production. Phytochrome-associated protein 2 is crucial in photoperiod
adaptability and, therefore, influences the flowering time. Liu et al., (2008) showed that
phytochromes contribute to the establishment of an adaptive response of soybean to
environments, and thus the role of contributing to the resistance to red leaf blotch disease in
soybean was revealed. The role of malic enzymes in plant growth and response to stress is
documented and mainly discovered in cytoplasmic stroma, mitochondria, and chloroplasts.
Previous studies have shown that malic enzymes participate in the process of coping with
drought, high salt, and high temperature by increasing water use efficiency and improving
photosynthesis by plants [83]. Through the improvement of photosynthesis, malic enzymes
contribute to the resistance to red leaf blotch disease.

Various studies have shown that ubiquitination plays a key role in stress response
and yield constitution [87]. In the UniProtKB database, 2429 ubiquitin-related proteins are
predicted in soybean [85]. Ubiquitin plays a key role in regulating the resistance of soybean
to Heterodera glycines, a soybean cyst nematode causal agent [84]; P. sojae, an infection
that causes stem and root rot [86]; and heat shock [87]. In soybean and other legumes,
the C2H2-type zinc finger protein is reported to enhance legume–rhizobia symbiosis [88],
which is a key physiological process that can limit nitrogen in plants, affecting their growth
and development [90]. The accumulation of isoflavone in soybean is governed by the C2H2-
type zinc finger protein [94,95], and isoflavone contributes to human health and plant stress
tolerance [96]. The soybean C2H2-type zinc finger protein with a conserved QALGGH mo-
tif negatively regulates drought responses [97], but it was reported to enhance tolerance to
cold [98] in transgenic Arabidopsis. Although several genes that encode for the C2H2-type
zinc finger protein have been reported to play various roles in the life mechanism of soy-
bean [95,97,98], the accumulation of unfolded proteins such as the homolog of mammalian
P58IPK in the endoplasmic reticulum have built up a conserved mechanism that regulates
the stress response in this cell part [99]. The endoplasmic reticulum stress response plays an
important role that allows plants to sense and respond to adverse environmental conditions,
such as heat stress, salt stress, and pathogen infection [99,100]. These unfolded proteins
were revealed, for the first time, as factors that contribute to resistance to red leaf blotch
disease in soybean. The role of FASCICLIN-like arabinogalactan-protein in the response
to plant pathogens was elucidated by Wu et al., (2020). FASCICLIN-like arabinogalactan-
protein controls the infection with the turnip mosaic virus and P. syringae pv tomato strain
DC3000 (Pst DC3000) in Nicotiana benthamiana, which is a model plant to study plant–
pathogen interactions [101]. Recently, their contribution to resistance to clubroot disease
stress in Brassica napus was characterized [102]. FASCICLIN-like arabinogalactan-protein
was reported to be associated with soluble sugar content in vegetable soybean [103]. The
thioredoxin superfamily protein with glutoredoxin regulates the response of nodulated soy-
bean plants to water-deficit stress [104], and it is involved in several plant life mechanisms,
including adaptation to environmental stresses [105] or signaling plant immunity [106].

The NRAMP metal ion transporter family protein plays a key role in nodule iron home-
ostasis to support bacterial nitrogen fixation in soybean production [107] and contributes to
avoiding cadmium toxicity [108]. The PLATZ transcription factor family protein increases
drought tolerance in soybean hairy roots [109]. The CLAVATA3/ESR-RELATED 9 is a
key component that modulates the effect of infection with plant-parasitic nematodes [110];
therefore, CLAVATA3/ESR-RELATED 9 interacts with the nematodes in the process of the
establishment of feeding sites on the plant roots. WRKY DNA-binding protein 3 is well
known in soybean to promote resistance to cyst nematodes [111]. Soybean WRKY-type
transcription factor genes GmWRKY13, GmWRKY21, and GmWRKY54 confer differential
tolerance to abiotic stresses in transgenic Arabidopsis plants [82]. Therefore, the potential
role of WRKY DNA-binding protein in resistance to red leaf blotch is irrefutable. The
cell wall/vacuolar inhibitor of fructosidase 1 was reported to regulate the abscisic acid
response and salt tolerance in Arabidopsis [111]. The salinity symptoms in plants are
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characterized by leaf discoloration and damage. In fact, red leaf blotch disease affects the
leaf; therefore, the cell wall/vacuolar inhibitor of fructosidase 1 may play a key role in
reducing the expansion of leaves’ damage.

Regarding the analysis and functions played in plants by the proteins encoded by
the 113 unrevealed genes of soybean, these genes are directly or indirectly responsible
for resistance to C. glycines causing red leaf blotch disease in soybean production. These
genes govern, in a mutual way, the physiological activities of the soybean plant to enhance
resistance to C. glycines infection.

Information on the markers’ effects through segregation patterns are fundamental for
conversion of the markers to Kompetitive Allele-Specific PCR (KASP) for genotyping of
the polymorphisms at different loci and deployment in breeding programs [112,113] for
resistance to red leaf blotch disease in soybean. Some of the markers, especially marker
Gm02_17813710 at R4 and R6, have the GG and GA alleles, which significantly reduce
disease symptoms compared to the second homozygous state. The same pattern was
observed for Gm16_3302971 on R1 and R4, with homozygous state TT and heterozygous
state AT, which are superior to that of the homozygous allele AA in minimizing the
disease severity. These SNPs demonstrate a dominance effect, and both the favorable
homozygous and heterozygous alleles can be exploited for KASP markers in breeding for
resistance. Marker Gm06_20112134, on the other hand, shows no significant difference
in the allelic effect between AA and GG, while both homozygous states are superior to
the heterozygous alternative. This SNP allelic effect pattern may encourage use of both
homozygous alleles for KASP marker development. However, its effect on disease needs to
be further investigated, for example, through direct molecular analyses and intervention,
to ascertain their influence on disease severity. Possible reasons for such allelic behavior
could be genetic, such as genetic heterogeneity or statistical, for instance, a low sample size
and statistical power in the detection of the SNP effect. SNP Gm19_44916522 shows no
differences in the allelic effect among its three allelic states, which suggests that it could be
a false positive or affected by allelic heterogeneity, which prompts the necessity to further
investigate and validate these alleles.

6. Conclusions

This study identified 19 significant markers and genomic regions associated with red
leaf blotch disease resistance in soybean. These markers tagging key genomic regions can be
validated and tested in the soybean germplasm. This might be performed by transforming
these significant markers to low-cost Kompetitive Allele-Specific PCR (KASPs) markers
capable of being used effectively to transfer alleles into elite soybean genotypes for use in
future marker-based breeding strategies. The findings of this study will contribute to the
implementation of a new approach to soybean breeding for maintaining red leaf blotch
disease resistance. The discovered genes from this study provide new insight into the
genetic foundation of resistance to red leaf blotch disease in genetic pool of soybean.
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