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Abstract

Vector-borne diseases cause significant financial and human loss, with billions of dollars spent 

on control. Arthropod vectors experience a complex suite of environmental factors that affect 

fitness, population growth and species interactions across multiple spatial and temporal scales. 

Temperature and water availability are two of the most important abiotic variables influencing 

their distributions and abundances. While extensive research on temperature exists, the influence 

of humidity on vector and pathogen parameters affecting disease dynamics are less understood. 

Humidity is often underemphasized, and when considered, is often treated as independent 

of temperature even though desiccation likely contributes to declines in trait performance at 

warmer temperatures. This Perspectives explores how humidity shapes the thermal performance 

of mosquito-borne pathogen transmission. We summarize what is known about its effects and 

propose a conceptual model for how temperature and humidity interact to shape the range of 

temperatures across which mosquitoes persist and achieve high transmission potential. We discuss 

how failing to account for these interactions hinders efforts to forecast transmission dynamics 

and respond to epidemics of mosquito-borne infections. We outline future research areas that will 

ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical 

and empirical framework to improve spatial and temporal prediction of vector-borne pathogen 

transmission.
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INTRODUCTION

Vector-borne parasites are common, important biological enemies of humans, animals and 

plants, transmitted by one living organism to another. Despite the recent gains in reducing 

the overall global burden for parasites like malaria (Ashepet et al., 2021; Bhatt et al., 2015; 

Gething et al., 2010), vector-borne diseases still account for 17% of all infectious diseases 

and cause 700,000 deaths in humans annually (WHO, 2020). Livestock and crop systems 

are also plagued by vector-borne diseases, which place serious constraints on agricultural 

production globally (Döring, 2017; Garros et al., 2017), and vector-borne diseases can be 

devastating in wildlife populations, particularly when introduced to new areas. Collectively, 

tens of billions of dollars are spent every year on control, medical interventions and 

mitigating loss of productivity (Aguirre, 2017; George et al., 2015; Stuchin et al., 2016; 

Warner, 1968; Weaver et al., 2018).

The dependence of many pathogens on ectothermic arthropod vectors for transmission 

means that vector-borne diseases are highly sensitive to variation in the environment. 

Arthropod vectors experience a complex suite of environmental factors, both abiotic (e.g., 

temperature, rainfall, humidity, salinity) and biotic (e.g., biological enemies, inter- and 

intraspecific interactions and variation in habitat quality). These factors vary in their relative 

effects on organismal fitness, can synergize (Huxley et al., 2021, 2022; Kleynhans & 

Terblanche, 2011; Liu & Gaines, 2022), and exert their effects at different spatial scales 

(Cohen et al., 2016) with important consequences for the abundance and distribution of 

arthropod vectors (Evans et al., 2019; Ryan et al., 2015), vector population dynamics 

(Murdock et al., 2017) and pathogen transmission (Huber et al., 2018; Mordecai et al., 2013; 

Mordecai et al., 2017; Murdock et al., 2016; Murdock, Blanford, Hughes, et al., 2014a; 

Ngonghala et al., 2021; Samuel et al., 2011; Shocket, Vergara, et al., 2018b; Tesla et al., 

2018; Wimberly et al., 2020).

In vector ecology, there has been a strong emphasis on studying the effects of temperature 

on mosquito-borne pathogen transmission (reviewed in Mordecai et al., 2019). In addition 

to temperature, water availability is another critical abiotic variable influencing ectotherm 

biology, and both play important roles determining the distribution and abundance of 

ectotherms (Chown & Nicolson, 2004; Deutsch et al., 2008; González-Tokman et al., 2020; 

Kearney & Porter, 2009; Lenhart et al., 2015; Roura-Pascual et al., 2011; Rozen-Rechels 

et al., 2019; Steiner et al., 2008; van Klink et al., 2020) and species richness (Beck et 

al., 2017; Calatayud et al., 2016; Cardoso et al., 2020; Hamann et al., 2021; Jamieson 

et al., 2012; Pilotto et al., 2020). Body temperature has important effects on the rates of 

enzymatic processes as well as the structural integrity of cellular membranes and proteins 

(Angilletta, 2009), while all cellular processes rely on water as a solvent for biochemical 

reactions and for trafficking nutrients into, within, and out of cells (Chaplin, 2006; Chown & 
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Nicolson, 2004). Temperature also affects the amount of desiccation stress an organism 

experiences due to the fundamental relationship between ambient temperature and the 

amount of water the surrounding air can hold (Lawrence, 2005; Romps, 2021). Other fields 

at the climate-health interface have explored the effects of wet heat vs dry heat on the energy 

budgets of endotherms in the context of human heat stress and climate change (Buzan & 

Huber, 2020). We anticipate that variation in relative humidity is also an important force 

shaping the thermal performance of ectotherms, including mosquitoes. Whereas metabolic 

theory has been well developed and widely applied in ecology to understand temperature 

effects (Brown et al., 2004; Corkrey et al., 2016; Dell et al., 2011) we currently lack a 

similar framework for understanding how humidity and temperature interact to influence 

mosquitoes and their pathogens.

In this Perspectives, we explore the effects of humidity on the thermal performance of 

mosquito-borne pathogen transmission. We begin by summarizing what is currently known 

about how temperature and humidity affects mosquito fitness, population dynamics and 

pathogen transmission, whilst highlighting current knowledge gaps. We present a conceptual 

framework for understanding the interaction between temperature and humidity and how 

it shapes the range of temperatures across which mosquitoes persist and achieve high 

transmission potential. We then discuss how failing to account for these interactions across 

climate variables hinders efforts to forecast transmission dynamics and to respond to 

epidemics of mosquito-borne infections. We end by outlining future research areas that 

will ground the effects of humidity on thermal performance of pathogen transmission in a 

theoretical and empirical basis to improve spatial and temporal prediction of vector-borne 

pathogen transmission. Such a framework will inform multiple fields (thermal, disease 

and landscape ecology and epidemiology) and a diversity of vector-borne disease systems 

(human, wildlife, domestic animals and plants).

THE EFFECTS OF TEMPERATURE ON MOSQUITO POPULATION 

DYNAMICS AND PATHOGEN TRANSMISSION

Numerous studies have demonstrated that mosquito-borne pathogen transmission is both 

seasonally and geographically limited at various spatial scales by variation in ambient 

temperature (e.g., malaria (Ryan et al., 2015; Siraj et al., 2014; Villena et al., 2022), 

Zika (Ryan, Carlson, et al., 2020a; Siraj et al., 2018; Tesla et al., 2018), chikungunya 

(Johansson et al., 2014) and dengue (Mordecai et al., 2017)). The effects of temperature 

on ectotherm performance, including mosquito vectors, are typically non-linear, with 

performance steadily increasing from zero at a minimum critical temperature (CTmin) up 

to an optimum temperature (Topt), followed by a steep decline towards the critical thermal 

maximum (CTmax) (Figure 1). The CTmin and CTmax represent the operational limits for 

trait performance because temperatures that exceed their range are not permissive for 

ectotherm development, survival or reproduction (Brown et al., 2004; Corkrey et al., 2016; 

Deutsch et al., 2008; Hoffmann et al., 2013; Sinclair et al., 2016). These thermal limits in 

ectotherm performance are consistent with the metabolic theory of ecology, which posits 

that organismal physiological and enzymatic rates will increase predictably with temperature 

because of increased efficiency of biochemical reactions (Huey & Kingsolver, 2019) up 
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to Topt. The steep decline in performance above the Topt is attributed to the declining 

efficiency of metabolic processes due to decreases in protein stability as temperatures 

increase, eventually resulting in organismal death at the Tmax. Collectively, this information 

gives us a Thermal Performance Curve (TPC), which can be used to infer ecological and 

evolutionary outcomes.

Mosquitoes, like other ectotherms, are highly susceptible to changes in ambient temperature, 

which demonstrably affects their growth rate (Alto & Juliano, 2001; Delatte et al., 2009; 

Evans, Newberry, & Murdock, 2018a; Huxley et al., 2022; Monteiro et al., 2007; Paaijmans 

et al., 2013; Tun-Lin et al., 2000), reproduction (Carrington et al., 2013; Miazgowicz et 

al., 2020), metabolic rate (Vorhees et al., 2013), lifespan (e.g., Alto & Juliano, 2001; 

Christofferson & Mores, 2016; Gunay et al., 2010; Miazgowicz et al., 2020), biting 

rate (Afrane et al., 2005; Lardeux et al., 2008; Miazgowicz et al., 2020; Shapiro et al., 

2017), immunity (Adelman et al., 2013; Ferreira et al., 2020; Murdock et al., 2012, 2013; 

Murdock, Blanford, Luckhart, & Thomas, 2014b; Suwanchaichinda & Paskewitz, 1998), 

and ability to acquire, carry and transmit pathogens (Johnson et al., 2015; Lambrechts 

et al., 2011; Mordecai et al., 2013, 2017; Murdock et al., 2016; Murdock, Blanford, 

Luckhart, & Thomas, 2014b; Paaijmans et al., 2012; Shocket et al., 2020; Shocket, Ryan, & 

Mordecai, 2018a; Tesla et al., 2018) in a non-linear, unimodal fashion. These temperature-

trait relationships can vary in overall shape (e.g., symmetric or asymmetric non-linear 

relationships) due to differences in the temperatures that optimize and constrain various 

traits, which in combination will determine the predicted thermal minimum, maximum and 

optimum for mosquito fitness, intrinsic growth rates of mosquito populations, and pathogen 

transmission (Figure 1).

Process-based models, which traditionally have relied upon temperature relationships 

grounded in metabolic theory, have enhanced our ability to predict the effects of 

environmental drivers on spatial and temporal dynamics of vector-borne disease. Several 

key biological insights have resulted from this general approach. First, temperate areas of 

the world that currently experience relatively cool temperatures are expected to increase 

in thermal suitability for many mosquito-borne diseases with future climate warming 

(Ryan et al., 2015; Ryan, Carlson, et al., 2020a; Siraj et al., 2014; Tesla et al., 2018), 

and, in temperate regions, mosquito-borne pathogens can invade or spread during the 

summer in seasonally varying environments (Huber et al., 2018; Ngonghala et al., 2021). 

Secondly, areas that are currently permissive (near the Topt) or warmer than the Topt 

for transmission are expected to experience a decline in thermal suitability with future 

warming (Murdock et al., 2016; Ryan et al., 2015; Ryan, Lippi, & Zermoglio, 2020b). 

Third, because mosquito and pathogen species can have different qualitative and quantitative 

relationships with temperature (resulting in different CTmin, CTmax and Topt) (Johnson et 

al., 2015; Miazgowicz et al., 2020; Mordecai et al., 2013, 2017, 2019; Shapiro et al., 2017; 

Shocket et al., 2020; Shocket, Ryan, & Mordecai, 2018a; Tesla et al., 2018; Villena et 

al., 2022), shifts in thermal suitability with climate and land-use change could also alter 

the prevalence and magnitude of mosquito-borne diseases in a given area (Tesla et al., 

2018), such as sub-Saharan Africa (Mordecai et al., 2020). Fourth, small variations in 

ambient temperature at fine-spatial scales can contribute to high heterogeneity in predicted 

suitability for pathogen transmission across various environments (Afrane et al., 2005; Cator 
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et al., 2013; Evans et al., 2019; Murdock et al., 2017; Okech et al., 2004; Paaijmans 

& Thomas, 2011; Pincebourde et al., 2016; Thomas et al., 2018; Verhulst et al., 2020; 

Wimberly et al., 2020), which can have important ramifications for predicting mosquito-

borne pathogen transmission and targeting interventions (Thomas et al., 2018; Wimberly et 

al., 2020). Finally, disease intervention efforts can also be directly or indirectly affected by 

variation in ambient temperature. Various insecticides (Akinwande et al., 2021; Glunt et al., 

2014), entomopathogenic fungi (Darbro et al., 2011; Kikankie et al., 2010) and Wolbachia 
transinfections (Foo et al., 2019; Gu et al., 2022; Murdock, Blanford, Hughes, et al., 2014a; 

Ross et al., 2017, 2019, 2020; Ulrich et al., 2016) are thermally sensitive, indicating that the 

efficacy and cost of these interventions could vary seasonally, across geographic regions and 

with future climate and land-use change (Parham & Hughes, 2015).

THE EFFECTS OF HUMIDITY ON MOSQUITO FITNESS, POPULATION 

DYNAMICS AND PATHOGEN TRANSMISSION

Spatial and temporal variation in atmospheric moisture has important implications for 

an organism’s ability to hydroregulate (Box 1). Hydroregulation is defined as the suite 

of physiological and behavioural responses organisms utilize to regulate water balance 

and tolerate dehydrating environmental conditions (Benoit, 2010; Chown et al., 2011; 

Chown & Nicolson, 2004; Edney, 2012; Lucio et al., 2013). The relationship between 

organismal fitness and optimal hydroregulation is complex, with significant costs to fitness 

(e.g., decreased survival and reproduction) occurring when organisms become dehydrated 

(Anderson & Andrade, 2017; Mitchell & Bergmann, 2016) or overhydrated (Chown & 

Nicolson, 2004). Insects have a suite of adaptations to conserve water, like physiological 

changes in skin or cuticular permeability (Rajpurohit et al., 2008; Wu & Wright, 2015), 

differential regulation of urine and faeces production (Durant et al., 2021; Durant & Donini, 

2019; Lajevardi et al., 2021; Weihrauch et al., 2012), and behavioural changes in activity 

(Kühnholz & Seeley, 1997; Ostwald et al., 2016). Insects also can mitigate water loss 

by regulating water intake via changes in water utilization, food sources and selection 

of specific habitats (Benoit, 2010; Bezerra Da Silva et al., 2019; Hagan et al., 2018)). 

Finally, insects can also produce water via metabolic processes (Chown et al., 2011; Jindra 

& Sehnal, 1990). Maintaining water balance is a particular challenge for blood-feeding 

(haematophagic) vectors (Chappuis et al., 2013; Kleynhans & Terblanche, 2011), like 

mosquitoes (Edney, 2012), where the act of taking a blood meal results in overhydration 

that requires specialized adaptations for the excretion of water, which, in turn, enhances 

susceptibility to desiccation overall (Benoit & Denlinger, 2010).

Instead of measuring humidity directly (Box 1), many studies use related variables, 

like seasonal precipitation or land cover to predict mosquito population dynamics or 

pathogen transmission (Abdelrazec & Gumel, 2017; Chandy et al., 2013; Chaves & Kitron, 

2011; Johansson et al., 2009; Nosrat et al., 2021; Sang et al., 2017; Soti et al., 2012). 

Mosquito-borne diseases generally peak during, or following, periods of highest rainfall 

(Chowdhury et al., 2018; Karim et al., 2012; Magombedze et al., 2018; McLaughlin et al., 

2019). Rainfall can matter as a standalone variable, since standing water is essential for 

mosquitoes’ ontogenetic development. However, the effect of precipitation on mosquito 
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population dynamics and disease transmission can operate through other factors that 

covary with precipitation, such as increased humidity and shifts in temperature that impact 

mosquito development rates, adult survival and reproduction, parasite development rates and 

mosquito-human contact rates. The relationship between mosquitoes and precipitation is 

even more difficult to discern for mosquito species that develop in artificial, human watered 

containers, where complex interactions can occur between amount of rainfall and access 

to piped water (Brown et al., 2014; Hayden et al., 2010; Lippi et al., 2018; Padmanabha 

et al., 2010; Schmidt et al., 2011; Stewart Ibarra et al., 2013). Similarly, measures of land 

cover such as the normalized difference vegetation index (NDVI) have been used to account 

for areas too dry for widespread mosquito habitat (Ryan et al., 2015). Ultimately, the use 

of these proxy measures obscures our understanding of how relative humidity and other 

environmental variables affect transmission, which, in turn, constrains our ability to predict 

how mosquito-borne pathogens will respond to future climate and land-use change.

Several studies have demonstrated statistical associations between humidity and mosquito 

abundance, as well as vector-borne disease incidence and prevalence (Althouse et al., 2015; 

Asigau & Parker, 2018; Azil et al., 2010; Buckner et al., 2011; Chen et al., 2010; Davis 

et al., 2018; Diallo et al., 2019; Evans et al., 2019; Jemal & Al-Thukair, 2018; Karim 

et al., 2012; Lega et al., 2017; Mayne, 1930; Santos-Vega et al., 2022). For example, 

the sizes of seasonal malaria epidemics in two cities in India exhibit a clear association 

with relative humidity (Figure 2), with a higher correlation than for temperature or rainfall 

(Santos-Vega et al., 2016). A semi-mechanistic epidemiological model that incorporates 

this effect of relative humidity on the transmission rate parameter accurately predicts the 

temporal dynamics of the disease, including the multiyear cycles in the size of seasonal 

epidemics (Santos-Vega et al., 2016, 2022). Such predictions can inform mosquito control 

efforts and targeting prophylaxes. However, the underlying biology of the relationships that 

exist between humidity and these response variables are often assumed and based on a 

limited number of empirical studies (summarized in Table 1). Experimental work has thus 

far shown generally positive effects of increased relative humidity on mosquito survival and 

desiccation tolerance, production and development of eggs and mosquito activity (up to 90% 

relative humidity). In contrast, biting rates exhibited increases when conditions are drier and 

the effect of humidity on vector competence is less clear (Table 1).

Despite the existing body of research, we still do not have a sufficient knowledge base for 

incorporating the effects of humidity into the current temperature-trait modelling framework. 

Results from observations studies cannot necessarily be extrapolated to new locations or 

into the future. Further, the effects of humidity on mosquito and pathogen fitness described 

by experimental / causation studies are of limited resolution, typically exploring a limited 

number of humidity levels and encompassing only a handful of mosquito species. The need 

to better incorporate humidity effects is not unique to vector-borne diseases, but parallels 

trends seen in the larger body of ecological work on the effects of climate variability 

and climate change on heat health in ectotherms (Gunderson & Stillman, 2015; van 

Heerwaarden & Sgrò, 2014). In the following section, we outline how variation in relative 

humidity interacts with temperature to change the thermal performance of ectothermic 

vectors and, consequently, pathogen transmission.
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CONSIDERING THE COMBINED EFFECTS OF TEMPERATURE AND 

HUMIDITY ON TRANSMISSION

The optimal regulation of both body temperature and water balance is crucial for organismal 

performance and fitness (Bradshaw, 2003). Due to the fundamental relationship that exists 

between temperature and the amount of moisture the air can hold (Figure 3), variations in 

both relative humidity and temperature will alter the degree of moisture stress ectothermic 

organisms, like mosquitoes, experience. For a given amount of atmospheric moisture, 

warmer temperatures result in higher saturation vapour pressures that reduce relative 

humidity and increase vapour pressure deficit (Figure 3). Depending on the ambient 

temperature, variation in relative humidity can exacerbate or buffer the negative effects 

of higher temperature on mosquito fitness and pathogen transmission. The current manner 

in which thermal performance of vector-borne pathogen transmission is conceptualized 

and empirically measured does not explicitly account for these effects. Even when relative 

humidity is held constant, increases in temperature will increase the vapour pressure deficit 

and the evaporative stress an adult mosquito experiences. Thus, it is currently unclear if 

the thermal maximum of a given trait, which is typically an upper lethal limit (Chown 

& Nicolson, 2004), is really being driven by temperature effects on metabolic function 

or rather is a function of dehydration and water stress on the organism. Understanding 

the physiological mechanisms underpinning mosquito responses to these abiotic constraints 

will be critical for predicting how transmission will shift with future anthropogenic change 

(Chown & Gaston, 2008; Deutsch et al., 2008; Dillon et al., 2010; Pörtner & Farrell, 2008).

We utilize a trait-based approach that leverages a widely used relative R0 model (Mordecai 

et al., 2013, 2017, 2019; Murdock et al., 2017; Ryan, Lippi, & Zermoglio, 2020b; Shocket 

et al., 2020; Shocket, Ryan, & Mordecai, 2018a; Tesla et al., 2018; Villena et al., 2022; 

Wimberly et al., 2020) to present a framework that outlines the manner in which variation 

in relative humidity could influence the thermal performance of vector-borne pathogen 

transmission (Figures 4 and 5). Overall, we anticipate that variation in relative humidity 

could result in significant shifts in the qualitative shape of the temperature-trait relationship 

and cause these effects to vary with mosquito traits. Drawing from the literature on 

other ectotherms, insects and what little we do know for mosquitoes, we outline several 

hypotheses for how variation in relative humidity may affect the thermal performance of 

mosquito and pathogen traits (Table 2). We anticipate variation in relative humidity will 

be important throughout the mosquito life cycle, with the largest effects at temperatures 

that approach the upper thermal limit (Tmax) for a given trait, with little to no effect of 

variation in relative humidity on the predicted thermal minimum (Tmin) (Table 2). This 

hypothesis is based on the observation that for a given change in relative humidity, the 

corresponding change in vapour pressure deficit and evaporative stress will be greater 

at higher temperatures (Figures 3 and 4). How variation in relative humidity affects the 

predicted thermal optimum (Topt) of a given trait will be somewhat dependent on the 

specific trait as well as the magnitude of the effect at warmer temperatures.

The nature and magnitude of the effects of relative humidity and temperature variation on 

mosquito and pathogen traits important for transmission could differ depending on mosquito 
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life stage. One way in which relative humidity and temperature interact to affect developing 

mosquitoes is through the evaporation rate of larval habitat, which is also determined by 

the size and surface area of the larval habitat and rate of water replenishment (Juliano & 

Stoffregen, 1994). A second type of interaction could involve altering some intrinsic factor 

of the larval environment such as surface tension, microbial growth or solute concentration 

(Juliano & Stoffregen, 1994; Pérez-Díaz et al., 2012). Causal evidence from semi-field 

experiments shows negative effects of high relative humidity at temperatures near or above 

the predicted thermal optimum for Aedes albopictus (Mordecai et al., 2017; Murdock et 

al., 2017) on larval survival and the probability of adult emergence (Murdock et al., 2017). 

One possibility is that both temperature and water vapour in the atmosphere will affect the 

surface tension of aquatic larval habitats. Warm temperatures and high humidity may cause 

larval habitats to have too little surface tension, while cool and dry larval environments may 

have too high surface tension (Pérez-Díaz et al., 2012; Singh & Micks, 1957), negatively 

affecting the ability of larval mosquitoes to breath, access nutrients and emerge from the 

pupal stage. In all likelihood, both types of effect could be important in the field. Thus, 

the effects of relative humidity on the rate of evaporation relative to larval development or 

shifts in intrinsic conditions of larval habitats could have substantial effects on the thermal 

performance curves for both mosquito development rate (MDR), the probability of egg to 

adult survival (pEA) and consequently the intrinsic growth rate of mosquito populations.

Once adults emerge from the larval environment, variation in relative humidity could 

potentially increase or decrease the predicted upper thermal limit for adult traits that 

are critical for mosquito population dynamics and transmission (Figure 4, Table 2). For 

example, decreases in relative humidity at warm temperatures could decrease mosquito 

survival (by increasing the per capita daily mortality rate (μ)) via increasing desiccation 

stress (Gaaboub et al., 1971; Lyons et al., 2014; Mayne, 1930). This, in turn, will decrease 

the temperatures at which mosquitoes can survive to become infected and to transmit 

vector-borne pathogens. Evidence from other insect systems (Chown and Nicolson (2004); 

Edney and Barrass (1962); Shelford (1918); Yu et al. (2010)) would predict that decreases 

in relative humidity at warm temperatures could also decrease the per capita daily biting 

rate (a) and production of eggs (EFD) by altering mosquito activity and blood feeding 

due to shifts in behaviour (e.g., utilization of specific habitats, times of day or times of 

season; Canyon et al. (1999); Drakou et al. (2020); Dow and Gerrish (1970); Gaaboub 

et al. (1971); Provost (1973)) and physiological responses (e.g., decreased metabolic 

rate) to increase desiccation resistance or tolerance (Chown & Davis, 2003; Marron et 

al., 2003). However, the evidence that does exist for mosquitoes suggests decreases in 

relative humidity can actually increase biting rates on hosts (e.g., Culex pipiens, Ae. 
aegypti, An. quadramaculatus; Hagan et al. (2018)). It remains unclear if this pattern 

would persist in the field for mosquito species that utilize sugar sources for hydration and 

nutrition, because nectar-feeding mosquitoes can increase sugar feeding behaviour when 

environmental conditions are dry (Fikrig et al., 2020).

Finally, we also anticipate that the development of mosquito-borne pathogens and parasites, 

and potentially mosquito susceptibility to infection, should be affected by variation in 

relative humidity under different ambient temperature conditions based on physiological 

acclimation responses (Beitz, 2006; Liu et al., 2016). Aquaporin water channels allow 
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organisms to rapidly move water (aquaporins) or water and glycerol (aquaglyceroporins) 

across cellular membranes to promote cellular function. Mosquitoes utilize aquaporins and 

aquaglyceroporins to minimize water loss in desiccating environments (Liu et al., 2011) and 

to maintain glycerol concentrations to stabilize proteins when mosquitoes are exposed to 

high heat (Deocaris et al., 2006; Diamant et al., 2001; Liu et al., 2016; Tatzel et al., 1996). 

The physiological responses of mosquitoes to optimally thermo- and hydroregulate under 

sub-optimal temperature and relative humidity environments could also have consequences 

for the energy available to developing pathogen (Liu et al., 2016).

IMPLICATIONS FOR UNDERSTANDING PATHOGEN TRANSMISSION AND 

CONTROL IN A CHANGING WORLD

Understanding the respective effects of variation in temperature and humidity, as well as 

any interaction between variables, will be critical for addressing how the regional and 

global distributions of mosquito vectors, and the seasonality and intensity of vector-borne 

pathogen transmission, will shift in response to future climate and land-use change. Based 

on the importance of maintaining optimal temperature and water balance in other organisms, 

we also argue that variation in temperature, humidity and water availability are important 

selective determinants driving local adaptation of mosquitoes to various environments as 

well as their capacity to respond to future environmental change. Finally, variation in 

temperature and humidity will also likely affect the efficacy, coverage and cost of disease 

control programs.

Human-mediated environmental change

Human-mediated climate change is resulting in widespread and uneven changes in global 

temperature, humidity and precipitation patterns and more frequent extreme weather 

events (IPCC, 2021). In addition to climate warming, regional changes in humidity and 

precipitation will result in increased drought in some areas, while others become wetter 

(Konapala et al., 2020). If mosquitoes and their transmission cycles are more sensitive to 

humidity at higher temperatures, then future increases in wet vs. dry heat may have very 

different implications for mosquito populations and pathogen risk. Regional variation in 

temperature and relative humidity could have important implications for both the seasonal 

timing and peak of vector-borne disease (Santos-Vega et al., 2016, 2022) as well as pathogen 

persistence or emergence. For example, it has been suggested that future temperatures 

in tropical Africa will exceed the thermal optimum for malaria and result in reduced 

transmission (Mordecai et al., 2020). However, these tropical regions are characterized by 

humid heat, and malaria may persist if the maximum temperature for transmission increases 

at high humidity. Similarly, the potential for arboviruses to expand into warming temperate 

climates may be greater in regions with increasing humid heat vs. dry heat, which has 

not been considered in current mechanistic model projections of disease risk with various 

climate change scenarios [e.g., (Caldwell et al., 2021; Ryan, Carlson, et al., 2020a; Ryan, 

Lippi, & Zermoglio, 2020b)].

Land-use change is another key human driver affecting mosquito-borne disease transmission 

(Baeza et al., 2017). For example, urban landscapes are one of the most rapidly growing 
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land cover types across the globe (United Nations, 2019), with the proportion of people 

living in urban environment projected to increase from 55% to 68% between now and 

2050. High environmental heterogeneity in urban areas creates substantial variation in the 

local microclimates mosquitoes experience, through differences in temperature, moisture 

and wind speed (Stewart & Oke, 2012). These differences are mediated by the extent 

of impervious surfaces, the distribution of vegetation and the three-dimensional structure 

created by buildings and trees. Together, these changes result in urban heat and dry 

islands (Heaviside et al., 2017) with higher land surface (Yuan & Bauer, 2007) and near-

surface air temperatures (Coseo & Larsen, 2014) and lower relative humidity (Hao et 

al., 2018; Heaviside et al., 2017; Lokoshchenko, 2017; Yang et al., 2017) compared to 

more vegetated landscapes. This fine-scale variation in mosquito microclimate can have 

significant implications for multiple mosquito species (e.g., Aedes aegypti, Ae. albopictus, 
Anopheles stephensi) that drive urban outbreaks of diseases (e.g., dengue, chikungunya, 

Zika and malaria) (Beebe et al., 2009; Heinisch et al., 2019; Li et al., 2014; Murdock et al., 

2017; Stoddard et al., 2009; Takken & Lindsay, 2019; Thomas et al., 2016, 2017).

Small-scale variation in temperature and relative humidity could also have important 

implications for the spatial distribution of risk in urban environments (Figure 5). 

Recent studies that combine field experimentation with direct monitoring of urban 

microclimates and mosquito abundance demonstrate that fine-scale variation (e.g., individual 

neighbourhoods or city blocks) in both temperature and relative humidity can have important 

implications for mosquito life history, population dynamics and disease transmission within 

urban environments (Evans et al., 2019; Evans, Shiau, et al., 2018b; Murdock et al., 2017; 

Wimberly et al., 2020). Thus, neighbourhoods with a high proportion of impervious surfaces 

that experience mean temperatures near or exceeding the thermal optimum for transmission 

could experience even higher decreases in vectorial capacity than what models would predict 

from temperature alone, if drier conditions increase desiccation stress and reduce mosquito 

survival.

To generalize the effects of changing temperature and humidity across diverse locations and 

into the future, it will be necessary to develop a conceptual framework that incorporates 

the psychometrics of temperature and atmospheric moisture with mosquito biology and 

the natural and built environments in which transmission occurs. Incorporating the effects 

of humidity into hierarchical models and assessment of mosquito population dynamics 

and disease transmission will increase the precision of mapping environmental suitability, 

both globally and regionally with human-mediated environmental change, as well as across 

heterogeneous human-modified landscapes.

Local adaptation and capacity to adapt in the future

There is growing interest in the factors driving adaptation of mosquitoes to local 

environmental conditions for providing insights into the long-term responses of mosquito 

species to future warming. Mosquito species are composed of an array of locally adapted 

populations across their respective ranges. Substantial genetic variation exists in mosquito 

species (Fouet et al., 2017; Holt et al., 2002; Kang et al., 2021; Maffey et al., 2020; Pless et 

al., 2020; Yurchenko et al., 2020) and at fine-spatial scales (Ayala et al., 2020; Carvajal et 
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al., 2020; Gutiérrez et al., 2010; Jasper et al., 2019; Matowo et al., 2019), with significant 

consequences for transmission potential (Azar et al., 2017; Palmer et al., 2018; Vega-Rúa et 

al., 2020). This genetic variation can interact with local environmental conditions to impact 

the capacity of mosquito vectors to transmit human pathogens (e.g., dengue; Gloria-Soria 

et al. (2017) and chikungunya; Zouache et al. (2014)). Yet, we still do not have a clear 

understanding of what environmental factors are driving this differentiation.

The work that has been done in this area to date has largely focused on the effects of 

temperature variation in driving local adaptation of current mosquito populations (Couper 

et al., 2021; Sternberg & Thomas, 2014). However, research from the broader field 

of ectotherms [e.g., reviewed in Rozen-Rechels et al., 2019, vertebrates; Chown et al., 

2011, insects] suggests that selection on thermal response curves are constrained by other 

metabolic stressors, like desiccation stress, as temperatures warm. For example, a study 

on 94 Drosophila species from diverse climates found substantial variation in the upper 

thermal limits among species. Further, the species specific CTmax correlated positively with 

increasing temperature in dry environments, with species from hot and dry environments 

exhibiting higher heat tolerance. However, this relationship completely disappeared for 

species inhabiting wet environments suggesting temperature as a selective force is less 

important when humidity is high (Kellermann et al., 2012). A similar study in ectothermic 

vertebrates (400 lizards), found the thermal optimum to be more strongly related to ambient 

precipitation than to average temperature (Clusella-Trullas et al., 2011). Environmental 

mean temperature was only found to be predictive of the lower thermal limit (CTmin) 

(Clusella-Trullas et al., 2011).

Both common garden and experimental evolution studies, two standard approaches to 

measure local adaptation and evolutionary potential of a particular species, could be 

incorrectly attributing observed phenotypic responses to temperature selection when they 

could be responding to a combination of energetic effects and moisture stress. This impacts 

our ability to accurately characterize thermal response curves of mosquitoes, as well as their 

capacity to adapt to future environmental change. From our conceptual framework outlined 

above (Figure 5), we would predict that the current approach to studying local adaptation, 

steeped in metabolic theory of ecology, will be most predictive of mosquito population 

responses to future warming in regions of the world that currently exist below the species 

specific thermal optima (Topt). However, for mosquito populations that inhabit environments 

above their thermal optima, humidity will be an important determinant of their capacity 

to respond to future environmental change. For example, mosquito populations in warm 

and wet, humid environments may have less capacity to adapt to future climate change 

in a warming and drying environment than what would be predicted from evolutionary 

models that consider the effects of temperature alone. Conversely, mosquito populations 

that currently live in warm and dry environments may have a greater capacity to adapt to 

warming conditions if they exhibit higher heat tolerance than their counterparts inhabiting 

wetter areas of the geographic distribution.
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Controlling mosquito populations and disease transmission

There have been several mechanistic modelling efforts to understand how regional and 

seasonal environmental variation will impact the relative reproductive number of a pathogen, 

the intensity of human transmission and the efficacy of key disease interventions (e.g., 

Zika; Ngonghala et al. (2021), schistosomiasis; Nguyen et al. (2021)). These studies have, 

again, focused largely on the effects of ambient temperature. However, seasonal and regional 

variation in humidity and precipitation could extend or shorten the transmission season and 

magnify or depress the intensity of epidemics as predicted from models incorporating the 

effects of temperature alone (Huber et al., 2018; Ngonghala et al., 2021). For example, 

this is likely to be the case in seasonally dry environments where mosquito-borne disease 

transmission tends to be highest during or just after the rainy season and lowest during 

the hottest / driest parts of the season due to seasonal shifts in mosquito habitat, as well 

as the effects of temperature and humidity on mosquito and pathogen traits relevant for 

transmission.

How variation in humidity affects the efficacy of current and novel mosquito control 

interventions also needs to be considered. Many novel mosquito control technologies involve 

the mass release of males that have been sterilized or genetically engineered to pass on 

traits that confer either severe fitness costs (i.e., population suppression approaches; Alphey 

et al., 2010; Wilke & Marrelli, 2012; Wang et al., 2021) or enhanced resistance to human 

pathogens (i.e., population replacement approaches (Carballar-Lejarazú & James, 2017; 

Hegde & Hughes, 2017; Wilke & Marrelli, 2015)). For example, the wMel strain of the 

symbiont Wolbachia can prevent dengue, chikungunya and Zika transmission in Ae. aegypti 
(Aliota, Peinado, et al., 2016a; Aliota, Walker, et al., 2016b; Moreira et al., 2009; Ye et al., 

2015). Experimental work has determined that wMel infections are temperature sensitive, 

with high temperatures causing reductions in Wolbachia density (Foo et al., 2019; Gu et al., 

2022; Ross et al., 2017, 2019, 2020; Ulrich et al., 2016) and temperature variation affects the 

host-pathogen interaction and the outcome of infection in Wolbachia-infected mosquitoes 

(Murdock, Blanford, Hughes, et al., 2014a). Based on the relationship between temperature 

and water balance laid out in this paper, further experiments should examine whether 

Wolbachia infections are limited by temperature alone or by cellular water availability, and 

examine what role mosquito desiccation stress plays in limiting Wolbachia abundance within 

mosquitoes at varying temperature.

Furthermore, thermal performance differs between insecticide resistant vectors and their 

susceptible counterparts, with important implications for assessing fitness costs associated 

with insecticide resistance (Akinwande et al., 2021). Thus, insecticide resistant mosquitoes 

may have to optimize temperature and water needs across environmental constraints 

differently and, therefore, be affected by changes in humidity, with potentially important 

consequences for population dynamics, mosquito-pathogen interactions and transmission. 

Identifying these environmental constraints on efficacy and coverage will be critical for 

the successful implementation of current and future control programs (Parham & Hughes, 

2015).
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CONCLUSIONS AND FUTURE DIRECTIONS

Sufficiently understanding the performance of insect vectors within the natural 

environmental mosaics where they occur will require substantially more data on the spatial 

and temporal complexities in microclimate, behavioural responses to temperature and 

humidity change, plasticity in thermal tolerance traits and the eco-physiological mechanisms 

of vector water balance, coupled with broader understanding of the general relationships 

between water and temperature described in this paper. We have collated these goals 

into a general framework incorporating humidity into research questions and temperature-

dependent mechanistic models (Figure 5 & Box 2). We intend for the evidence and theory 

presented here to be signposts for future research, leading to a collective broadening in 

our understanding of insect vectors and how their responses to climate variables will affect 

parasite transmission.
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Box 1

Different measurements of humidity.

In the most general sense, humidity is a measure of water vapour in the atmosphere, 

which is one important component defining an organism’s risk of desiccation. In practice, 

humidity can be quantified in multiple ways. A fundamental characteristic is the vapour 
pressure, which is defined in meteorology as the partial pressure of water vapour in 

the atmosphere. Vapour pressure affects the movement of atmospheric moisture, which 

diffuses from higher to lower vapour pressures (Allen et al., 1998; Wexler & Greenspan, 

1971). The saturation vapour pressure is the maximum vapour pressure of a completely 

saturated parcel of air and is a non-linear increasing function of temperature (Figure 

1). The dew point temperature is defined as the temperature to which air would need 

to be cooled for the saturation vapour pressure to equal the actual vapour pressure and 

is related to the total amount of moisture in the air. Absolute humidity is the mass of 

water vapour per unit volume of air, whereas relative humidity is the ratio of the actual 

water vapour pressure divided by saturation vapour pressure (at ambient temperature 

and pressure) (Lawrence, 2005). The vapour pressure deficit is the difference between 

saturation vapour pressure and the actual vapour pressure. Vapour pressure deficit is 

a key term in the numerator of the Penman-Monteith equation (used for calculating 

evaporation and evapotranspiration, see Allen et al., 1998; Chiew et al., 1995). Thus, if 

other environmental factors are constant, the rates of evaporative water loss from open 

water bodies and vegetated surfaces are expected to increase as a linear function of 

vapour pressure deficit.

Of these humidity measures, relative humidity is most commonly provided in 

meteorological datasets. Relative humidity is a unitless ratio in which the influence of 

temperature on the saturation vapour pressure has been removed, which has several 

important implications. Even if the total amount of water in the air is constant, relative 

humidity will vary with temperature. This effect is most commonly observed in the 

diurnal cycle of humidity, which reaches a minimum during the warmest time of day 

and a maximum at the coolest times of night. When comparing two observations with 

similar relative humidities but different temperatures, the observation with the higher 

temperature will have a higher vapour pressure, saturation vapour pressure and vapour 

pressure deficit. Thus, the potential for evaporative water loss at a given relative humidity 

is inherently sensitive to changes in temperature (Figure 1).
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Box 2

Future Questions

• Direct effects of humidity

– To what extent will humidity affect parasite and pathogen 

development within mosquitoes, and what are the underlying 

mechanisms?

– How does humidity affect thermal performance curves of both 

mosquitoes and pathogens? Does it impact the variation in the 

thermal optimum, limits, operative range or performance magnitude?

– How do experimental conditions (e.g., constant vs. diurnally 

fluctuating environments, different humidity values used to assess 

thermal performance) influence the interpretation and variation in 

thermal performance, including in semi-field experiments?

– Does humidity affect different mosquito populations and species 

similarly?

– How do background humidity conditions influence the interpretation 

and variation in thermal performance characterized in laboratory 

experiments or in semi-field experiments?

– How much of the decrease in thermal performance at thermal 

extremes (CTmin, CTmax) can be explained by mosquito water 

balance, rather than temperature alone?

– Does the environmental niche, defined by temperature and water 

constraints, explain current distributions and abundances of key 

mosquito vectors and vector-borne diseases?

– At what spatial or temporal scales should measurement, inference 

and prediction be implemented for mosquito population dynamics, 

disease transmission and control, in the context of temperature and 

humidity? Do these scales differ between the two climate variables?

• Consequences of interactive effects of temperature and humidity

– How do humidity and desiccation stress shape the evolution 

of thermal performance? Which traits and elements of thermal 

performance (e.g., thermal optimum, thermal limits, operative range) 

will experience, and respond to, selection?

– How will changes in humidity resulting from future climate 

and land-use change affect the potential for mosquito thermal 

performance to adapt to warming temperatures?

– Do differences in the ability to thermo-hydroregulate across 

mosquito species help explain evolutionary differences in life history 
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and how these species utilize their environments (e.g., day, night 

or dawn/dusk host seeking; circadian rhythms in the production 

of malaria infectious stages in human hosts; propensity to sugar 

feed; microhabitat selection of resting mosquitoes; oviposition site 

selection; seasonal and diurnal timing of mating; duration of dry 

diapause or overwintering)

– How will population genetic variation impact mosquito adaptability 

to local microclimates? And to what extent will phenotypic plasticity 

in traits affecting thermal tolerance and water balance influence 

persistence of mosquito populations, communities and species?

– How will current and novel (e.g., Wolbachia) vector control 

strategies be impacted by variation in humidity and temperature? 

How will this affect the timing, distribution, duration and efficacy of 

a given intervention?

Brown et al. Page 30

Ecol Lett. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
(a) Similar to other ectothermic organisms, the life history traits of mosquitoes and 

the pathogens they transmit typically exhibit non-linear relationships with environmental 

temperature, where trait performance is constrained by both cool and warm temperatures 

and optimized at some intermediate temperature. Further, the effect of temperature on 

these individual traits can vary qualitatively and quantitatively, resulting in different 

temperature ranges across which trait performance can occur, temperatures that maximize 

trait performance, and the overall shape of the temperature-trait relationship (e.g., symmetric 

vs. asymmetric). As a result, predicting the effects of temperature on mosquito fitness, 

population growth rates or pathogen transmission is complex. (b) Mathematical models of 

vector-borne pathogen transmission that incorporate these temperature-trait relationships 

generally predict transmission to also follow a non-linear relationship and to peak at 

some intermediate temperature, as depicted here with the temperature-dependent relative 

reproductive number R0 as a conceptual example. This model incorporates the effects of 

temperature on traits that drive mosquito population dynamics (e.g., per capita mosquito 

development rate (MDR), the probability of egg to adult survival (pEA) and the per 

capita number of eggs females produce per day (EFD)), host-vector contact rates (the per 

capita daily biting rate of female mosquitoes (a)) and the number of mosquitoes alive and 

infectious (transmission (b) and infection (c) probabilities, the extrinsic incubation period (1/

EIR) and the per capita mosquito mortality rate (μ)). Where the predicted thermal minimum 

(Tmin), maximum (Tmax) and optimum (Topt) for transmission occur will be dependent upon 

the relative effect of each trait, the nature of the temperature-trait relationship, and how these 

factors combine to shape the transmission process. Adapted from Mordecai et al. (2017).
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FIGURE 2. 
Monthly malaria case data for Plasmodium falciparum shown (in purple) with a 

corresponding time series for relative humidity (RH, red) for two cities in India, Ahmedabad 

(a) and Surat (b). Total cases during the transmission season from August to November 

are shown as a function of mean RH in a critical time window preceding this season 

and including the monsoons from May to July for Ahmedabad (c) and March to July for 

Surat (d). Figure is taken from Santos-Vega et al. (2022) Nature Communications doi: 

10.1038/s41467-022-28,145-7. Figure is reproduced under Creative Commons Attribution 

4.0 International Licence.
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FIGURE 3. 
The total amount of water the air can hold, expressed here as saturation vapour pressure 

(Es), increases exponentially with temperature and is estimated as a function of temperature 

using the Tetens equation. The actual amount of water in the air, expressed here as vapour 

pressure (Ea), can be derived from relative humidity (RH) as Ea = RH/100 * Es. The vapour 

pressure deficit (VPD) is the absolute difference between Es and Ea and is an important 

metric of atmospheric moisture because it has a near linear relationship with evaporative 
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potential. Thus, as temperature warms, for a given decrease in RH, there will be a larger 

increase in VPD and the amount of water stress mosquitoes experience.
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FIGURE 4. 
(a) Thermal performance is often measured by placing mosquitoes in different life stages 

and infection stages across a range of constant temperatures at a set relative humidity 

(typically between 70–90% RH). However, despite holding relative humidity constant, as 

temperatures warm there will be a corresponding increase in the vapour pressure deficit 

(VPD) and the amount of water stress mosquitoes experience. Overlaying these relationships 

(from Figure 1) on a given temperature-trait relationship demonstrates that the sensitivity 

of trait performance to variation in relative humidity should be highest on the descending 

limb of this relationship. Es = saturation vapour pressure, which increases exponentially 

with temperature and is estimated as a function of temperature using the Tetens equation. Ea 
= vapour pressure, meaning the actual amount of water in the air and can be derived from 

relative humidity (RH) as Ea = RH/100 * Es. (B–D) represent the hypothetical responses 

of three temperature-trait relationships to variation in relative humidity. These shifts are 

predicted to both decrease the thermal optimum and maximum for some traits (e.g., (b) 

lifespan and (d) vector competence) or increase them for others (e.g., (c) per capita biting 

rate).
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FIGURE 5. 
Laboratory work with field derived mosquitoes can be conducted to estimate the effect of 

multiple environmental variables on mosquito fitness, population dynamics and pathogen 

transmission. For example, mosquitoes could be housed across a range of constant 

temperature (T) and relative humidity (RH) conditions that are reflective of monthly field 

conditions. From these experiments, one can estimate the effects of variation in these 

environmental variables on key larval traits (a: mosquito development rate (MDR) and the 

probability of egg to adult survival (pEA)), adult traits (b: per capita mortality rate (μ), per 

capita eggs laid per day (EFD) and per capita daily biting rate (a)) and parasite / pathogen 
traits (c: vector competence (bc) and the extrinsic incubation period (EIP)). (d) Bayesian 

hierarchical models can be used to develop T and RH response surfaces for each trait, 

which can either be incorporated in process-based modelling approaches to infer effects 

on seasonal and interannual variation in vector-borne pathogen transmission dynamics. 

(e) Bayesian models can also be used to generate a T and RH dependent, relative R0 

model that can be used to predict environmental suitability for pathogen transmission at 

Brown et al. Page 36

Ecol Lett. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various spatial scales. A crucial detail for modelling approaches, based on the evidence 

presented in Box 2, is that the effects of T and RH will be interactive, not additive. (Inset 

on temporal dynamics in (D) is from Santos-Vega et al. (2022) Nature Communications; doi: 

10.1038/s41467-022-28,145-7. Figure is reproduced under Creative Commons Attribution 

4.0 International Licence).
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TABLE 2

Predictions for the interactive effects of relative humidity & temperature on different mosquito traits.

Trait Definition T min T opt T max

MDR Mosquito development rate (1/days) No change ? evaporation ↓ with ↑ RH = ↑ or no Δ in Tmax no evaporation 
with ↑ RH = ↓Tmax

pEA Probability of egg to adult survival No change ? evaporation ↓ with ↑ RH = ↑ Tmax no evaporation with ↑ RH = 
↓ Tmax

EFD Per capita no. of eggs produced daily per 
female (1/days)

No change ? RH ↑ = ↑ or ↓ Tmax

a Per capita female biting rate (1/days) No change ? RH ↑ = ↑ or ↓ Tmax

μ Per capita mosquito mortality rate (1/days) No change ? RH ↑ = ↑ Tmax

bc Probability of becoming infectious No change ? RH ↑ =? Tmax

EIR Extrinsic incubation rate (1/EIP or 1/days) No change ? RH ↑ = ↑ Tmax
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