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Abstract: The present study aimed to evaluate the effect of dipyridamole, an indirect adenosine
2A receptors (A2AR), on the osseointegration of titanium implants in a large, translational pre-
clinical model. Sixty tapered, acid-etched titanium implants, treated with four different coatings
((i) Type I Bovine Collagen (control), (ii) 10 µM dipyridamole (DIPY), (iii) 100 µM DIPY, and
(iv) 1000 µM DIPY), were inserted in the vertebral bodies of 15 female sheep (weight ~65 kg).
Qualitative and quantitative analysis were performed after 3, 6, and 12 weeks in vivo to assess
histological features, and percentages of bone-to-implant contact (%BIC) and bone area fraction occu-
pancy (%BAFO). Data was analyzed using a general linear mixed model analysis with time in vivo
and coating as fixed factors. Histomorphometric analysis after 3 weeks in vivo revealed higher BIC
for DIPY coated implant groups (10 µM (30.42% ± 10.62), 100 µM (36.41% ± 10.62), and 1000 µM
(32.46% ± 10.62)) in comparison to the control group (17.99% ± 5.82). Further, significantly higher
BAFO was observed for implants augmented with 1000 µM of DIPY (43.84% ± 9.97) compared to the
control group (31.89% ± 5.46). At 6 and 12 weeks, no significant differences were observed among
groups. Histological analysis evidenced similar osseointegration features and an intramembranous-
type healing pattern for all groups. Qualitative observation corroborated the increased presence of
woven bone formation in intimate contact with the surface of the implant and within the threads
at 3 weeks with increased concentrations of DIPY. Coating the implant surface with dipyridamole
yielded a favorable effect with regard to BIC and BAFO at 3 weeks in vivo. These findings suggest a
positive effect of DIPY on the early stages of osseointegration.
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1. Introduction

Currently, endosteal implants are considered the gold standard to successfully reha-
bilitate partial and complete edentulous patients [1]. Although biological and mechanical
complications are somewhat frequent, the long-term outcomes reported on clinical trials
have demonstrated high survival rates for dental implants [1,2]. Nevertheless, approxi-
mately 84% of implant failures have been associated with inadequate early osseointegra-
tion [2]. Local (e.g., poor bone quality, compromised bone volume, immediate implantation,
etc.) and systemic factors (e.g., systemic diseases, use of tobacco, etc.) may impair bone
metabolism and have been often associated with increased risk for premature implant
failure [3,4]. Therefore, early osseointegration is still considered a challenge in areas with
more trabecular and low-density bone [5,6], where physicochemical modifications to the
implant surface and modifications in implant macrogeometry seem to be crucial in decrease
healing time while concurrently achieving and maintaining the quality and quantity of the
newly formed bone surrounding the implanted device [7].

Osseointegration occurs when there is direct contact between the implant surface
and the alveolar bone without any soft tissue intermediate [8], and it is mediated by
some of the basic mechanisms of wound healing including the migration of inflammatory
cells, deposition of extracellular matrix, and its posterior organization and remodeling [9].
Depending on the interplay between the implanted device and the osteotomy dimensions,
osseointegration may occur through different healing modes [10]. When there is a tight fit
between the implant and osteotomy walls, an interfacial osseointegration through bone
reabsorption and bone apposition may take place. In contrast, implants with increased
thread pitch and distinct thread diameters, in addition to sufficient surgical instrumentation,
allows for the establishment of healing chambers between threads, the implant’s inner
diameter, and osteotomy walls, which allows for intramembranous healing through the
deposition of essential bone remodeling cells and proteins. Finally, a hybrid pathway may
take place when the osteotomy and implant design allow for the intimate contact of the tip
implant threads with native bone while allowing for the formation of healing chambers
between the threads [10].

During the osseointegration process, a robust primary stability and the initial resistance
of the implant to micro- or macro-motion have been considered essential to predictably
achieve osseointegration [11]. Conventionally, primary stability has been associated with
increased insertion torque values attained through undersized bone osteotomies. High
insertion torque has the potential to yield microcrack formation and strain in the sur-
rounding bone, which may lead to compression necrosis and bone remodeling increasing
osseointegration times [12]. Therefore, several factors have been investigated in an effort to
enhance primary stability and promote efficiently the achievement of secondary stability,
including implant design [13], osteotomy size [14], surgical instrumentation [15], and mod-
ifications to the implant’s surface to hasten the biological interactions at the bone–implant
interface [10,16–19].

Previous literature suggests that small design variations in macro- and micro-features
may positively influence the stability of the implant and potentially the bone response in
the early stages of osseointegration [20,21]. Modifications in several design features such
as thread pitch and thickness have been assessed, aiming to enhance primary stability and
avoid excessive strain in bone at implant placement [20,22,23]. Different surgical instru-
mentation techniques have been also the center of pre-clinical research aiming to achieve
predictable osseointegration in low-density bone [24,25]. Among them, the use of non-
subtractive densifying burs that promote the plastic deformation of the bone by rolling or
sliding contact has evidenced promising results to enhance the implant’s primary stability
and to shorten healing times for implants placed in low quality bone [26,27]. While pa-
rameters such as implant design, surface modifications, and surgical instrumentation have
been studied separately, evidence suggests that the optimization of the osseointegration
process may not be achieved by modifications in a single factor [10,19].
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Furthermore, the use of local, sustained drug release at the bone-to-implant interface
has been researched through different coatings containing osteogenic agents such as growth
factors, hormones, and pharmacological agents [28–30]. Likewise, several techniques have
been reported for chemical agent delivery to implant sites, coatings, injectable gels, mi-
crosphere hydrogel, and collagen sponges [31]. These approaches have been considered
of interest to stimulate cellular response for reconstructive procedures avoiding the risks
usually associated with systemic administration such as loss of drug bioavailability and
high drug doses [32]. The stimulation of the cellular response at the interface has the poten-
tial to yield increased osseoconductibility, improved mineral deposition, and subsequently,
expedited, predictable, long-lasting osseointegration [33–35].

Among osteogenic compounds, dipyridamole (DIPY), an indirect adenosine 2A recep-
tor (A2AR), has become of interest due to its osteoinductive properties and well-established
history of safe use as an antithrombotic agent and vasodilator drug in both adult and
pediatric patients [36,37]. As an antiplatelet drug, DIPY appears to act by synergistically
modifying different pathways, including the inhibition of platelet cAMP-phosphodiesterase,
and by the potentiation of adenosine inhibition of platelet function by blocking reuptake by
vascular and blood cells. These processes have been suggested to inhibit platelet function
by increasing platelet cAMP through both a reduction in enzymatic cAMP-degradation
and stimulation of cAMP formation via activation of adenylcyclase by adenosine [38].
As an osteoinductive agent, DIPY increases extracellular adenosine levels by blockade
of cellular purine uptake via equilibrative nucleoside transporter (ENT)-1, which stimu-
lates osteoblast proliferation and differentiation [39,40]. Additionally, DIPY has a role in
osteoclast and inflammation inhibition, which may further support the bone formation
process [41]. Furthermore, DIPY has been proven to stimulate bone regeneration to levels
comparable to that of growth factors such as Bone Morphogenetic Protein 2 (BMP-2), one
of the most studied osteogenic agents for bone regeneration, without the associated side
effects, such as ectopic bone formation, osteolysis, and craniosynostosis [36,41–43]. Addi-
tionally, tissue-engineering scaffolds loaded with dipyridamole have been proven to be an
effective approach to enhance bone augmentation while preserving cranial suture patency
for pediatric cranial reconstructions [44]. Thus, DIPY has become a material of interest to
stimulate bone formation in different bone augmentation biomedical applications [43,45].

A systematic review of the literature evaluating local and sustained drug release at
the bone–implant interface in different animal models revealed a positive influence of
locally delivered chemical compounds during the osseointegration process [32]. While
several chemical substances have been reported in previous pre-clinical trials aiming
to hasten the osseointegration process in low density/quality bone (calcium phosphate,
bisphosphonates, growth factors such as BMPs and hormones such as growth hormone
and parathyroid hormone) [32,46,47], the ideal adjunctive osteogenic therapy to accelerate
bone formation around titanium implants in challenging scenarios remains unclear. To
the best of the authors’ knowledge, this is the first study to report the association of the
osteoinductive properties of DIPY with endosteal titanium implants in an effort to facilitate
the osseointegration process in inferior, low-density bone. Therefore, this study aimed to
evaluate the influence of different DIPY coating concentrations (10, 100, and 1000 µM) on
the osseointegration of titanium dental implants at 3, 6, and 12 weeks in a low-density bone
translational pre-clinical model. The postulated null hypothesis was that there would be
no changes with respect to the osseointegration in the DIPY groups in comparison with the
control group, independent of DIPY concentration and time in vivo.

2. Materials and Methods
2.1. Surgical Model and Procedure

Prior to any surgical intervention, the team submitted the protocol for approval from
the Research Ethics Committee on Animal Use (CEUA) at the Positivo University (Protocol
274/2015) in accordance with the provisions of the Arouca Law (11794/2008) and designed
according to ARRIVE guidelines. After receiving approval from the committee, a total of
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15 female sheep (sp. Dorset Cruz) ~2 years old weighing ~65 kg were acquired and allowed
to acclimate for 7 days at the facility. The cervical spine of sheep was selected due to its low
density and size large enough to allow the placement of all experimental groups in each
subject. After an acclimatation period of one week, the surgical procedure was performed
under general anesthesia. Anesthesia was induced with sodium pentothal (15–20 mg/kg)
in a Normasol solution injected into the jugular vein and maintained with isofluorane
(1.5–3%) in O2/N2O (50/50). Animals were monitored with ECG, SpO2, end tidal CO2, and
body temperature, which was regulated by a circulating hot water blanket. The surgical
area was shaved and prepared for surgery with iodine solution.

A ~15 cm incision starting ~5 cm below the cricoid cartilage along the midline was
performed for anterior access, followed by blunt dissection to access the anterior flange
of the vertebrae. A conventional surgical drilling protocol for implant placement was
used in a 3-step series of 2.0 mm pilot, 3.2 mm, and 3.8 mm twist drills (Emfils Colosso
Drills, Itu, Brazil) under constant irrigation. Each sheep received four conical screw-type
acid-etched type V Titanium alloy implants (Novo Colosso, (Diameter: 4 mm × Length:
10 mm) Emfils, Itu, Brazil) (Figure 1), which were inserted in an interpolated fashion in C3,
C4, or C5 vertebral bodies, with randomized vertebrae and implant position within the
vertebral body with a minimum distance of 6 mm between implants. Implants were placed
bilaterally and divided as follows: one positive control group, (i) COLL, where implants
were coated with bovine collagen (Collagen Type I Corning Inc., Corning, NY, USA), and
three experimental groups, that in addition to the collagen coating received increasing
DIPY concentrations as follows: (ii) 10 µM, (iii) 100 µM, and (iv) 1000 µM (Figure 2).
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After implant placement, wound closure was achieved through simple suture with
2-0 polyglactin absorbable suture (Vicryl Ethicon, São Paulo, SP, Brazil) on the muscle’s
fascia, followed by continuous skin suture with 2-0 nylon thread (Shalon Surgical Threads
Ltd.a, São Luiz de Montes Belos, GO, Brazil). Ketoprofen 10% (3 mg/kg, 10% Biofen,
Biofarm Química e Farmacêutica LTDA, Jaboticabal, SP, Brazil) and enrofloxacin 10%
(2.5 mg/kg, injectable Chemitril 10%, Chemitec Agro Veterinária LTDA, São Paulo, SP,
Brazil) were administered intramuscularly after surgery once a day for 3 days and 5 days,
respectively. After surgery, food and water were given ad libitum to the animals. Five sheep
were euthanized by randomization at each evaluation time point (3, 6, and 12 weeks) after
surgery through a rapid intravenous injection of sodium thiopental (8 mg/mg, Thiopentax,
Cristália, São Paulo, SP, Brazil) and posterior euthanization by anesthetic overdose.

2.2. Sample Preparation and Histomorphometric Analysis

Each implant and the surrounding bone were removed en bloc for histological pro-
cessing. The vertebral blocks were dehydrated gradually in EtOH solutions ranging from
70 to 100% and embedded in MMA polymeric resin. The embedded samples were cut
into ~300 µm thick sections using a slow speed diamond blade (Isomet 2000, Buehler Ltd.,
Lake Bluff, IL, USA) aiming at the implant’s longitudinal axis. Sections were then glued
into individual acrylic slides and ground under continuous water irrigation in a grinding
machine (Metaserv 3000, Buehler, Lake Bluff, IL, USA) with a series of SiC abrasive papers
(400, 600, 800, and 1200) until the slides were ~100 µm thick.

Stevenel’s Blue and Van Gieson’s picro-fuchsin were used to stain the bone and soft
tissue. The sections were scanned with an automated microscope and specialized computer
software (Aperio Technologies, Vista, CA, USA). The digital micrographs were analyzed
qualitatively and quantitatively through specific image analysis software (Image J, NIH,
Bethesda, MD, USA). Percentages of bone-to-implant contact (BIC), along the total implant
perimeter, and for bone area fraction occupancy (BAFO), between the implant threads,
were calculated by a calibrated, single, blinded evaluator after a good intraclass correlation
coefficient (between 0.9 and 1) was obtained in the inter reliability measurements.

2.3. Statistical Analysis

The statistical analysis was performed with IBM SPSS (v23, IBM Corp., Armonk, NY,
USA), with histomorphometric data presented as mean values with 95% confidence interval
values (mean ± 95% CI). %BIC and %BAFO values were analyzed with a linear mixed
model with time in vivo (3, 6, and 12 weeks) and coating (COLL, 10 µM DIPY, 100 µM DIPY,
and 1000 µM DIPY) as fixed factors. All values were previously assessed for normality
with the Shapiro–Wilk test (p > 0.05).

3. Results

All animals recovered well from the surgery and showed no signs of complication,
disease, or infection.

3.1. Histomorphometric Analysis

The quantitative histomorphometric analysis of BIC and BAFO between the implant
groups as a function of coating and time in vivo is summarized in Figure 1. Evaluation
of BIC detected statistically significant differences between control (17.99% ± 5.82) and
DIPY coated groups (10 µM (30.42% ± 10.62), 100 µM (36.41% ± 10.62), and 1000 µM
(32.46% ± 10.62)) at 3 weeks (p < 0.04) (Figure 3A). No significant differences were observed
for BIC among experimental groups at six or twelve wks (p > 0.05).
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Statistical evaluation of BAFO revealed significantly higher values at 3 weeks for
implants coated with 1000 µM of DIPY (43.84% ± 9.97) compared to the control group
(31.89% ± 5.46) (p = 0.04), with no significant differences regarding 100 (39.45% ± 9.97)
and 10 µM (41.846% ± 9.97) groups (p > 0.05) (Figure 3B). Additionally, no significant
differences were detected for BAFO between the control, 10, and 100 µM groups at 3 weeks
(p > 0.05). Likewise, no significant differences were observed for BAFO between groups at
6 and 12 wks, independent of the DIPY coating concentration (p > 0.05).

3.2. Histological Analysis

Histological evaluation of the micrographs at different magnifications supported
the results obtained for the histomorphometric analyses. All groups yielded analogous
osseointegration attributes in trabecular bone, where an intramembranous-type healing
pattern was discerned at the implant healing chambers. Higher degrees of woven bone
formation in intimate contact with the implant and its respective threads were observed
at 3 weeks for all DIPY-coated implants when compared to the control group (Figure 4).
Qualitative observation suggested the presence of similar histological features for all
experimental groups (10, 100, and 1000 µM), regardless of the concentration of DIPY applied
to the implant surface. At 6 and 12 weeks (wks) (Figures 5 and 6, respectively), woven
bone progressive substitution by lamellar bone was observed in all groups independent
of the presence/concentration or absence of DIPY coating, with similar characteristics for
all groups.
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DIPY-coated implant, (A1–D1) Healing chamber and bone interface at higher magnification. Healing
chamber and bone interface at higher magnification. Bone formation is observed to occur within
the healing chambers from the surgically prepared native bone, from the implant surface (green
arrows), and from the central region of the chambers, where bone remodeling sites can be observed
(yellow arrows).
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implant, (B) 10 µM DIPY-coated implant, (C) 100 µM DIPY-coated implant, and (D) 1000 µM DIPY-
coated implant, (A1–D1) Healing chamber and bone interface at higher magnification. Bone formation
is observed to occur within the healing chambers from the surgically prepared native bone, from the
implant surface (green arrows), and from the central region of the chambers, where bone remodeling
sites can be observed (yellow arrows).

4. Discussion

The study aimed to assess the effect of varying dipyridamole coating concentrations
on the osseointegration of endosteal Ti implants placed in low-density bone. The results
after 3 weeks in vivo demonstrated significantly higher bone in direct contact with the
implant’s surface on all experimental groups coated with DIPY compared to the control
group (Type I Bovine Collagen). Significantly higher bone formation within the implant’s
threads was observed for implants coated with the higher DIPY concentration (1000 µM)
relative to the control group. While no significant differences were found at 6 and 12 wks
in vivo between experimental and control groups, the findings at 3 wks suggest a positive
effect of DIPY on the early stages of osseointegration, leading to the rejection of the null
hypothesis of the present study.

The use of DIPY as an osteogenic agent has been previously explored in associa-
tion with three-dimensionally printed scaffolds to promote bone regeneration in different
animal models, with promising results [41,42,45]. A pre-clinical study on New Zealand
White (NZW) rabbits evaluated the effect of three dimensionally printed bioceramic scaf-
folds loaded with different DIPY concentrations (10, 100, and 1000 µM) to treat critical-
sized long bone defects, demonstrating enhanced bone formation associated with 100
and 1000 µM DIPY-loaded scaffolds relative to the lower DIPY concentration (10 µM) and
control group [42]. Similar results were reported by Lopez et al. in the treatment of critical-
sized mandibular defects in a rabbit model, where three-dimensionally printed bioceramic
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scaffolds augmented with 100 µM DIPY yielded increased bone formation across the defect
relative to the group treated without DIPY [45]. Furthermore, a sheep study that evaluated
bone regeneration in calvarial defects demonstrated that loading 3D-printed bioceramic
scaffolds with 100 µM of DIPY significantly enhance the scaffolds’ osteogenic properties
compared to non-loaded groups [41]. The increased bone formation in the experimental
groups of the aforementioned studies has been attributed to the ability of DIPY to blockage
Ent1 transporter, increasing extracellular adenosine levels, and promoting new bone for-
mation through the stimulation of osteoblast differentiation and the blockage of osteoclast
differentiation and function [40]. This mechanism may also explain the significant increase
in osseointegration parameters at 3 weeks observed in the present study, which suggests a
positive effect of DIPY to hasten initial bone healing after implant placement.

While similar concentrations have been used in the present work, the application of
DIPY as a coating material of dense titanium implants presents a healing scenario that
differs significantly than the one provided by the use of porous bioceramic scaffolds for
bone regeneration. In the former scenario, it is likely that the dose is absorbed within the
early stages, which may explain the significant effect of DIPY at 3 weeks and the absence
of differences between experimental and control groups after 6 and 12 weeks. Similar
results have been observed in previous studies where titanium implants were coated with
different osteogenic chemical compounds (such as calcium phosphate, bisphosphonates,
and bone morphogenetic proteins), with experimental groups demonstrating higher values
of BIC regarding control groups [32]. For instance, a pre-clinical study in sheep that
evaluated coating of dental implants with the osteogenic agent recombinant human bone
morphogenetic protein 2 (rhBMP-2) demonstrated a significant increase in osseointegration
parameters at 3 weeks, with no significant effect at 6 weeks in vivo [35], which is in
agreement with the present study.

The osteogenic effects of DIPY and rhBMP-2 for bone regeneration have been previ-
ously compared in pre-clinical studies [43,48]. Ishack et al. demonstrated that 100 µM DIPY-
coated β-Tricalcium Phosphate/Hydroxyapatite scaffolds were as effective as 200 ng/mL
BMP-2-coated scaffolds in critical sized bone defects in mice [48]. Lopez et al. reported that
1000 µM and 10,000 µM DIPY-loaded 3DPBC scaffolds were as effective in regenerating
vascularized bone as rhBMP-2 (0.2 g/mL)-loaded 3DPBC scaffolds on NZW rabbits with
3.5 mm × 3.5 mm alveolar resection adjacent to the growing suture [43]. These studies
have demonstrated the effectiveness of DIPY as an osteogenic agent, with the advantage
of averting the side effects caused by rhBMP-2 administration such as risk of osteolysis
and ectopic bone formation [36,41,42]. Furthermore, recent literature has suggested that
seeding β-TCP scaffolds with osteogenic agents may accelerate the degradation of the
scaffolds, possibly because of increased vascularization promoting degradation via hydrol-
ysis from tissue fluids [49]. Considering the use of DIPY for coating titanium implants,
increased vascularization might be desirable to accelerate the interactions that take place
in the implant-host interface, which may allow for increased cell adhesion to the implant
surface in the early stages of osseointegration.

With respect to the use of titanium devices, the application of adjunctive therapies
to stimulate bone formation in low-density and poor-quality bone has been suggested to
promote faster and predictable osseointegration, potentially leading to reduced treatment
time frames and earlier functional loading. Several substances have been used in previous
literature aiming to stimulate bone formation or to produce local mineralization of bone
surrounding dental implants at the moment of implantation in low-density bone scenarios.
For instance, previous pre-clinical research in sheep presented the application of different
doses of growth hormone and parathyroid hormone applied directly to the implant surface
prior installation in low-density bone. Interestingly, both studies presented no significant
differences in BIC and BAFO [46,47]. In a previous in vitro drug release profile study, it
was reported the use of a thermo-sensitive hydrogel composite drug delivery system for
the administration of DIPY. While merely in vitro characterizations and cell viability tests
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were performed, the authors concluded that the prepared drug delivery system might have
great potential in promoting the regeneration of bone defects [50].

The sheep model, the animal model used in the present study, is a large preclinical
model that has been previously used to assess differences on the osseointegration process
of dental implants with diverse features [51,52]. Additionally, the consistent biologic out-
comes reported in the literature, of comparable bone remodeling potential in comparison
to humans and large anatomic size, enough to allow for the installation of standard-size
dental implants, make sheep a reliable and well-documented model for evaluating osseoin-
tegration, especially in low-density bone [53–55]. Moreover, to the best of the authors’
knowledge this is the first study to report the application of DIPY as a coating material for
titanium dental implant placement in low-density bone. While it was evident that DIPY
enhanced early bone formation around the implanted devices, further investigations are
warranted to determine the release profile of DIPY, the minimal effective doses required to
efficiently promote bone formation in low-density/quality bone and to optimize implant
treatment in challenging scenarios.

5. Conclusions

Coating the implant surface with dipyridamole increased BIC and BAFO at 3 weeks
in vivo. These findings suggest a positive effect of DIPY on the early stages of osseointegra-
tion, although no significant effect of DIPY was observed in later evaluation time-points.
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