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Abstract

Obesity causes extracellular matrix (ECM) remodelling which can develop into serious pathology 

and fibrosis, having metabolic effects in insulin-sensitive tissues. The ECM components may 

be increased in response to overnutrition. This review will focus on specific obesity-associated 

molecular and pathophysiological mechanisms of ECM remodelling and the impact of specific 

interactions on tissue metabolism. In obesity, complex network of signalling molecules such 

as cytokines and growth factors have been implicated in fibrosis. Increased ECM deposition 

contributes to the pathogenesis of insulin resistance at least in part through activation of cell 

surface integrin receptors and CD44 signalling cascades. These cell surface receptors transmit 

signals to the cell adhesome which orchestrates an intracellular response that adapts to the 

extracellular environment. Matrix proteins, glycoproteins, and polysaccharides interact through 

ligand-specific cell surface receptors that interact with the cytosolic adhesion proteins to elicit 

specific actions. Cell adhesion proteins may have catalytic activity or serve as scaffolds. The vast 

number of cell surface receptors and the complexity of the cell adhesome have made study of 

their roles challenging in health and disease. Further complicating the role of ECM-cell receptor 

interactions is the variation between cell types. This review will focus on recent insights gained 

from studies of two highly conserved, ubiquitously axes and how they contribute to insulin 

resistance and metabolic dysfunction in obesity. These are the collagen-integrin receptor-IPP 

(ILK-PINCH-Parvin) axis and the hyaluronan-CD44 interaction. We speculate that targeting 

ECM components or their receptor-mediated cell signalling may provide novel insights into the 

treatment of obesity-associated cardiometabolic complications.
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Overview of extracellular matrix (ECM) remodelling in obesity and insulin 

resistance

The ECM is a dynamic network of proteins, proteoglycans, polysaccharides, and 

biologically active factors that provide structural support and information pertaining to 

the status of the extracellular environment to cells [1]. The ECM remodels as a protective 

mechanism in response to inflammation or injury. The ECM also expands in response 

to obesity resulting from habitual excesses of calorie intake. This is neither a corrective 

nor protective response. Never over the course of human evolution was there the selective 

pressure to adapt to chronic overnutrition. The consequence is that the ECM remodelling 

associated with obesity may actually be maladaptive, resulting in the accumulation of ECM 

molecules and the activation of ECM membrane receptors (e.g. integrins and CD44) [2–8]. 

ECM activation of cell surface receptors has been implicated in the pathogenesis of a 

spectrum of cardiometabolic diseases [9–11]. The ECM as a mechanism of tissue dynamic 

remodelling shows diverse profiles and execute distinct regulatory processes in different 

metabolic tissues as reviewed previously [12].

The ECM is classified into two types based on location: interstitial (e.g. collagens I, III, and 

V) and basement membrane (e.g. Collagen IV, laminin, fibronectin, and hyaluronan) matrix. 

Interstitial ECM components are primarily produced by mesenchymal cells including 

fibroblasts and myofibroblasts. These cells are believed to regulate ECM homeostasis 

by synthesizing, degrading, and organizing ECM components [13, 14]. Proteins of the 

basement membrane are produced by epithelial cells, endothelial cells, and pericytes, and 

represent tissue specificity [15]. The ECM influences a range of cellular processes, such 

as cell proliferation, differentiation, and migration [16], via interacting with cell surface 

receptor integrins [17]. These glycoprotein receptors are αβ heterodimers with extracellular, 

single transmembrane, and cytoplasmic domains. Integrins have been demonstrated to 

influence biological activity by sending signals bi-directionally across the cell membrane 

[18, 19]. In addition to its role in cellular processes, the ECM also serves as a reservoir of 

growth factors. These include, but are not limited to, transforming growth factor-β (TGF-β), 

fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF).

ECM components undergo dynamic changes in the deposition and composition of its 

components and are important in the preservation of normal tissue function [19, 20], as 

well as during inflammation and for wound healing and tissue regeneration that may occur 

with tissue injury [12, 21]. Such remodelling is regulated under physiological settings 

by a delicate balance of synthesis, post-translational modifications, and degradation of its 

constituents [21]. Studies with selective deletion of ECM components demonstrate the 

importance of the ECM in tissue homeostasis by exerting control of cellular senescence, 

proliferation, migration, and differentiation [22]. The change in extracellular environment 

resulting from ECM expansion with obesity provokes an adaptive response by the cell which 

may contribute to impaired tissue function and lead to disease development.

ECM remodelling in disease states or with obesity is initially invoked to retain the structural 

and functional features of the organ, but a persistent expansion of the ECM may evolve into 

a maladaptive fibrosis [23]. Pathological ECM remodelling can be triggered by hypoxia, 
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inflammation, biomechanical stress, and excessive neurohormonal activation. Increased 

ECM causes tissue stiffness and organ dysfunction, which is exacerbated by increased cross-

linking of ECM components [24]. Abnormal deposition of ECM components is evident in 

clinical conditions such as lung fibrosis, liver cirrhosis, and cardiovascular diseases [16].

Obesity is a risk factor for a cluster of chronic illnesses including insulin resistance, 

diabetes, heart disease, fatty liver disease, and atherosclerosis. The insulin resistance 

of obesity is an independent risk factor that may contribute to the pathophysiological 

relationship between obesity and associated metabolic disorders [25]. During the 

progression of obesity, the ECM expands dynamically in metabolic tissues [26–28]. 

Evidence from both human and rodent researches suggests that pathological ECM 

remodelling contributes to insulin resistance in obesity. Individuals with obesity and insulin 

resistance display increased ECM deposition in adipose tissue compared to those with 

obesity of equivalent BMI and normal insulin sensitivity, implying that abnormal ECM 

remodelling is crucial in the pathophysiology of insulin resistance [29]. Rapid weight gain 

in healthy people results in muscle insulin resistance and upregulation of muscle ECM genes 

[30]. Moreover, in the insulin resistant muscles of patients with obesity and Type 2 diabetes, 

collagen expression (i.e. collagens I and III) is increased [31, 32]. The beneficial effects of 

exercise on muscle insulin sensitivity in patients post-bariatric surgery is partially related 

to a decrease in muscle collagen I and III expression [33]. Furthermore, a genome-wide 

epigenetic investigation of adipose tissues of individuals with obesity and insulin resistance 

shows novel insulin resistance-related genes that pertain to ECM and its interaction with the 

cell. These include COL9A1, COL11A2, and CD44 [34].

The underlying factors for obesity-induced ECM remodelling are unknown. The 

inflammatory response associated with obesity is considered as a predominant mechanism. 

Adipose tissue as the primary site where inflammation is initiated and exacerbated in 

obesity, has been the subject of numerous studies [35–37]. Excess nutrients cause adipocytes 

to enlarge and proliferate, which in turn induces hypoxia, mechanical stress, and cell death; 

these signals trigger inflammation, which is manifested by an increase in inflammatory 

cytokines and TGF-β [37, 38]. The production and secretion of several inflammatory 

mediators increase the infiltration of monocytes in adipose tissue and promote their 

differentiation to proinflammatory macrophages which produce and secret many more 

pro-inflammatory mediators that eventually trigger local and systemic inflammation [39, 

40]. Inflammation causes the fibrogenic response resulting in increased production and 

accumulation of ECM proteins. An alternative sequalae has also been proposed in the 

adipose tissue where fibrosis induces inflammation [41]. This will be further discussed later 

in the review.

Several lines of evidence suggest that ECM expansion and activation of its downstream 

ECM receptor signalling are linked to insulin resistance in diet-induced obesity (Fig. 1). 
Recent studies in skeletal muscle, adipose tissue, and liver explored the association between 

obesity-induced ECM remodelling, integrin signalling, and insulin resistance. Tissue-

specific deletion of integrin-linked kinase (ILK) (Box 1), an intracellular adaptor protein 

of integrin receptor signalling, in skeletal muscle, liver, and adipose tissue ameliorates high 

fat diet-induced tissue-specific insulin resistance [6, 8, 42]. Moreover, CD44 (Box 1), one 
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of the main cell surface receptors for the ECM hyaluronan, is implicated in obesity and 

Type 2 diabetes, as genetic ablation of CD44 or its pharmacological inhibition improves 

diet-induced disruptions of glucose homeostasis in mice [7, 43, 44]. High fat diet feeding 

in mice increases CD44 protein expression in muscle, and mice lacking CD44 gene have 

increased muscle vascularisation and ameliorate diet-induced insulin resistance in skeletal 

muscle [7]. These findings suggest that obesity-driven ECM remodelling/deposition and 

activation of its downstream signalling are necessary for obesity-induced insulin resistance.

Molecular pathophysiological mechanisms of ECM remodelling in obesity 

and insulin resistance

The molecular pathophysiology of obesity-driven ECM remodelling has been extensively 

studied and attributed to inflammation, hypoxia, renin-angiotensin-aldosterone system 

(RAAS), TGF-β signalling, and oxidative stress (Fig. 2).

Inflammation

Inflammation can cause pathological ECM remodelling or fibrosis through immune system 

activation in obesity [45]. Immune cells can produce structural ECM proteins upon 

activation and polarization or act as a key effector by synthesizing fibrogenic mediators [46–

48]. Proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 

(IL-1), and IL-6 have been linked to fibrosis either through a direct effect on ECM-

producing fibroblast cells or by promoting immune cell infiltration and activation [49, 

50]. In skeletal muscle, increased collagen deposition is associated with increased gene 

expression of TNF-α and F4/80, a macrophage infiltration marker, in obesity and insulin 

resistance [2]. In contrast, when collagen deposition is normalised by either reduction 

of mitochondrial oxidative stress or inhibition of phosphodiesterase (PDE) 5a, expression 

of TNF-α and F4/80 in skeletal muscle is normalised and insulin resistance in mice is 

improved [2]. In the liver, increased expression of osteopontin, an ECM glycoprotein which 

plays a vital role in the development of hepatic steatosis and insulin resistance, is linked to 

increased expression of TNF-α and the macrophage markers F4/80 and CD68 in the liver 

as well as abdominal subcutaneous adipose tissue in obesity [51, 52]. Moreover, excess 

myocardial collagen deposition is linked to high circulating levels of IL-6 and TNF-α in 

patients with obesity and heart failure [53, 54]. Elevated numbers of inflammatory cells, 

including CD3, CD11a, and CD45 positive cells, are also positively correlated with collagen 

deposition in the cardiac tissue of patients with heart failure with preserved ejection fraction 

(HFpEF) [55]. In high fat diet-fed hypertensive rats, elevated expression of TNF-α in 

cardiac tissue is associated with a marked increase in collagen deposition, which contributes 

to impaired ventricular function [56].

Moreover, studies in mice have implicated a causative role of TNF-α in the pathogenesis 

of fibrosis. Blocking TNF-receptor-1 (TNFR1) with an anti-TNFR1 antibody reduces liver 

fibrosis and steatosis in high fat-fed obese mice [57]. Loss of TNFR1 in hepatic stellate cells 

(HSC) reduces pro-Collagen-α1(I) mRNA expression and decreases HSC proliferation [58]. 

These results were further validated in human HSC cell lines and TNFR1 knockout mice 

[58]. By contrast, transgenic mice with cardiac-specific overexpression of TNF-α develope 
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progressive ventricular hypertrophy and dilation, which is accompanied by an increase in 

matrix metalloproteinase (MMP)-2 activity, and collagen synthesis and deposition [59]. In 

addition to TNF-α, IL-6 stimulation increases cardiac fibroblast proliferation and collagen 

production, whereas knocking out IL-6 reduces cardiac fibroblast collagen production in 

response to high glucose stimulation [60]. In streptozotocin-induced diabetic mice, IL-6 

deletion improves cardiac function and reduces interstitial fibrosis [60].

Obesity causes chronic low-grade inflammation in adipose tissue which has been attributed 

to mechanical stress of adipocyte expansion, hypoxia, and subsequent immune and mast 

cell infiltration, which contributes to the production of excess ECM components from a 

variety of cells including adipose stem and progenitor cells, adipocytes, fibroblasts, immune 

cells, and mast cells. Adipose tissue fibrosis and inflammation during obesity have been 

extensively reviewed recently [41, 61]. Hypoxia has been recognised as a key initiating step 

in the obese adipose tissue to induce inflammation and fibrosis [41]. This is discussed in 

the following section. Apart from the concept that inflammation leads to fibrosis, it is worth 

noting that fibrosis can also induce inflammation by increasing the mechanical stress on 

adipocytes from tissue stiffness [45], although the detailed molecular signals are not fully 

understood.

Hypoxia

Hypoxia causes aberrant adipose tissue ECM remodelling by modulating biosynthesis of 

fibril collagens, the expression of intracellular collagen-modifying enzymes, and ECM 

degradation via hypoxia-inducible factors (HIFs). As adipocytes grow larger due to lipid 

accumulation in response to overnutrition, oxygen delivery becomes limiting, resulting in 

hypoxia [35, 62, 63]. Hypoxia stimulates pathological ECM protein remodelling, stress 

signals, and angiogenesis via the expression of HIF1. Increased expression of HIF1 has 

been linked to increased macrophage infiltration and expression of genes involved in 

angiogenesis, collagen synthesis, and biosynthetic enzymes like lysyl oxidase (LOX) [62, 

64, 65]. Increased collagen deposition inhibits the physiological dynamic of the ECM 

required by healthy adipocytes, resulting in lipid deposition in ectopic depots in tissues 

such as liver, skeletal muscle, pancreas, and the heart [66]. Lipid metabolites promote 

local inflammation and insulin resistance [67]. In addition, hypoxia activates pro-angiogenic 

factors such as VEGF and platelet-derived growth factor (PDGF), which are produced by 

both adipocytes and adipocyte progenitor cells [68]. Despite the compensatory activation 

of pro-angiogenic factors, obesity is associated with decreased vascular density due to 

endothelial dysfunction and a counteracting increase in anti-angiogenic molecules [69]. 

Indeed, loss of VEGF shifts the balance of pro-angiogenic to anti-angiogenic response, 

resulting in reduced formation of blood vessels, excess collagen deposition and fibrosis, 

which is marked by increased HIF expression [70]. Therefore, VEGF expression in adipose 

tissue may reverse obesity-induced adverse ECM remodelling by promoting angiogenesis 

preventing adipocyte hypoxia and impaired lipid storage [71–73]. While hypoxia as a driver 

of fibrosis is most relevant in tissues such as adipose tissue in obesity, where capillary 

perfusion and oxygen delivery become limiting oxygen pressure (pO2), it may be less 

critical in organs that remain well-perfused despite obesity such as the liver [74]. Thus, the 
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role of hypoxia in initiating pathological ECM remodelling outside adipose tissue remains to 

be further investigated.

Renin-angiotensin-aldosterone system (RAAS)

RAAS is critical to the regulation of blood pressure and electrolyte balance homeostasis. 

Activation of the RAAS system has been linked to the cardiometabolic pathology associated 

with obesity [75]. Components of the RAAS system have been shown to induce a profibrotic 

response by activating ECM-producing fibroblast cells, resulting in their proliferation and 

induction of matrix-synthetic and preserving pathways [27]. Angiotensin II (AngII) is 

known to stimulate a variety of fibrogenic actions of fibroblasts, including cell migration 

[76], proliferation [77], proinflammatory cytokine secretion, and collagen synthesis [78], 

primarily via the angiotensin II type 1 (AT1) receptor, while AT2 receptor signalling 

may act as an anti-fibrotic factor, inhibiting fibroblast proliferation and matrix synthesis 

[79, 80]. In obese Zucker rats, inhibition of the angiotensin-converting enzyme (ACE) 

or blocking the AT1 receptor ameliorates cardiac fibrosis by lowering collagen and TGF-

β expression [81]. These findings suggest that TGF-β may be required for AngII to 

exert fibrogenic activity. In addition to TGF-β signalling, AngII activates multiple other 

intracellular signalling molecules such as mitogen-activated protein kinases (MAPKs), as 

well as increases intracellular reactive oxygen species (ROS) levels in isolated cardiac 

fibroblast cells, which can be completely blocked by the AT1 antagonists [80, 82]. Despite 

their beneficial effects in vitro and in pre-clinical models, inhibitors of the angiotensin 

signalling pathway, such as ACE inhibitors and angiotensin receptor blockers (ARBs), show 

extremely limited clinical benefit and are not approved for the treatment of cardiac fibrosis.

While the RAAS system is better characterised in the cardiovascular network, its 

contribution to fibrosis in other tissues in obesity and insulin resistance is less known. 

In the liver, inhibition of ACE or the AT1 receptor blocker protects liver from metabolic 

dysregulation while significantly reducing liver fibrosis in obese Zucker rats [83]. In 

adipose tissue, overexpression of angiotensinogen and AngII has been shown to accelerate 

inflammation and fibrosis by inducing macrophage infiltration [84, 85]. Moreover, an 

increased level of AngII is also associated with skeletal muscle fibrosis, which is evidenced 

by increased levels of hydroxyproline [86]. These findings suggest that RAAS components 

may exert a universal fibrogenic activity. However, more researches on their effects outside 

the cardiovascular system are warranted. Clinical efficacy of RAAS inhibitors against 

fibrosis merits further investigations.

TGF-β

TGF-β is an important regulator of the pro-fibrotic response that promotes ECM deposition. 

In obesity, increased TGF-β signalling has been suggested to exert pro-fibrogenic actions 

by stimulating the expression of tissue inhibitors of metalloproteases (TIMPs), including 

TIMP-1, TIMP-3, and TIMP-4, and connective tissue growth factor (CTGF) [55, 87]. 

In endomyocardial biopsy samples from patients with left ventricular (LV) hypertrophy 

and HFpEF, increased TGF-β expression leads to interstitial fibrosis which increases 

cardiomyocyte stiffness and impairs LV relaxation [55]. In adipose tissue of high fat diet-fed 

obese mice, increased collagen deposition is associated with TGF-β mediated TIMP-1 
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expression [88]. TGF-β expression is positively correlated with expression of TIMP-1, 

TIMP-3, and TIMP-4 in adipose tissue of people with obesity [87]. In addition, TGF-β 
signalling activation is linked to hepatic steatosis, fibrosis, and insulin resistance in high 

fat-fed obese mice [89, 90].

TGF-β regulates ECM by direct effects on ECM-producing fibroblast cells. TGF-β 
signalling has been shown to regulate alpha-smooth muscle actin (α-SMA), a marker 

of myofibroblast differentiation, CTGF, and collagen type I in primary cardiac fibroblast 

cells [55]. Inhibiting the TGF-β signalling pathway prevents myocardial fibrosis in an 

experimental rat model of hypertension [91]. Moreover, liver-specific overexpression of 

TGF-β in mice is associated with activation of HSC, evidenced by an increase in matrix 

proteins such as fibronectin and collagen types I, III, and IV [92].

The fibrogenic action of TGF-β has been attributed to mechanisms involving canonical 

SMAD signalling [93, 94]. TGF-β binds to receptor kinases to phosphorylate and 

activate SMAD2 and SMAD3, which form a complex with SMAD4 followed by nuclear 

translocation and regulation of expression of target genes [95, 96]. When SMAD3 is 

deleted in HSC, TGF-β-induced collagen I expression is significantly reduced, whereas 

overexpression of SMAD2 has the opposite effect [97]. TGF-β also plays a role in the 

induction and progression of endothelial-to-mesenchymal transition, a process that converts 

endothelial cells into mesenchymal cells that can then be differentiated into ECM-producing 

fibroblast cells [98]. This process is mediated through both SMAD signalling as well 

as the SMAD-independent intracellular signalling such as by c-Abl kinase and protein 

kinase C-δ [99], which increases expression of myofibroblast-specific and profibrotic 

macromolecules including α-SMA, Col I, Col III, TIMP1, and fibronectin [98]. In addition 

to its pro-fibrotic phenotype in the endothelial cells, TGF-β could execute anti-inflammatory 

effects in macrophages through phagocytosis of apoptotic cells [100–102]. Macrophages are 

highly responsive to TGF-β stimulation, mediating fibrotic responses by secreting cytokines, 

growth factors, and matricellular proteins when polarised to a M1 phenotype [103, 104]. 

To what extent the pro-fibrotic action of TGF-β is dependent on macrophage-mediated 

mechanisms is unclear. Regardless, cellular sources of TGF-β include many cell types 

such as macrophages, lymphocytes, fibroblasts, endothelial cells, and platelets, and TGF-β 
contributes to tissue fibrosis in a cell type- and context-dependent manner, which was 

recently reviewed by Frangogiannis et al. [104].

ROS

Obesity is often accompanied by oxidative stress, which is manifested by an imbalance 

between the generation of ROS and the scavenging capacity of the antioxidant system 

[105, 106]. Excess ROS generation in response to overnutrition has been implicated in the 

fibrogenic action of cytokines, AngII, and TGF-β in a variety of cardiovascular diseases 

including cardiac fibrosis and diastolic dysfunction [107, 108]. NADPH oxidases (NOXs) 

are membrane-bound enzymes responsible for generating cytosolic ROS. Endothelial 

cell-specific NOX2 overexpression in AngII-infused mice results in fibroblast activation 

and an increase in collagen deposition in the heart [109]. An increased level of ROS 

is also observed in cardiomyocytes and endothelial cells in the heart of patients with 
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HFpEF, accompanied by increased collagen deposition [53, 55]. ROS-mediated reduction 

of nitric oxide bioavailability to cardiomyocytes causes cardiac hypertrophy and stiffness 

by lowering protein kinase G activity, which has been linked to hypophosphorylation of the 

cytoskeleton protein titin [53].

In addition to the heart, elevated ROS levels in adipose tissue of high-fat diet-fed mice 

are associated with increased collagen deposition as well as decreased adipogenesis and 

mitochondrial function of the adipocytes [110]. These adverse effects are reversed by a 

reduction in ROS generation caused by vitamin E supplementation, as reflected by decreased 

expression of NOX4 and lipoperoxide levels [110]. Moreover, growing evidence suggests 

that ROS plays an important role in activating HSC and their transdifferentiation into 

myofibroblast cells, which express myogenic markers such as α-SMA and are required for 

the initiation of liver fibrosis. HSC activation is found to be highly correlated with oxidative 

stress in carbon tetrachloride (CCl4)-mediated liver fibrosis and antioxidant activity is 

inversely related to HSC activation [111]. NOX4-deficient HSCs have significantly lower 

ROS production and fibrogenic marker expression [112]. It is recently demonstrated that 

inhibiting NOX1/NOX4 reduces PDGF-induced ROS production and proliferative gene 

expression in primary mouse HSCs [113].

Mechanisms by which ECM remodelling in pathological states impacts 

tissue function

Herein, we postulate potential mechanisms whereby mechanical and molecular signals 

produced from ECM deposition are transduced to affect insulin sensitive tissues including 

skeletal muscle, heart, adipose tissue, liver, and the pancreas (Fig. 3). ECM composition is 

also an important aspect of regenerative medicine as differentiation and proliferation of stem 

cells are dependent on how extracellular ligands interact with cell surface proteins. This 

important aspect of ECM-cell interactions is beyond the scope of this review.

Skeletal muscle

ECM collagen expansion is a hallmark of insulin-resistant skeletal muscle [31, 32]. Recent 

studies have addressed the role of ECM components (e.g. collagens and hyaluronan) and 

selected receptors (e.g. integrin and CD44) in contributing to skeletal muscle insulin 

resistance. In diet-induced obese mice, increased muscle collagen content has been 

attributed at least partly to an increase in collagen gene expression and decreased muscle 

matrix metalloproteinase 9 (MMP9) activity [2]. Genetic deletion of MMP9 in mice 

exhibits increased collagen IV deposition in muscle and exacerbates diet-induced muscle 

insulin resistance. These effects are accompanied by decreased muscle capillary density [4]. 

Increased muscle collagen content is believed not only to provide physical barriers to the 

muscle, resulting in impaired vascular delivery of glucose and hormones, but to transduce 

intracellular signaling via integrin receptors. Obese mice with global loss of integrin α2β1 

are less susceptible to the development of skeletal muscle insulin resistance [2]. It is the 

fact that increased muscle insulin action in these mice is linked to high levels of collagen 

expression and improved muscle vascularization, suggesting that integrin α2β1 signalling 

is essential for collagens to send signals to promote insulin resistance. Furthermore, 
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obese mice with muscle-specific deletion of ILK, a downstream component of the collagen-

integrin signalling, improve muscle insulin action [6]. This beneficial effect is accompanied 

by increased insulin stimulated AKT phosphorylation and p38 dephosphorylation and 

improved muscle capillarization. Similarly, data from muscle-specific overexpression of 

a disintegrin-like and metalloprotease with thrombospondin type 1 motif 9 (ADAMTS9), 

a secreted MMP, reveal that ADAMTS9 can partially abrogate insulin sensitivity by 

modulating integrin signaling via increasing ILK and PINCH expression [114].

Pharmacologic and genetic studies suggest that hyaluronan and its receptor CD44 play a role 

in the aetiology of skeletal muscle insulin resistance in vivo. ECM hyaluronan content is 

increased in insulin-resistant muscle of obese mice, and intravenous infusion of pegylated 

human recombinant hyaluronidase PH-20 (PEGPH20) that reduces muscle hyaluronan levels 

increases muscle glucose uptake during a hyperinsulinemic-euglycemic clamp [3]. This 

increased muscle insulin action is associated with improved muscle vascularisation and 

increased insulin signalling in muscle. Likewise, genetic deletion of CD44 ameliorates diet-

induced skeletal muscle insulin resistance accompanied by improved muscle vascularisation 

[7]. Interestingly, the metabolic beneficial effect of PEGPH20 is dependent upon the 

presence of CD44 as when PEGPH20 is given to CD44 null mice, its role in improving 

muscle insulin action in obese mice is absent [7]. CD44 is also linked to Type 2 diabetes 

and insulin resistance in patients through regulating adipose tissue inflammation which 

will be discussed later [43, 115]. Taken together, these findings imply that excessive ECM 

deposition can promote skeletal muscle insulin resistance by activating specific integrin 

receptors and CD44 signalling. A recent study discovered a unique regulatory route by 

which insulin initiates slowing and/or termination of its own signaling via an integrin 

αvβ5-dependent pathway [116].

Heart

Fibrotic alterations in the heart as a result of overnutrition play an important role in the 

pathophysiology of heart failure, particularly HFpEF, which is the most common kind 

of heart failure, and the vast majority of those affected are overweight or obese [117]. 

Studies have revealed elevated collagen deposition in the myocardium of patients with 

heart failure and metabolic comorbidities such as obesity, diabetes, and hypertension [53, 

118]. The relationship between heart failure and comorbidities of obesity and diabetes also 

extends to insulin resistance, which has independent adverse effects on cardiac function 

that can be profound [119]. A variety of genetically altered mouse models with perturbed 

insulin signalling have suggested that disruption of the insulin signalling in the heart 

causes pathophysiological consequences including decreased contractile function and altered 

cardiac size either under basal conditions or in the presence of pathological stressors 

(e.g. myocardial infarction) [120–124]. As a growing body of evidence has suggested a 

link between muscle ECM remodelling and insulin resistance [2–4], one can speculate 

that pathological cardiac ECM remodelling underlies insulin resistance in cardiac muscle 

and may be associated with cardiac dysfunction potentially having an impact in patients 

with HFpEF and metabolic comorbidities of obesity. Gene expression of fibrotic markers 

such as CTGF and collagen isoforms (COL1A1, COL3A1, COL4A1) is upregulated in 

the heart tissue of diet-induced obese mice, which also exhibit cardiac insulin resistance 
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[125]. Pirfenidone, an anti-fibrotic drug with unknown mechanism of action, inhibits cardiac 

fibroblast proliferation, myofibroblast differentiation, and migration in vitro and reduces the 

assembly of fibril collagen through attenuation of TGF-β production [126]. Moreover, the 

anti-fibrotic effect of pirfenidone in the heart is associated with improved insulin resistance 

in obese mice [127, 128]. These changes in the ECM environment are also associated with 

apoptosis, hypertrophy and impairment of the LV function of the heart [129]. In humans, 

histological analysis of hearts obtained from patients with HFpEF reveals increased collagen 

content, collagen cross-linking, and LOX expression. These changes are linked to increased 

LV stiffness and decreased diastolic function [55]. The amount of insoluble collagen is more 

significant than the amount of soluble collagen, implying that collagen quality and quantity 

may have an impact on cardiac function [130].

In addition, alterations in myocardial ECM can lead to stiffening of the ventricles 

and negatively affect both contraction and relaxation of the heart, contributing to the 

development of heart failure. Increased cardiac hyaluronan in the heart of hyaluronidase 

2 (HYAL2)-deficient animals leads to endothelial-to-mesenchymal transition, mesenchymal 

cell proliferation, and fibrosis, which are accompanied by considerably increased numbers 

of vimentin-positive cells [131]. In HYAL2 knockout mice, echocardiography data 

reveal increased isovolumic relaxation time, indicating diastolic dysfunction. Similarly, 

interruption of normal hyaluronan catabolism causes cardiac abnormalities in patients with a 

HYAL2 mutation [132]. Pharmacologic and genetic studies were used to address the impact 

of fibronectin on heart function. In an experimental mouse model of ischemia/reperfusion 

injury, fibronectin inhibition lowers collagen deposition and attenuates adverse cardiac 

remodelling and infiltration of the myocardium with immune cells [133]. Konstandin et al. 
used a genetic approach to investigate the role of fibronectin in the pressure-overloaded 

heart, where fibronectin removal reduces cardiomyocyte hypertrophy, delays the onset 

of heart failure, and increases survival [134]. Taken together, these findings imply that 

therapeutic strategies that aim at lowering ECM deposition can be used to protect against 

cardiac dysfunction, especially in individuals with HFpEF.

Adipose tissue

Adipose tissue undergoes major remodelling during weight gain due to adipocyte 

hypertrophy and/or hyperplasia. The ability of an adipocyte to expand is dependent on the 

elasticity of the ECM. Adverse changes in the ECM environment impair ECM flexibility, 

adipocyte expansion, and tissue plasticity and function. Various models of overnutrition have 

shown increased ECM deposition in adipose tissue. Increases in isoforms of collagens (e.g. 

Col I, IV, V, VI, VII, VIII, IX, and XXIV), noncollagen proteins (e.g. secreted protein acidic 

and rich in cysteine (SPARC), fibronectin, thrombospondin-1, hyaluronan, elastin) and their 

modifying enzymes (e.g. MMPs, TIMPs, and lysyl oxidase) have been reported [28, 135, 

136]. The decreased capacity for adipocyte expansion and lipid storage due to fibrosis can 

also impair adipogenesis. This results in accumulation of lipid metabolites, enlarged lipid 

droplets, and lipotoxicity in tissues that are not well for fat storage [137–139]. These effects 

are mediated by an integrated response from multiple cell populations including adipocytes, 

endothelial cells, preadipocytes, adipose stem and precursor cells, fibroblasts, macrophages, 

pericytes, B cells, T cells, and other immune cells. The cell type-specific contributions to 

Musale et al. Page 10

Life Metab. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulation of adipose tissue function have been extensively reviewed recently by Sun et al. 
[41].

In response to insulin, glucose transporter type 4 (GLUT4) is translocated to the adipocyte 

cell membrane so that glucose may be consumed for energy storage. It has recently been 

suggested that abnormal ECM deposition and activation of ECM membrane receptors are 

important in contributing to adipose tissue insulin resistance [8]. It is worth noting that many 

extracellular pathways and signals regulate insulin sensitivity and they do so in a tissue-

specific manner. For example, SPARC [140], thrombospondin-1 [141], fibronectin [142], 

elastin [143], MMP14 [144], and endotrophin [145] related pathways have been implicated 

in the regulation of insulin action. Herein, we narrow the focus to the roles of collagen-

integrin-ILK pathway and hyalurona-CD44 pathway as examples of processes involved in 

obesity-associated insulin resistance in adipose tissue. Adipocyte-specific deletion of ILK 

decreases fat mass and improves glucose tolerance in high fat diet-fed obese mice [8]. 

These mice also display an increase in insulin-stimulated glucose uptake in brown adipose 

tissue, indicative of activation and increased thermogenic activity of brown adipose tissue. 

The anti-lipolytic action of insulin is also improved in the adipocyte ILK deficient obese 

mice. These beneficial effects are associated with enhanced vascularisation and reduced 

expression of CD36 in white adipose tissue and increased AKT phosphorylation and 

p38/JNK dephosphorylation in brown adipose tissue. The greater sensitivity to insulin of 

ILK deficient adipocytes suggests that the presence of this highly conserved intracellular 

protein is necessary for the development of insulin resistance.

Moreover, CD44 is strongly associated with adipose tissue insulin resistance. Kodama et al. 
showed that obese mice had higher adipose tissue CD44 levels compared to lean mice [43]. 

Global deletion of CD44 in mice attenuates the development of obesity-induced adipose 

insulin resistance and glucose intolerance [43]. In addition, antibody neutralization of 

CD44 reduces obesity-induced adipose tissue inflammation, as demonstrated by decreased 

expression of immune cell markers (CD68, F4/80, CD3e, and CD19), proinflammatory 

cytokines (TNF-α, IL-1β, IL-6, IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) 

[44]. Increased expression of CD44 in adipose tissue is shown to be associated with 

inflammation and insulin resistance in patients with Type 2 diabetes, which is consistent 

with in vivo evidence [43].

Liver

Liver function is compromised in association with hepatic steatosis in patients with 

obesity. This pathophysiological change promotes hepatic insulin resistance, which results 

in a diminished capacity to suppress glucose production from liver after a meal. In the 

liver, HSCs, portal fibroblasts, and myofibroblasts cells are the major sources of ECM 

production [146]. These cells have been suggested to have pro-fibrogenic properties in the 

presence of overnutrition [147, 148]. In obese mice, increased expression of ECM proteins 

including collagen I, α-SMA, and vimentin is associated with hepatic insulin resistance 

[149, 150]. Furthermore, livers of patients with diabetes have worse steatosis and higher 

perisinusoidal collagen IV, laminin, and α-SMA levels than those in healthy controls [151]. 

The mechanism by which hepatic ECM deposition leads to insulin resistance is at least 
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partially attributed to integrin signalling. Williams et al. found that hepatocytes isolated from 

high fat diet-fed mice had higher expression of α1β1 collagen-binding integrin than chow 

diet-fed controls [5]. Paradoxically, integrin α1β1 null mice have higher fasting insulin 

levels and increased endogenous glucose production during a hyperinsulinemic-euglycemic 

clamp, indicative of hepatic insulin resistance [5]. These findings suggest that integrin 

α1β1 protects against diet-induced hepatic insulin resistance, which opposes to the role 

of integrin α2β1 in regulating muscle insulin resistance [2]. Despite being major collagen 

binding receptors, integrins α1β1 and α2β1 exert distinct cellular functions, where integrin 

α1β1 is anti-fibrotic and proangiogenic and integrin α2β1 is profibrotic and anti-angiogenic 

[152–155]. However, the exact mechanisms by which the ECM signals through integrin 

receptors to regulate insulin action remain to be investigated. Moreover, hepatocyte-specific 

ILK deficiency in mice ameliorates high fat diet induced hepatic insulin resistance [42]. The 

insulin sensitising effect of ILK deletion is also associated with improved hepatic steatosis 

in obesity [6, 42]. Overall, these studies highlight the significance of the ECM-integrin-ILK 

signalling in regulating hepatic insulin action and steatosis in obesity.

Pancreas

The ECM composition is critical to the survival, proliferation, and function of the 

pancreatic islets. As a major determinant of microcirculatory architecture, the ECM is 

also critical for nutrient sensing and insulin secretion by regulating islet perfusion. In 

both humans and rats, the pancreatic ECM is organised as an interstitial matrix and 

the basement membrane [156]. The former is composed of fibrillar type I and type III 

collagens, type VI collagen, and fibronectin, and the latter are made up of non-fibrillar 

collagens, laminins, heparan sulphate proteoglycans, and hyaluronan. Components of the 

basement membrane, classified as peri-islet and intra-islet ECM promote adhesion, provide 

structural support and activate intracellular signalling pathways [157, 158]. Excessive 

deposition of the ECM in pancreas, or pancreatic fibrosis, can lead to severe pathological 

consequences impairing its endocrine as well as exocrine functions [159]. Like the liver, 

in response to injury or inflammation, quiescent pancreatic stellate cells (PSCs) undergo 

transition into activated myofibroblast phenotype, which promotes excessive production of 

ECM components, resulting in increased tissue stiffness, loss of pancreatic architecture, 

deformation of ducts, and changes in islet function [160]. Despite the vast amount of 

evidence implicating pancreatic fibrosis in chronic pancreatitis and pancreatic cancer [159, 

161], pathophysiological remodelling of the islet ECM and its functional impact in response 

to overnutrition and during metabolic diseases are less studied. Excess ECM accumulation 

around islet blood vessels is a pathological feature of diabetic pancreatic islets [162]. 

In db/db mice, increased deposition of ECM components is associated with structural 

changes in the islet exocrine interface or peri-islet area, indicative of loss of functional 

communication between the cells [163]. These changes have been associated with loss of 

adherent junctions and desmosomes, which promote fibrosis and islet amyloid deposition. 

It is proposed that increased oxidative stress promotes MMP expression, resulting in 

impaired cell communication and islet dysfunction such as β cell loss and decreased insulin 

secretion [164]. Pericytes at the endocrine-exocrine interface of the pancreas have been 

demonstrated to acquire myofibroblast-like phenotype which promotes fibrosis by increasing 

ECM deposition around blood vessels [163, 165]. Immunohistochemical analysis from Type 
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1 diabetic mice revealed significant accumulation of hyaluronan in both peri-islet and intra-

islet ECM [166]. Interestingly, hyaluronan deposition is observed at sites of inflammation, 

which are identified by clusters of CD45+ leukocytes [166]. Yet it is unclear whether 

pancreatic fibrosis initiates local inflammation or inflammation leads to fibrosis and loss of 

islet function [167].

Use of antifibrotics in metabolic diseases

Accumulation of ECM components is increasingly recognised as an important pathogenic 

process that contributes to insulin resistance and metabolic dysregulation in insulin-sensitive 

tissues. Therefore, therapies that target pathological ECM remodelling or fibrosis could 

become an attractive strategy for improving insulin action and its associated cardiometabolic 

complications of obesity. Pre-clinical and clinical studies that examined the effects of 

antifibrotics in metabolic diseases or related conditions are few (Table 1). Pirfenidone and 

nintedanib are the two antifibrotic therapies that have been approved for the treatment of 

idiopathic pulmonary fibrosis. Although these drugs have not been tested in obese state, 

it is shown that pirfenidone has beneficial effects on improving liver fibrosis in rodent 

models [168]. Pirfenidone has also been shown to abrogate cardiac fibrosis and stiffness and 

improve LV function in pre-clinical studies [169–172]. Pirfenidone exerts its anti-fibrotic 

action through inhibiting collagen expression, α-SMA expression, and TGF-β mediated 

transdifferentiation of fibroblast to myofibroblast cells. In clinic, pirfenidone has been 

tested in treating patients with chronic hepatitis C and advanced liver fibrosis, both of 

which exhibit favourable clinical outcomes [168, 173]. Moreover, in a Phase 2 clinical trial 

(PIROUETTE) among patients with HFpEF and myocardial fibrosis, pirfenidone reduces 

myocardial extracellular volume despite no significant changes in LV diastolic function 

[174]. The clinical effectiveness and safety of pirfenidone in HFpEF require further trials.

In pre-clinical studies, nintedanib is shown to reduce muscle fibrosis and stiffness in a 

porcine model of volumetric muscle loss-induced fibrosis [175]. Other anti-fibrotic agents 

have also emerged from pre-clinical studies. Flurofenidone, a recently identified water-

soluble pyridine, attenuates liver fibrosis by inhibiting HSC activation via the TGF-β/SMAD 

and MAPK signalling pathways [176]. Supplementation of isoliquiritigenin, a flavonoid 

from Glycyrrhiza uralensis, diminishes adipose tissue fibrosis through suppressing the innate 

immune responses in high fat diet-fed obese mice [88]. PEGPH20 not only reduces muscle 

hyaluronan content and improves high fat diet-induced muscle insulin resistance in mice [3], 

but also decreases hyaluronan deposition in the pancreas and improves survival in animals 

with advanced and metastatic pancreatic cancer [177]. Despite the beneficial effects of these 

antifibrotic agents in metabolism, their safety and efficacy in clinical use have not been 

tested and warrant further investigations. Given our current understanding of the mechanistic 

links among ECM remodelling, cell surface receptors, and insulin action, therapies that 

target the ECM membrane receptor signalling such as specific integrin and CD44 signalling 

may provide novel insights into new therapeutic strategies.

In addition to developing new anti-fibrotic drugs and repurposing existing therapies for 

combating fibrosis for the benefits of metabolic diseases, preventive strategies are important 

to be considered. Amongst the many benefits of healthy diet and regular physical activity 
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are prevention of hepatic fibrosis and beneficial effects on the cardiovascular system, 

adipose tissue, and skeletal muscle via organ-crosstalk [178]. Cold exposure induces a 

fibrogenic-to-adipogenic phenotypic shift in stromal cells, therefore preventing adipose 

fibrosis from ageing [179]. Moreover, anti-inflammatory supplements/diets have been shown 

to decrease cardiac fibrosis and protect patients from cardiometabolic risks [180]. In the 

context of non-alcoholic fatty liver disease (NAFLD), a multifaceted approach that combines 

pharmacological interventions and lifestyle modifications may offer the greatest prospects 

for effectively managing NAFLD-associated fibrosis and inflammation [181].

Concluding remarks

Maladaptive ECM remodelling, which ultimately leads to the clinical condition of fibrosis, 

contributes to obesity-associated insulin resistance and metabolic disorders. It does so 

at least partially through interacting with cell membrane receptors such as integrins and 

CD44. Pre-clinical evidence derived from pharmacological and genetic studies has enhanced 

our understanding of the underlying mechanisms by which collagen-integrin-ILK and 

hyaluronan-CD44 signalling pathways regulate insulin action and tissue function in skeletal 

muscle, liver, and adipose tissue. It is possible that these pathways could also play a key role 

in modulating cardiac insulin signalling and associated cardiac function, which necessitates 

further in vivo studies. Clinical use of antifibrotic therapies in metabolic diseases may 

prove to be promising, yet currently available antifibrotics are limited, which narrows 

their repurposing and general application. Therefore, developing novel approaches against 

maladaptive ECM remodelling and associated membrane receptor signalling is timely and 

will benefit from current and evolving knowledge from pre-clinical and clinical evidence. 

Complex pathways downstream of integrin receptors such as ILK and other signalling 

pathways that are parallel to ILK are exciting areas of future researches that may be of 

therapeutic significance.
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Box 1

Integrin linked kinase and CD44.

Integrin linked kinase (ILK)

ILK is a highly conserved and widely expressed protein that acts as a scaffold for many 

proteins of the cell adhesome and primary modulator of integrin signalling [182]. It 

interacts with the cytoplasmic domain of integrins β1, β2, and β3 as well as a variety 

of cytoskeleton-associated proteins and is a component of the ILK-PINCH-Parvin (IPP) 

complex [183, 184]. It has been suggested that ILK may regulate intracellular signalling 

by attracting a kinase or group of kinases to a multiprotein complex, which is consistent 

with its role as a scaffolding protein. Activation of the pseudokinase domain of ILK 

promotes the recruitment of adaptor proteins and/or signalling molecules, including 

insulin-related proteins such as PKB/AKT, PDK1, and GSK-3, which are involved in 

regulating insulin action [185, 186].

CD44

CD44 is a non-kinase transmembrane glycoprotein made up of extracellular domains, 

a membrane-proximal region, a transmembrane domain, and a cytoplasmic tail [187]. 

It is a single-chain molecule that is encoded by a single gene on chromosome 11 in 

humans and chromosome 2 in mice [188]. CD44 is expressed by most cells and interacts 

with a variety of ligands, including hyaluronan, osteopontin and chondroitin [189, 190]. 

Hyaluronan, the most specific ligand for CD44, activates the CD44 signalling pathway 

by inducing conformational changes favouring adaptor protein recruitment to the CD44 

cytoplasmic tail [191]. Activation of the CD44 pathway has been linked to a number of 

biological processes, including development, cancer metastasis, and cell adhesion [191, 

192]. It also plays a role in the production of proinflammatory cytokines as well as 

macrophage and neutrophil migration [193]. The CD44 gene has been linked to the 

molecular pathogenesis of Type 2 diabetes in humans [43] and its role in metabolism has 

been recently reviewed [194].
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Figure 1. Pathological ECM remodelling in obesity.
Obesity induces a maladaptive ECM remodelling by increasing deposition of its components 

and activating downstream ECM receptor signalling (e.g. integrin and CD44). ILK, a 

primary modulator of integrin signalling, interacts with the cytoplasmic domain of integrins 

and forms an ILK-PINCH-Parvin (IPP) protein complex, which recruits adaptor proteins 

such as Nck2 to interact with tyrosine kinase receptors including the insulin receptor. 

Under obese condition, overactivation of CD44 signalling has been shown to suppress AKT 

phosphorylation. In response to excessive ECM deposition in obese state, integrin and CD44 

signalling cascades have been linked to impaired GLUT4 translocation and glucose transport 

under insulin stimulation in fat and muscle cells.
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Figure 2. Potential mechanisms of pathological ECM remodelling in obesity.
The molecular and pathophysiological mechanisms that underly maladaptive ECM 

remodelling in obesity are depicted. Obesity-related inflammation, oxidative stress, RAAS, 

and hypoxia have been shown to stimulate and activate ECM-producing fibroblast cells, 

promoting matrix synthesis. Obesity induces inflammation with elevated levels of TNF-α, 

IL-1, and IL-6. Oxidative stress in obesity is manifested by increases in the ROS levels. 

Activation of RAAS also leads to increases in ROS via inducing the expression of NADPH 

oxidase. The expression of vascular cell adhesive molecule (VCAM) is upregulated by ROS 

and HIF1, which is induced in response to hypoxia. These signals could increase TGF-β 
expression and initiate TGF-β mediated pro-fibrotic response in various cells including 

macrophages and endothelial cells. TGF-β has been identified as an important regulator of 

maladaptive ECM remodelling, promoting excess deposition of ECM components possibly 

through activation of signalling molecules like SMAD and Rho-associated protein kinase 

(ROCK).
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Figure 3. The maladaptive ECM remodelling impairs metabolic tissue function in obesity.
ECM remodelling in response to overnutrition contributes to tissue dysfunction in obesity. It 

affects a wide range of tissues including skeletal muscle, adipose tissue, heart, liver, and the 

pancreas, all of which are central for controlling fuel metabolism.
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Table 1

Pre-clinical and clinical use of antifibrotic agents in metabolic disease

Pre-clinical studies

Organ Antifibrotic 
agent

Experimental model Phenotype Reference

Liver Pirfenidone • Animal: male mice (concanavalin A-induced 
liver fibrosis)
• Dose: 125 mg/kg/day (2 weeks)
• Administration: intraperitoneal

• Reduced expression of type II and IV 
collagens and α-SMA.
• Decreased serum levels of TGF-β, 
TNF-α, and TIMP1.

[195]

• Animal: male mice (fibrosis induced by 
(CCl4))
• Dose: 100/300/600 mg/kg (4 or 14 weeks)
• Administration: in diet

• Reduced collagen deposition at 300 
and 600 mg/kg pirfenidone.
• No effect on inflammation.

[196]

• Animal: male cirrhotic Wistar rats (fibrosis 
induced by CCl4 and bile-duct ligation)
• Dose: 500 mg/kg per day (3 weeks)
• Administration: gastric gavage

• Decreased gene expression of 
collagens I, III, and IV, TGF-β, Smad-7, 
TIMP-1, and PAI-1.
• Reduced the activation of HSCs.

[197]

Fluorofenidone • Animal: male albino Wistar rats (pig serum-
induced liver fibrosis)
• Dose: 240 mg/kg/day (4 weeks)
• Administration: intragastric route

• Decreased collagen I and III and α-
SMA at the mRNA and protein levels.

[176]

Heart Pirfenidone • Animal: male Wistar rats (streptozotocin-
induced diabetes)
• Dose: 200 mg/kg/day (4 weeks)
• Administration: drinking water (0.2–2 g/L)

• Decreased perivascular and interstitial 
collagen and attenuated diastolic 
stiffness.

[169]

• Animal: male Sprague-Dawley rats 
(myocardial infracted model)
• Dose: 1.2% pirfenidone (4 weeks)
• Administration: in diet

• Decreased total and non-scar fibrosis.
• Improved LV function.

[171]

• Animal: male Wistar hypertensive rats 
(deoxycorticosterone acetate-SALT)
• Dose: 250–300 mg/kg/bw (2 weeks)
• Administration: in diet

• Normalised collagen deposition and 
diastolic stiffness.

[170]

• Animal: male C57BL/6J mice (pressure-
overload induced heart failure)
• Dose: 400 mg/kg/day (4 weeks)
• Administration: gastric gavage

• Inhibited TGF-β mediated collagen I 
expression in fibroblast cells.
• Prevented TGF-β mediated changes 
in claudin 5 expression in cardiac 
fibroblast and endothelial cells
• Improved LV systolic function

[172]

Adipose 
tissue

Isoliquiritigenin • Animal: C57BL/6 mice (high fat diet induced 
adipose tissue fibrosis)
• Dose: 0.5% w/w (20 weeks)
• Administration: in diet

• Reduced fibrotic area, TNF-α, COL1, 
and TGF-β1 expression.

[88]

Skeletal 
muscle

Nintedanib • Animal: porcine model (Volumetric muscle 
loss-induced fibrosis)
• Dose: 300 mg/day (30 days)
• Administration: gastric gavage

• Reduced fibrosis and muscle stiffness. [175]

PEGPH20 • Animal: male C57BL/6J (high fat diet 
induced skeletal muscle insulin resistance)
• Dose: 0.1 and 1 mg/kg (24 days)
• Administration: tail vein

• Reduced hyaluronan in muscle ECM.
• Increased insulin signalling and 
muscle vascularization.
• Suppressed adipocyte lipolysis and 
hepatic glucose production.

[3]

Pancreas PEGPH20 • Animal: genetically engineered pancreatic 
cancer mouse model
• Dose: once weekly (dose not specified) (3 
weeks)
• Administration: intravenous

• Decreased hyaluronan deposition and 
reduced interstitial fluid pressure (IFP).
• Improveed survival in animals with 
advanced and metastatic cancer.

[177]

Clinical trials
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Pre-clinical studies

Organ Antifibrotic 
agent

Experimental model Phenotype Reference

Organ Antifibrotic 
agents

Diseases Study outcomes Reference

Liver Pirfenidone 
(NCT02161952)

Chronic hepatitis C • Reduced progression of inflammation, 
fibrosis, and accumulation of fat in 
hepatocytes.
• Enhanced hepatic expression of 
the anti-fibrogenic receptor CB2 and 
decreased serum levels of TGF-β1 and 
IL-6.

[168]

Pirfenidone 
(PROMETEO; 
NCT04099407)

Advanced liver fibrosis • Reduction in fibrosis score.
• Decreased levels of alanine 
transaminase (ALT) and/or aspartate 
aminotransferase (AST), albumin, and 
serum concentrations of TGF-β, IL-1, 
and IL-6.

[173]

Heart Pirfenidone 
(PIROUETTE; 
NCT02932566)

Heart failure with preserved ejection fraction 
(HFpEF)

• Decreased myocardial extracellular 
volume.
• No change in LV diastolic function.

[174]
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