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Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), 
evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies 
in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of 
functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing 
database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, 
antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing 
evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the 
disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial 
contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of 
human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional 
potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection 
and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim 
of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up 
the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
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Abbreviations
BP  Bioactive peptide
DPPH  2,2-Diphenyl-1-picrylhydrazyl radical
ABTS  2,2′-Azinobis-3-ethylbenzothiazoline-6-sulfonic 

acid and hydroxyl radicals
ACE  Angiotensin-converting enzyme
FOSHU  Foods for specified health uses
SLE  Solid–liquid extraction
HAE  Heat-assisted extraction
PEF  Pulse electric field assisted-extractions
SLN  Solid lipid-nanoparticles
NLC  Nano-structured lipid carriers

Introduction

Food safety is an emerging concern for humans on global 
scale to guard the health of end-use consumers. The ever-
growing consumption of processed foods laced with chemi-
cal preservatives and synthetic food additives is raising 
threat to human health (Gizaw 2019). This concern has 
forced to shift the focus on consuming natural foods and 
reducing the intake of processed food items. Consequently, 
scientists are showing growing interest to explore nutraceuti-
cal agents mostly bioactive peptides (BPs) found in natural 
foods to serve as a gross component in our daily food intake 
(Thomas and Latha 2022). BPs are built by amino acids 
bound by peptide bonds and comprises of a peptide sequence 
between 2 and 20 amino acids (Minkiewicz et al. 2019). 
BPs have found beneficial effects on the proper function-
ing of the metabolism and overall health status of human 
beings (Redha et al. 2022). Therefore, the beneficial effects 

of various BPs are increasing with regards to health pro-
motion and disease prevention and show a wide range of 
biological activities both in vivo and in-vitro. BPs produc-
tion has opened up new opportunities to discover treatments 
for various diseases therefore, strengthening the standard 
of life. BPs have also been regarded as the recent procrea-
tion to inhibit microbial oxidation and degradation of food 
(Daliri et al. 2017). Presently, almost 3000 BPs have been 
documented in the existing database and have been entitled 
as BIOPEP-UWM™ formerly known as ‘Biopep’ (Mink-
iewicz et al. 2019). Inevitably, significant interest has been 
dedicated to the preparation of BPs (Manzoor et al. 2022) 
which are found to exhibit a range of nutraceutical prop-
erties such as anti-microbial, anti-hypertensive, opioid, 
anti-cancerous, immune-modulatory, and anti-oxidative as 
depicted in Fig. 1. The source of BPs can be endogenous 
or exogenous if taken through the diet or from an outside 
origin respectively and are, therefore, isolated from differ-
ent sources such as plants, animals, and microorganisms to 
serve as promising biomolecules and possess a wide range 
of nutraceutical properties as described in Table 1. Protein 
and peptide-based drugs are accessible from separate origins 
for therapeutic uses, but along with many drugs, they have 
diverse beneficial effects as compared to synthetic drugs. 
Peptide drugs are successful and specified to the biologi-
cal targets and tremendous developments in clinical strate-
gies have unlocked modern day possibilities for drug dis-
covery in the field of peptide and protein drugs (Ilangala 
et al. 2021). The target host defines ultimately the selection 
of techniques for the extraction and purifications of BPs. 
Recent advances in analytical techniques have paved new 
opportunities in the field of peptide and protein drugs for 

Fig. 1  Bioactive properties of food protein-derived peptides related 
to their promotion of human health and disease prevention. Here we 
have highlighted the role of BP as anti-oxidative, anti-inflammatory, 
anti-hypertensive, anti-microbial, anti-diabetic etc. The BPs act upon 
the AT1 receptors as well as act on renin—angiotensinogen convert-

ing enzymes as inhibitors to impart there in  vivo anti-hypertensive 
benefits. BPs induce apoptosis by caspase independent as well as cas-
pase dependent pathways in the mitochondria, hence anti-cancerous 
effects
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Table 1  Details of bioactive peptides and their major sources, extraction methods and sequences employed as potential nutraceuticals

Nutraceutical properties Sources Extraction method Peptide sequence/s Reference/s

Anti-oxidant Plant-based bioactive peptides
Triticum aestivum Enzymatic hydrolysis Seven peptides-

• NL
• QL
• FL
• HAL
• AAVL
• AKTVF
• TPLTR

Zou et al. (2020)

Oryza sativa Enzymatic hydrolysis • YSK Wang et al. (2017a, b)
Cicer arietinum Enzymatic hydrolysis • ALEPDHR Faridy et al. (2020)
Brassica napus Enzymatic hydrolysis • WDHHAPQLR Xu et al. (2018)
Glycine max Enzymatic hydrolysis • L/IVPK Chen et al. (2019)
Oryza sativa Enzymatic hydrolysis • MLHYGTP Zaky et al. (2020)
Arachis hypogaea Fermentation • QIPQQFLRTLPM SVN-

VPL
Karami et al. (2019)

Animal-based bioactive peptides
Pollock skin collagen Enzymatic hydrolysis • GPAGPHGPPG Guo et al. (2015)
Duck skin gelatin Enzyme hydrolysates • HTVQCMFQ
Marine based bioactive peptides
Pyropia columbina Enzymatic hydrolysis • AF Cian et al. (2015)
Palmaria palmate (Dulse) 

Algae
Enzymatic hydrolysis • VECYGPNRPQF Harnedy et al. (2017)

Fungal-based bioactive peptides
Agaricus bisporus Enzymatic hydrolysis – Farzaneh et al. (2018)
Morchella esculenta Enzymatic hydrolysis – Zhang et al. (2018)
Cordyceps sinensis Enzymatic hydrolysis – Mishra et al. (2019)
Terfezia claveryi Enzymatic hydrolysis – Farzaneh et al. (2018)

Anti-hypertensive Plant-based bioactive peptide
Cicer arietinum Enzymatic extraction – Felix et al. (2019)
Zea mays – • FNQLAALNSAAY-

LQQQQLLPFSQLA, MI 
or LPP

Díaz-Gomez et al. (2022)

Oryza sativa Enzyme treatment – Wang et al. (2017a, b)
Animal-based bioactive peptides
Bovine collagen Enzymatic hydrolysis • SDNRNQGY, IQVPL& 

KGLWE
Fu et al. (2016)

Cheese Ultra filtration – Pontonio et al. (2021)
Marine-based bioactive peptide
Undaria pinnatifida Enzymatic hydrolysis and • GPRGF Wang et al. (2018)
Palmaria palmata Enzymatic hydrolysis • MVGSAPGVL
Rhopilema esculentum Enzymatic hydrolysis • IW Furuta et al. (2016)
Oncorhynchus gorbuscha Enzymatic hydrolysis and 

chromatography
• VYRT, LDY, LRY & 

FEQDWAS
Borawska-Dziadkiewicz et al. 

(2021)
Fungal-based bioactive peptides
Ganoderma lucidum (mush-

room)
Enzymatic hydrolysis • EPGP & TGDIGY Wu et al. (2019)

Tricholoma matsutake Enzymatic hydrolysis • AHEPVK, RIGLF, 
PSSNK

Geng et al. (2016)
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the production of pharmaceuticals against various health 
diseases. A lot of improvements have been reported in the 
purification and analytical techniques to characterise these 
compounds which aim to attain further understanding of 
the complexity of different molecular structures of BPs 

(Lafarga et al. 2020). Although BPs have been identified 
and extracted from different natural sources, their undertak-
ing is examined in various disciplines and the current review 
typically relates BP to the theme of distinct food matrices. 
However, we are still at infancy to have a composite study 

Table 1  (continued)

Nutraceutical properties Sources Extraction method Peptide sequence/s Reference/s

Anti-diabetic Plant-based bioactive peptides

Amaranthus – • LTFPGSAED Ayala-Niño et al. (2020)

Triticum aestivum Fermentation • VH & ALGP Budhwar et al. (2020)

Glycine max Enzyme treatment • RCMAFLLSD-
GAAAAQQLLPQYW

De Brucker et al. (2014)

Phaseolus vulgaris cv – • LDAFDPLR & DWLL-
AGDDY

Lammi et al. (2018)

Soybean Enzymatic hydrolysis – Tamam et al. (2019)

Cumin seed Enzyme treatment • KLPGF Wang et al. (2018)

Oat Fermentation • GPAGL

Animal-based bioactive peptides

Meat Enzymatic digestion • LPIIDI,
• APGPAGP

Kęska et al. (2019)

Sheep milk caseins Enzymatic digestion • GGSK ELS El-Sayed and Awad (2019)

Bovine and camel milk – – Ayyash et al. (2018)

Egg – – Liao et al. (2018)

Marine-based bioactive peptide

Micromesistius poutassou Enzymatic treatment – Harnedy et al. (2018)

Salmon – – Harnedy et al. (2018)

Porphyra species – – Admassu et al. (2018)
Anti-cancerous Plant-based bioactive peptides

Rice bran Enzymatic extraction • RQSHFANAQP Luna-Vital et al. (2015)
Chickpea – • VW GQ
Amaranth – • GLTSK

– • LSGNK
Phaseolus vulgaris • GEGSGA

• MPACGSSMTEEY
Animal-based bioactive peptides
Milk – • PGPIPN Zhou et al. (2017)

Wang et al. (2017a, b)Casein Fermentation • GFHI, DFHING
• FHG
• GLSDGEWQ

Whey Fermentation • GFHI
Marine-based bioactive peptide
Callyspongia species – – Shaala et al. (2016)

Huang et al.(2017)Crassostrea gigas Enzymatic digestion –
Smenospongia aurea – –
Crassostrea gigas Enzyme treatment • HFNIGNRCLC
Tuna dark muscle – –
Red Sea Moses sole – –
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providing an updated account on BPs with respect to their 
existence in across plant and animal kingdoms and technical 
know-how regarding their production and characterization. 
This prompted the authors to mention the current extraction 
techniques for generation of bioactive peptides from differ-
ent sources. Moreover, we have also emphasised their role 
as natural therapeutic agents for a diverse range of diseases 
and their delivery systems. The current review is believed to 
augment the research in the field of BP’s production, nutra-
ceutical potential, identification, and characterization and 
speeds up investigating the incredible potentials of BPs as a 
potential nutraceutical and new addition to the list of func-
tional foods (Verma and Chandel 2019).

Different repositories of bioactive peptides

Plant‑ and animal‑based sources

Most of the BPs have been extracted and purified both from 
animal and plant origins. Pulses, defatted cereals, pseudoce-
reals, oilseeds, nuts, fruits, and vegetable seeds have been 
encouraging sources of proteins (Gorguç et al. 2020). Simi-
larly, bioactivity is reported in the bulk of peptides produced 
from different animal sources such as milk, meat, eggs and 
fishes. Consequently, a bioactive balanced diet might help 
to provide a quantifiable physiological effect and its bioac-
tivity should be studied at a physiologically sensible level. 
Ensuring such effect, milk, meat, egg and fish-derived BPs 
are able to affect some physiological functions, ultimately 
on the health conditions (Ayyash et al. 2018). There is also 
rising demand in developing BPs from the plant-based 
sources. Walnuts and pine nuts, flaxseed (Linum usitatissi-
mum) protein and its derived peptides, wild hazelnut (Cory-
lus heterophylla), source of six peptides (ADGF, AWDPE, 
AGGF, ETTL, DWDPK, and SGAF), peptide-SMRKPPG 
from peony (Paeonia suffruticosa) seed protein hydrolysate, 
Chia seeds (Salvia hispanica) with high antioxidant, anti-
cancerous, antidiabetic, and antihypertensive activity are 
reported so far (Acevedo‐Juárez et al. 2022). Similarly, a 
peptide—AYLQYTDFETR, extracted from pecan meal is 
found to exhibit significant scavenging activities against 
the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, ABTS 
(2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) and 
hydroxyl radicals (Hu et al. 2018; Tadesse and Emire 2020). 
A protein hydrolysate extracted from the amaranth seeds was 
shown to have anti-cancer potentials against cancer cell lines 
(Taniya et al. 2020). Plant proteins possess less fat and have 
the least health complications compared to animal-derived 
proteins, so it is critical to have insights into the plant-
derived BPs (Kumar et al. 2022). Mellander in 1950 was the 
first to state the BPs by proposing that casein-phosphopep-
tide (casein-derived phosphorylated peptides) strengthens 

bone calcification in infants, suffering from rickets (Mel-
lander 1950). Ibrahim et al. (2018) separated camel milk 
proteins and hydrolyzed them, using the enzyme-Pepsin. In 
another study, Gong et al. (2020) obtained BPs–αS2-casein 
(NPWDQVKR), αS1-casein (SDIPNPIGSE), and β-casein 
(QEPVLGPVRGPFP) (SLSSSEESITH) and these peptides 
were involved in decreasing the blood glucose levels and 
were isolated from goat milk hydrolysates. Atanasova et al. 
(2021) identified active peptides in goat and sheep milk-
based brined cheese. The identified peptides were having 
ACE inhibition, casein-phosphopeptide, αs1-casokinins, and 
immune peptide activity, and decrease the risks of obesity 
and type-II diabetes (Zhang et al. 2022). Because of their 
physiological and physico-chemical characteristics, milk, 
egg, and meat derived BPs are considered as tremendously 
eminent components by encouraging as functional foods or 
pharmaceuticals (Redha et al. 2022). Goat milk fermented 
with various Lactobacillus kefir strains showed antimi-
crobial effect against microbes- E. coli, Proteus mirabilis, 
Micrococcus luteus, and Salmonella (Biadała et al. 2020). 
Industrial scale generation of these peptides are recently 
established on the international market levels.

Marine sources of bioactive peptides

A diverse range of BPs isolated form marine sources possess 
biological properties against various health diseases such 
as anti-hypertensive activities, anti-oxidant, anti-cancer, 
and immune-modulatory (Zhong et al. 2019). BPs derived 
from marine origin showed diversity in their sources such 
as, from crustaceans, fishes, molluscs, algae etc. (Lafarga 
et  al. 2020). Similar to animal and plant peptides, the 
structure and composition of various marine BPs is highly 
dependent on the sources from which they are derived (Blunt 
et  al. 2018). Furthermore, BPs with more hydrophobic 
amino acid residues such as, Gly, Val, Ala, Ile, Leu, Phe 
and Pro, enhance the antioxidant activity of BPs. Marine 
peptides enriched with phenolic compounds with improved 
emulsifying and foaming properties results its application 
in the food industry for functional food development 
(Halim et al. 2016). Attempts are made to use peptides 
extracted from seaweeds in the prebiotics and nutraceuticals 
(Charoensiddhi et  al. 2017). Therefore, marine sources 
have been determined as excellent reservoirs for extracting 
potential biologically active compounds.

Algae‑ and fungi‑based sources of bioactive 
peptides

Algae are nutrient dense with beneficial micro- and macro-
nutrients, encompassing carbohydrates, proteins, phenols, 
minerals and vitamins (Skjånes et al. 2021). These nutrients 
are primarily utilised by the animal feed and food industries 
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as these are rich sources of essential amino acids and the uti-
lisation of non-digestible carbohydrates from seaweeds, act 
as a source of fibers. These ample and varying constitutions 
of algae are being investigated for its possibilities to acquire 
BPs and carbohydrates and reported antihypertensive, anti-
oxidant, and immune modulatory properties (Bleakley et al. 
2017). A protein hydrolysate isolated from Dunaliella salina 
was able to inhibit cancer of the colon and also possesses 
anti-microbial effects. However, the peptides were not tested 
on non-cancerous cells and thus, further observations, like 
in-vivo experiment is required (Darvish et al. 2018). The 
synthesis of health-promoting compounds from microalgae 
is a promising field of research (Hamidi et al. 2019). Func-
tionally active foods comprising seaweeds procured peptides 
are recently capitalised in Japan. Seaweed-acquired peptide-
comprising products with FOSHU accepted anti-hyperten-
sive assertion involve Wakame peptide jelly and Nori pep-
tides (Cian et al. 2022). Similarly, the secondary metabolites 
acquired from fungal strains disclosed their biological and 
pharmacological properties (Abdel-Wahab et  al. 2019). 
Large metabolites such as, peptides, alkaloids, terpenoids, 
additionally polyketides, steroids, and lactones have been 
identified with beneficial health effects (Zhang et al. 2019). 
Marine microorganisms characterised by fungi and bacteria, 
but also marine invertebrates, are considered as a treasured 
source of bioactive compounds. On the reports of the Food 
and Drug Administration (FDA), plentiful accepted BPs are 
expanding (Lee et al. 2019). Mushroom BPs possess a high 
ACE inhibitory activity for example peptide derived from 
the marine edible animal Styela clava (Kang et al. 2020). 
The fruiting body and even the by-products of the mush-
room Agaricus bisporus are found rich in biologically active 
compounds (Ramos et al. 2019). About eight novel ACE 
inhibitory peptides were isolated from the fruiting body of 
Agaricus bisporus and the most active ones were RIGLF, 
AHEPVK, and PSSNK. The BPs derived from the extracts 
of tiger milk mushroom (Lignosus rhinocerus), showed a 
potential HIV-RT inhibitory activity (Sillapachaiyaporn 
and Chuchawankul 2019). Thus, mushroom-based HIV-
RT inhibitory peptides may be a potential supplement as an 
anti-HIV drug. Various other bioactive functions, such as 
decreasing cholesterol activity, were identified in other foods 
(Karami and Akbari-Adergani 2019). Thus, mushrooms are 
potential and enormous rich sources of active peptides, and 
need to be explored more for the generation of BPs.

Extraction of bioactive peptides

Enzyme hydrolysis and microbial fermentation are two of 
the most frequent techniques for producing BPs (Chala-
maiah et al. 2018). These approaches result in the release 

of a wide range of BPs which are digested and absorbed 
easily by humans with no side effects. Implementation of 
certain novel approaches, such as ultrasound- or micro-
wave-assisted extraction methods also increase the produc-
tion of BPs. Some of the major extraction technologies 
frequently employed for BP isolation are discussed below 
(Fig. 2).

Enzymatic hydrolysis and microbial fermentation

Based on the ideal temperature and pH of the enzymes, a 
set of crude or purified enzymes are added either simultane-
ously or sequentially to the target proteins which leads to the 
hydrolysis of peptide bonds. This approach has the advantage 
of being easy to scale up and having a quicker reaction time 
(Abd El-Salam and El-Shibiny 2017). The enzymatic hydrol-
ysis is believed to be more applicable since amino acid resi-
dues remain intact during hydrolysis (Akaberi et al. 2019). 
Moaveni et al. (2022) reported production of BPs obtained 
by enzymatic hydrolysis of microalgae proteins possess-
ing higher antioxidant activity. Enzyme to substrate ratio, 
hydrolysis period, type and ratio of the enzyme utilized, all 
affects the peptide sequences and their biological functions. 
Some non-protein bioactive molecules may be separated dur-
ing the BPs generation such as phenolics that interfere with 
biological functions and must be removed. Before hydroly-
sis, these components are frequently extracted using acetone, 
or ethanol (Patil et al. 2020). Proteolysis produces protons, 
which alters the medium pH and interferes with the hydro-
lytic process, as a result, use of a buffer is recommended. The 
mixture is then centrifuged to separate active peptides after 
the enzymatic digestion. The peptides are recovered from the 
supernatant. Other methods such as desalting, freeze-drying, 
cross flow membrane filtrations, and column chromatogra-
phy are used to recover peptides. Among these, gel filtration 
is an excellent method for separating peptides based upon 
their size (Patil et al. 2020). Enzyme extraction is one of the 
most important methods for rupturing macro-algal cell wall 
(Pradhan et al. 2022). The use of polysaccharide-digesting 
enzymes such as cellulases, glucanases, hemi-cellulases, 
and xylanases are regarded as a food-grade technique. As a 
result, commercial enzyme combinations have been shown 
to be effective in this application (Mendez and Kwon 2021). 
Because red and green seaweeds have a lighter component 
than brown seaweeds, enzyme-assisted extraction is mostly 
studied on them (Vásquez et al. 2019). Similarly, a large 
protein yield was obtained when Solieria chordalis, Sargas-
sum muticum and Ulva seaweed species were treated with 
enzymes in which cellulase typically alone was more effec-
tive and further enhanced BP output. Other studies discov-
ered that Palmaria palmata when treated with a combina-
tion of commercial glucanase-Celluclast and Shearzyme, 
increased protein synthesis (Vásquez et al. 2019).
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Microbes (bacteria or yeast) are cultured on media 
enriched with protein substrates. Proteolytic enzymes 
secreted by bacteria cause protein break down and release 
BPs (Patil et al. 2020). Some bacterial species have a differ-
ent proteolytic process, resulting in peptides with different 
bioactivities (Patil et al. 2020). Yeast and filamentous fungi 
have also been reported to be employed in the production of 
BPs (Chourasia et al. 2021). Even a combination of yeast 
and bacteria can be used to boost proteolysis. After cen-
trifugation, the recovered supernatant typically contains pep-
tides, which can be further hydrolyzed to obtain short pep-
tide sequences. As a result, the peptides were isolated, and 
mass spectroscopy has been used to sequence their amino 
acids (Daliri et al. 2017).

Chemical and physical synthesis

Chemical synthesis uses chemical reagents to mediate the 
generation of peptides. It is an important method for creating 
BPs with specific physico-chemical features (Akbarian et al. 
2022). The therapeutic properties of BPs focus researchers' 
interest nowadays in chemically synthesising the peptides 

to treat a variety of oxidation-related diseases (Patil et al. 
2020). For instance, the tripeptides tyrosine-Histidine-
tyrosine (YHY) & Proline-Histidine-Histidine (PHH) were 
found primarily active in stabilizing oxygen species and 
other radicals, as well as lipid peroxide and peroxynitrite, 
among the antioxidant tripeptide library. In-vitro designing 
and production of innovative peptides that resemble protein 
secondary structure conformation to generate potential 
peptide analogues as well as peptidomimetics with distinct 
medicinal properties has become increasingly popular 
in recent years. Chemically synthesised BPs are a new 
breed of physiologically active regulators that can help to 
treat diseases by preventing the oxidation and microbial 
degradation of meals (Patil et al. 2020).

Solid–liquid extraction (SLE)

SLE is one of the important methods for extracting BPs 
which uses a variety of solvents, including buffered 
solutions, distilled water, and lytic solutions (García-Vaquero 
et al. 2017). Factors like solute/solvent ratio (w/v), duration, 
or temperature should be tweaked to improve the efficacy of 

Fig. 2  Extraction, isolation and purification procedures of BPs from 
diverse sources of living organisms. In extraction different methods 
used are enzymatic hydrolysis, which aids in maintaining the higher 
antioxidant activity and also enzyme to substrate ratio, hydrolysis 
period, type and ratio of the enzyme utilized, all affects the peptide 

sequences and their biological functions of BPs. microbial fermenta-
tion, physical and chemical treatment based extraction also helps in 
specific physico-chemical features. The figure also demonstrates use 
of bioinformatics tools to retain the data pertaining to BPs and in-sil-
ico evaluation of biological properties
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the method (Wijesekara et al. 2017). SLE has traditionally 
chosen hot water to extract algal polysaccharides, allowing 
for the coextraction of proteins. As a result, for BPs solvent 
deletion to retain protein quality and low temperatures 
(about 4 °C) are necessary, whereas, thermal stresses might 
also be employed for the production of protein hydrolysates, 
necessitating heat-assisted extractions (HAE) or a mixture 
of enzyme catalyzing methods (Veide Vilg et al. 2017). The 
technology is called food-grade since it is utilized to extract 
proteins from a range of food matrices (Naseri et al. 2020). 
The change in pH has shown good consequences in sample 
preparation for instance the use of acidic SLE succeeded 
by alkaline separation from the Ascophyllum nodosum, 
resulting in a high yield. Porphyra dioica and Ulva sp. 
protein content was extracted utilizing a reaction mixture 
comprising urea, solvent, and other reactants.

Pulse electric field assisted‑extractions (PEFs)

The use of electrochemical reactions for the lysis of 
plasma membranes and cell walls as a method of collecting 
molecules is becoming extremely pervasive (Galanakis 
2021). By producing significant voltages (kV), and electric 
pulse of varied durations (from micro to milli-seconds), 
PEFs assist in protein extractions from the macro-algae by 
electroporations of the membranes and cell walls. PEF is 
established as an effective and rapid green approach that 
solves its own limitations, such as conductance and electrode 
gaps (Silva et al. 2020). PEF has been frequently utilized to 
boost extraction yield from eco-friendly seaweeds. Common 
protein yields are obtained in similar species when PEF was 
assisted with water pressures. PEF and mechanical pressing 
were used to extract proteins from Ulva sp. An improved 
approach showed a seven-fold enhancement in total protein 
yields (protein percentages in the extracts) (Robin et al. 
2018). PEF was also considered a suitable method for BP 
extraction since PEF-extracted proteins possess high anti-
oxidant potentials than non-PFE assisted protein extractions.

High hydrostatic pressure extraction (HHPE)

Hydrostatic pressure extraction (HHPE) enhances protein 
extractions using pressure up to 1000 bars to stimulate 
cellular disintegration and ease in release of proteins from 
cell structures. HHPE efficiency is affected by the solvent 
utilized, as well as the operating parameters, temperature, 
and time (Silva et al. 2020). HHPE is regarded an effective 
green extraction method because of low operating 
temperatures, quick processing time and higher recovery 
rates. As a result, this method is suitable for thermal 
compounds, while pressure-induced protein molecular 
change must be taken into account. Protein recovery 
from two brown seaweeds; Alaria esculenta and Fucus 

vesiculosus, and two red seaweeds; Palmaria palmata and 
Chondrus crispus, were aided by HHPE. The application 
of HHPE assisted with other extraction techniques was also 
assayed, notably as HHP-assisted enzyme extraction (Suwal 
et al. 2019). It has been found that a lesser proportion of 
unwanted polyphenols also results. Optimising extraction 
parameters to limit phenolic extraction may benefit in the 
optimization and amplification of BP productions. While 
further investigation is required to establish HHPE as a 
feasible, specific BP extraction technology, controlling 
process conditions to reduce polyphenol extraction would 
help to optimise and improve BP production.

Ultrasound‑assisted extraction (UAE)

Through the use of UAE, as a sonication process or as a 
core element of the extraction process, is recently attracting 
attention to increasing protein extraction from different 
sources (Silva et al. 2020). Cell wall breakdown is triggered 
by the cavitational process, in which the air bubbles 
generate a tremendous kinetic work that breaches the cell 
wall. The key benefits of this generation process method 
are its temperature independence and short processing time 
(Kazir et al. 2019), and the water as the solvent, is especially 
significant for algae samples. Applying high ultrasonic 
power over longer periods of time, on the other hand, 
leads to excess heat production and can drastically alter the 
protein configurations. UAE can be associated with other 
techniques such as EAE. As a consequence of combining 
conventional methods with these novel techniques enhance 
protein extraction yields. The red seaweed- Grateloupia 
turuturu generated considerably more phycobiliprotein 
when UAE and EAE were coupled than when EAE was 
used alone. Using NaOH as a solvent, UAE generated 
a higher percent yield of protein from the red seaweed 
Neoporphyra haitanensis. However, combining sonication 
with ammonium sulphate precipitations results in the high 
recovery of protein from seaweeds-Chondrus crispus and 
Fucus vesiculosus. On a broader scale, the UAE application 
as a food grade extraction technology has previously been 
established as total proteins recovered from Gracilaria sp., 
and Ulva sp. respectively (Kazir et al. 2019).

Microwave‑assisted extraction (MAE)

Throughout the use of MAE, micro-wave waves were used 
for producing heat by ion conduction and dipole rotation 
(Silva et al. 2020). As a result, MAE may not be the most 
appropriate method for extracting heat sensitive biologically 
active peptides. MAE has been used to extract carbohydrate 
or flavonoid elements from seaweed studies rather than 
bioactive proteins/peptides, despite its reputation as an 
effective low-energy extraction technique (Magnusson et al. 
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2019). Due to the microwave’s damaging impact on the cell 
walls and membranes, microwave-induced ionization can 
stimulate the release of cellular contents from the matrix into 
the extraction solution. Because edible seaweeds have high 
ash content, which adds to the ionic conductions, MAE is an 
efficient technique used for extracting macro-algae proteins 
(Magnusson et  al. 2019). While compared to standard 
extraction, MAE minimizes extraction yield and solvent 
type was completed in less than 5 min and exclusively with 
the aqueous BP fraction in this study. In conclusion, while 
MAE efficiency in terms of BP generation enhances their 
yield, lowering power usage and thereby, increasing the 
experiment’s productivity (Magnusson et al. 2019).

Protection and delivery of bioactive 
peptides

Protection

BPs that exist in a microenvironment inside the colloidal par-
ticles have a significant effect on their physical and chemical 
constancy. There are certain substances (buffers and antac-
ids) that hinder local pH inside the colloidal particle, and 
stabilise protein from the alkaline- or acid-induced change 
in their configurations (Zhang et al. 2017a, b). Some con-
stituents like polyols, salts, and surfactants can aid in the 
implementation of protein structure, thereby protecting them 
from loss of activity due to protein denaturation. To improve 
the stability, defense, and performance of a BP, it is better to 
co-encapsulate the BPs with stabilising molecules in the form 
of colloidal particles (Mc Clements 2018). Moreover, when 
the particle size is large, the capacity of the colloidal particle 
to protect a BP increases with time due to the accommodation 
of a number of proteins inside a particle. Furthermore, during 
production, storage, and utilisation, the colloidal particles 
experience numerous physiological changes like: variation in 
pH, ionic composition, enzyme activities, ingredient interac-
tions, oxygen, light, and temperatures, as well as upon their 
passage through the gastro-intestinal tract. As a result, it is 
necessary to prepare a colloidal particle in such a manner 
that remains stable throughout different environmental con-
ditions. It is significant to balance the colloidal particle for 
protecting BPs using different wall materials. Polysaccharide-
based delivery systems have functional groups, interacts with 
a large range of biologically active chemicals, making these 
as multipurpose transporters for attaching and entrapping a 
number of hydrophobic and hydrophilic biologically active 
food ingredient. Alehosseini et al. (2018) investigated the 
solution properties and electrospraying of different polysac-
charides including dextran, a resistant starch, maltodextrin, 
and fructo-oligosaccharides as well as two proteins (whey 
protein concentrated from milk and a soy-protein extract), 

as a matrix material, in order to characterize and compare 
the hydro-colloid aqueous solution made from the flexible 
polymer in water as polyethylene oxide (PE-O) and polyvi-
nyl alcohol (PV-OH). Furthermore, Chitosan (co-polymer of 
d-glucosamine and N-acetyl-d-glucosamine that is made by 
de-acetylation of chitin) is soluble in an aqueous acidic solu-
tion and is used to make micro/nanoparticles (Motiei et al. 
2021). Electrospraying was used to make poly-ethylene gly-
col-based hydrogel micro-spheres, according the reports of 
Qayyum et al. (2017). They enhanced the gelation duration of 
PEG hydro-gels while by using the Michael-addition reaction 
between thiol and acrylate to make microspheres more easily 
(Jain et al. 2017). Similarly, polylactide often known as poly-
lactic acid (PLA), is a bio-degradable thermoplastic polyester 
made from tapioca roots, maize starch, or sugarcane, and is 
ubiquitous (Mustățea et al. 2019).

Delivery of bioactive peptides

To provide the anticipated health benefit, BPs must be pass-
ing through all the gatekeepers from the mouth to the target 
organ while retaining their structure and biological activity 
(Gianfranceschi et al. 2018). The selection of appropriate 
food matrices is critical in delivering BPs. Using chemically 
inert or least active vehicles to limit the interaction, enhance 
bioaccessibility and maintain the native structure and func-
tionality of BPs may be entailed. Several nano delivery BPs 
systems have been reported for efficient targeting in humans 
as demonstrated in Fig. 3. Fiber-rich foods, for example, 
are found to be comparatively inert when used for deliver-
ing BPs, whereas lipid-based food matrix is found to form 
complexes that affect BP functionality, also bio-accessibil-
ity (Sun et al. 2020). Non-covalently bound BPs to divalent 
metals in the food matrix may be delivered depending upon 
the pH gradient across the GI tract. BPs can be prepared 
in covalently linked peptide-lipid conjugates in a way that 
the peptides are cleavable by endogenous enzymes in the 
GI tract. The second technique is to use food processing 
tools that do not cause harmful actions and effect the native 
form of BPs. For example, the use of processing tools that 
do not involve heating, such as pulsed electric field, ultra-
sound, and ultra-high hydrostatic pressure, is likely to have 
a lower impact on the sequence and conformation of BPs 
thus, increasing their bio accessibility. The third technique 
involves the use of inclusion complexes or guest host system 
(such as nanoencapsulation) to prevent and deliver BPs only 
at the target site. This involves the BP incorporation into 
a nano-sized colloidal delivery system to prevent from the 
unfavourable conditions of GI tract (Hosseini et al. 2021). 
Solid–lipid nanoparticles, emulsions, liposomes, and biopol-
ymer micro-gels, have all been proposed as carriers for BP 
oral delivery. The natural lipid-based delivery systems like 
soy lecithin-derived nanoliposomes and chitosan-fabricated 
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nanocarriers, as well as methacrylate-based microgels and 
alginates, have been proposed as effective inclusion com-
plexes for increasing BP bio-accessibility (Mc Clements 
2018).

Nano‑delivery of bioactive peptides

Protein-based delivery systems: Protein-based nano-car-
riers are derived from bacteria, plants, animals, and fungi 
and can be used to deliver hydrophobic as well as hydro-
philic biologically active agents. Gel extrusion, inclusion 
complexes, emulsification, and spray drying techniques 
are effective methods for producing proteins from nano-
delivery systems such as nano-assemblies, hydrocolloids, 
micelles, hydrogels, films, micro- as well as nanoparticle 
(Assadpour and Jafari 2019). As protein carriers, casein, 
gelatin, albumin, collagen, whey proteins, and elastin from 
the animal origins, and wheat gliadin, zein, and soy gly-
cinin, from plant sources, are commonly used (Assadpour 
and Jafari 2019). Meat derived proteins such as collagen 

and gelatin, particularly gelatin extracted from collagen, 
are used for nutraceutical encapsulation due to their bio-
compatibility, ease of transport, bio-degradability, whey 
proteins, high-temperature stability, and its safety (Hong 
et al. 2020).

Lipid-based delivery systems: the lipid-based nano 
delivery systems allows hydrophobic compounds such 
as fatty acids (conjugated linoleic acid and omega-3), 
carotenoids (carotene, lycopene or lutein), fat-soluble 
vitamins (A, D, E, and K), antioxidants (polyphenols 
which includes oleuropein, tocopherols, gallic acid, caffeic 
acid, flavonoids), and phytosterols lipid nanospheres, 
particularly nanoliposomes, lipid nanoparticles, and 
archaeosomes work as lipid-based nanostructures for 
the delivery of biologically active compounds (Díaz-
Gómez et al. 2020), oil-in-water (O/W) nano emulsions 
or microemulsions, emulsification, filled hydrogel 
particles, multilayer emulsions, liposomes, or solid-lipid 
nanoparticles are the some of the main techniques to create 
a lipid-based delivery system (Assadpour and Jafari 2019).

Fig. 3  Bioactive peptide delivery systems, such as nanoemulsions 
(can pass easily through the cell membrane, increasing BP biocom-
patibility and bioavailability, and the surface groups can be associ-
ated with target ligands), nano structured lipid carriers, nano-compl-
exation, lipid-based nano-delivery, mesoporous silica nanoparticles, 
protein based nano-delivery, solid lipid nanoparticles, polymeric 

nanocarriers. The nanoparticle based delivery improves stability, easy 
validation, the elimination of the need for a solvent in the process, 
suitability for hydrophobic as well as hydrophilic nutraceutical, bio-
degradability, increased loading potentials, and bio-compatibility of 
the lipids
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Nano emulsions

Nano-emulsions are heterogeneous systems which consist of 
nano-scale droplet dispersions and are generated by shear-
induced rupture. They are composed of two immiscible 
liquids; one is a droplet and the second is immersed into a 
liquid phase and stabilised by a surfactant (Peng et al. 2018). 
It is observed that double-layer techniques use for formation 
of W/O/W multi-emulsions (oil droplet which is coated by 
double-layer interfacial membranes), efficiently coat oil 
particle during emulsification (Peng et al. 2018). Because 
the Brownian motion is highest generated by gravity, nano 
emulsions do not sediment. High-pressure homogenization 
and micro fluidization are the most common methods for 
preparing nano emulsions, but other techniques such as 
ultra-sonication and in situ emulsification are also used 
(Singh et al. 2017). The advantages of using nano emulsions 
include their high kinetic stabilities against creaming 
and flocculation, thermal stability, and their important 
application for health care and personal products. They can 
also pass easily through the cell membrane, increasing their 
biocompatibility and bioavailability, and the surface groups 
can be associated with target ligands.

Solid lipid‑nanoparticles (SLNs) 
and nano‑structured lipid carriers (NLCs)

The lipid phase of a nano-structured lipid carrier consists of 
the solid lipid–fat and liquid lipid at the normal temperature 
(Liu et al. 2021a, b). These are kind of lipid-based deliver 
systems which solubilise the lipophilic nutraceutical and 
contains inner matrix of acyl-glycerols, fatty acids & 
waxes, and are stabilised by surfactants such as bile salts, 
sphingomyelins, phospholipids, and sterols. In contrast with 
other nanocarriers such as nano emulsions, SLNs possess 
benefits like protection against degradation in GI tract, 
providing stability to the unstable hydrophobic compounds, 
and provides targeted deliver of a nutraceutical (Nandvikar 
Lala and Shinde 2019). At normal temperatures, the lipid 
phase of nano-structured carriers contains both solid-lipid 
(fat) and liquid lipid. Solid lipid-nanoparticles (SLNs) are 
important lipid-based delivery methods that solubilizes lipo-
philic nutraceutical within inner matrix (fatty acids, waxes, 
and acyl-glycerols) and are stabilised by the surfactants 
(such as phospholipids, sphingomyelins, bile salts and 
sterols) (Shah et al. 2017). On the basis of the preparation 
procedures used for SLN, NLC is formed by combining 
different lipid molecules which includes solid and liquid 
lipids. The benefits of NLC includes the ability to achieve 
focussed and sustained nutraceutical deliver, improved 
stability, easy validation, the elimination of the need for a 
solvent in the process, suitability for hydrophobic as well 
as hydrophilic nutraceutical, biodegradability, increased 

loading potentials, and bio-compatibility of the lipids 
(Nandvikar et al. 2019).

Carbohydrate‑based delivery systems

Carbohydrate-based systems provide natural and suitable 
shells under high temperature processes, cheap food 
ingredients, and degradable substances and interacts with 
various types of biologically active substances through their 
reactive groups. It encloses a broad variety of hydrophobic 
and hydrophilic biologically active compounds (Kim et al. 
2021). As a result, many carbohydrates or their chemically 
conjugated forms such as cellulose, alginate, chitosan, 
gums, pectin, cyclodextrins, starch, and dextrin have been 
used to assemble nano delivery systems. Furthermore, these 
may be employed as a proper shell for the encapsulation of 
pharmaceuticals or nutraceuticals due to their great thermal 
stability in contrast to protein- or lipid-based delivery 
system, which are susceptible to denaturation or melting.

Nano‑complexation

The nano-complex approach is another appropriate nano-
system for the preservation of biologically active food 
ingredients or nutraceutical (Desai et al. 2020). In general, 
bio-polymer is organised through electrostatic absorptions to 
link proteins and polysaccharides for improved conservation. 
As a result, at pH lower than the isoelectric point, the net 
positive charge of the protein interacts with the anionic 
groups on the polysaccharides. The layer-by-layer approach 
of biopolymer complexation begins with the adsorption 
of ionic polysaccharide upon the protein nano-particles 
(Rajabi et al. 2020). The stability of nanocomplex carrier 
is determined by various parameters such as ionic strength, 
charge density, pH values, biopolymer ratios, conformation, 
and polysaccharide-protein content (Okagu et al. 2020). 
Furthermore, the complex of proteins or carbohydrates 
with phenolic compounds has received great attention 
to increase the stability and release of these compounds, 
mostly those having low solubility and bio availabilities. The 
biodegradability, decreased toxicity, and biocompatibility 
with cells are all advantages of employing these complexes. 
Numerous studies are carried out in recent years for 
the encapsulation of BPs, such as ferulic acid through 
complexes of malto-dextrin (FA-MD) and hydroxy-propyl 
methyl-cellulose (FA-HPMC) by using spray drying method, 
with higher encapsulation efficiency percentage (Yu et al. 
2021); curcumin through a complex of an insect protein 
as mealworm chitosan and protein using homogenization 
followed by freeze dried methods; curcumin through an 
ovalbumin (OVA) and sodium alginate complex formation 
(300–330 nm particle size) using homogenization (Feng 
et al. 2019); folic acid was produced by a complex of folic 



 3 Biotech (2023) 13:252

1 3

252 Page 12 of 21

acid (FA) and 11 S and 7 S globulins using this approach 
(Ochnio et al. 2018), Epigallocatechin gallate was produced 
through a complex of piperine into a zein nano-carrier using 
an anti-solvent precipitation technique (Dahiya et al. 2018).

Polymeric nanocarriers

Polymeric carriers such as polylactic acid (PLA), poly 
L-glycolide (PLG), and poly cyanoacrylate (PCA), are found 
to entrap both hydrophobic and hydrophilic nutraceuticals 
such as BPs having medicinal properties (Mahapatro and 
Singh 2011). They should have enough mechanical strength, 
biocompatibility and biodegradability. The most appealing 
is polylactic-co-glycolic acid (PLGA), a copolymer of poly 
lactic acid (PLA) and poly glycolic acid (PGA) (Zorkina 
et al. 2020). Low toxicity, more potent, small size, greater 
mechanical and chemical stability, biocompatibility, 
targeted release of nutraceuticals, ease of modifications and 
production, and increased reproducibility are all advantages 
of nanocarriers based on polymeric micelles. Furthermore, 
polymeric nano-particle as a drug or bioactive agent delivery 
system can be employed for localised or target drug or 
nutraceutical release systems to specific organ or tissues site 
with higher deliver rates (Zorkina et al. 2020).

Mesoporous silica nanoparticles (MSNs)

Surface dynamicity, high drug loading capacities, constant 
release, better biocompatibility, chemical resistance, stabil-
ity and target release of a variety of drugs by the unique 
mesoporous silica nanoparticles (MSNs) are various features 
that favours them as nanocarriers for biologically active 
molecules (Hu et al. 2016). They possess a honeycomb-like 
conformation and an active preface that is applied to change 
surface features for association with pharmacological or 
biologically active compounds. MSNs can be manufactured 
using sol–gel or spray drying processes and used to trans-
port hydrophobic, hydrophilic, and positively or negatively 
charged bioactive chemicals (Rashidi et al. 2017). For many 
decades, MSNs are being used in a varied range of sectors, 
including cosmetics, feed, and medicinal items. These mate-
rials have no environmental or health concerns, according to 
ecotoxicology, epidemiology data, and toxicological, safety.

Nutraceutical potential of BPs: a molecular 
perspective

Bioactive peptides have been identified as an important 
functional food ingredient which imparts potential ben-
efits on the human health apart from their nutritive values 
(Hernández-Ledesma et al. 2022). The potential health ben-
efits of peptides against different metabolic disorders such as 

hypertension, diabetes, obesity, and cancer are due to their 
higher binding specificities and affinities with the enzymes, 
receptors, and particular biomolecules inside the cellular 
organisms (Chelliah et al. 2021). The bioactive based acti-
vation defensive mechanism against inflammatory response, 
obesity, and diabetes through activation of TNF receptor, 
cytokine receptor, insulin receptor and interleukin receptor 
is shown in Fig. 4. The different molecular mechanisms and 
therapeutic potentials behind these bioactive peptides over 
various metabolic disorders are discussed below:

Bioactive peptides against hypertension

There are millions of cases of hypertension globally and the 
number is estimated to reach in billions within a few years 
(Balwan et al. 2021). The angiotensin-converting enzyme is 
found to play a crucial role in the maintaining of blood pres-
sure, and catalyses the inactive angiotensin I form (decapep-
tide) to active angiotensin II (octapeptide). Angiotensin II 
regulates the enzyme-cellular lipoxygenase which improves 
the low-density lipoprotein (LDL) oxidation and leads to 
atherogenesis. The hypertension drugs have many varied 
side effects such as coughing, pimples, taste changes, and 
oedema, therefore, signifies a great deal of potential in natu-
ral anti-hypertensive peptide use. The different sources of 
anti-hypertensive peptides are extensively investigated. These 
sources mostly include egg protein, milk proteins, meat pro-
tein, gelatin fish skin protein, beef haemoglobin, and various 
plant protein sources, such as soy (Wang et al. 2019), sesame 
(Aondona et al. 2021), broccoli (Dang et al. 2019), buck-
wheat, and transgenic rice proteins. In most cases, to use the 
anti-hypertensive peptides for human use, these compounds 
must be absorbed through the intestines and pass finally 
into the bloodstream. The mechanism of action of various 
BPs and their molecular targets regulating hypertension are 
recently observed and reviewed. Various studies reported BPs 
as significant inhibitors of Angiotensin converting enzyme 
(ACE) to regulate blood pressure, salt balance and water, 
and therefore, prevents hypertension (Karami et al. 2019). 
Clinical trials have reported that ACE inhibitor peptides 
potentially reduce the death rates in patients suffering with 
myocardial infarctions (Messerli et al. 2018). The BPs which 
possess ACE inhibition obtained from different sources 
like Ile-Gln-Trp, Leu-Lys-Pro and Ile-Arg-Trp (egg pro-
tein ovotransferrin-derived) Val-Tyr and Leu-Lys-Pro-Asn-
Met (fish-derived) and Val-Pro-Pro and Ile-Pro-Pro (sour 
milk derived) (Li et al. 2018). In an observation lactoferrin 
derived RRWQWR, RPYL and LIWKL peptides were found 
to reduce hypertensive effects in rats and in rabbit’s carotid 
arterial segment (Fernández-Musoles et al. 2014) and among 
all these three BPs-RPYL has been reported to show high-
est hypertensive effect and inhibition of Angiotensinogen II 
binding to its AT1 receptor Therefore, studies have revealed 
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that the BPs derived from different sources act upon the AT1 
receptors as well as act on renin–angiotensinogen converting 
enzymes as inhibitors to impart there in vivo anti- hyperten-
sive benefits (Majumder 2015). Thus, it must be concluded 
that BPs have great potential to lessen the impact of hyper-
tension on the human body.

Bioactive peptides against diabetes

Diabetes is a grave deep-rooted illness determined by 
persistent hyperglycemia, which evolves when the pancreas 
does not make sufficient insulin or when the body do not 
competently make use of the insulin generated. Lifelong 
untreated hyperglycemia can distress various body systems, 
mostly the nervous and cardiovascular systems (WHO 
2018). Food-derived bioactive molecules from animal and 
plant sources, has been found to aid in modulating glycemic 
functions, such as increasing insulin production, insulin 
action, or inhibiting glucose absorption. (Domnguez-Pérez 
et al. 2020). A wide range of plant-derived peptides assist 
diabetic patients in a variety of biological pathways. The 

different pathways are affected by different targets such 
as inhibitory action on the glucose transporter system, 
dipeptidyl peptidase IV, alpha amylase, and mimics insulin 
action (Patil et al. 2020). The important enzymes- dipeptidyl 
peptidase IV (DPP-IV) and α-Glucosidase plays a significant 
role in the onset of diabetes (mostly Type 2 Diabetes—a 
type of diabetes) (Patil et al. 2015). Therefore, the increase 
or decrease in their activity is one of the significant mech-
anisms to monitor and control diabetes. The studies are 
recently carried out to determine the involvement of BPs 
derived from the dietary proteins as inhibitors for DPP-IV 
and α-glucosidase enzymes thus, acting as natural sources 
of inhibition (Acquah et al. 2022). Various studies carried 
out on derived BPs are found to play an important role in 
regulating multiple signalling pathways which prevents the 
glucose synthesis and increases insulin sensitivity inside the 
body (Chelliah et al. 2021). Such peptides suppress JNK/
p38 and NF-κB MAPKs pathways in the liver, adipose, and 
muscle tissue as reported in diabetic and obese rats and 
decreases the resistance of insulin such as derived from bitter 
melon (Momordica charantia) (Li et al. 2018). The peptides 

Fig. 4  The proposed signalling cascade showing the bioactive based 
activation defensive mechanism against inflammatory response, obe-
sity, and diabetes through activation of TNF receptor, cytokine recep-
tor, insulin receptor and IL receptor. Different types of membrane 
receptors interact with different BPs and initiate signalling cascades 

through activation of transcription factors. Figures also demonstrates 
that BPs suppress JNK/p38 and NF-κB MAPKs pathways in the liver, 
adipose, and muscle tissue as reported in diabetic and obese rats and 
decreases the resistance of insulin such as derived from bitter melon
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increase GLUT 4 expression which enhances the uptake of 
the glucose as well as activation of MAPK pathway and 
regulates the insulin signal transduction (Wang et al. 2020a, 
b). In observation, a study was carried out on the diabetic 
mice in which bioactive peptides (Momordica charantia) 
bind insulin receptors (IR) and stimulated AKT phospho-
rylation. This increased GLUT4 expression to enhance glu-
cose uptake in the tissues majorly adipose tissues, leading to 
glucose clearance in diabetic mice (Jahandideh et al. 2022). 
Similar effects were observed for soybean derived peptides 
which increased and improved glucose uptake and clearance 
through the enhanced insulin receptor-IR phosphorylation, 
IRS1, AKT and therefore, GLUT-4 expression on the cell 
membranes and thus, showing antidiabetic activities (Kim 
et al. 2021). The BPs or their hydrolysates have been also 
reported to enhance the sensitivity of insulin by activating 
AMPK or insulin signalling pathways. The AMPK activa-
tion is found recently proposed as a potential target for the 
management and diagnosis of diabetes (Jahandideh et al. 
2022). The AMPK activation results in the phosphoryla-
tion of AKT substrate. This results in the decreased activity 
of GTPase- Rab guanosine triphosphatase but increases the 
GTP on the GLUT4 storage site and promotes the transloca-
tions of GLUT4 to the target cell membranes which triggers 
the transport of glucose in the adipose and skeletal muscle 
tissues (Lankatillake et al. 2019). For example, Ile-Pro-Pro-
Lys-Lys-Asn-Gln-Asp-Lys-Thr-Glu peptide, isolated from 
casein is found to prevent higher glucose/insulin resistances 
in cells (hepG2) by the insulin activation as well as AMPK 
signalling transduction through AMPK and Akt phospho-
rylation (Li et al. 2018). The cross talk between insulin, 
mTOR signalling and AMPK pathway is found to be the 
important targets for diabetes mostly type 2 diabetes due to 
the involvement of antidiabetic BPs. Peptides derived from 
soybean-Trp-His dipeptide are found to increases uptake of 
glucose in muscle cells by activating AMPK in an insulin-
independent pathway (Li et al. 2018) and increase GLUT4 
translocation to the membrane majorly plasma membrane.

Bioactive peptides against cancer

Altered gene functions and genetic expression are important 
characteristics of cancers. Different BPs with anticancer 
properties were reported to disrupt the plasma membrane 
of cancerous cells specifically. These show therapeutic 
abilities for different cancers, which are not responsive to 
conventional pharmaceutical therapies. The anti-cancerous 
effect of BPs is found to be mediated though membrane as 
well as non-membrane mediated mechanisms. The synthetic 
anticancer drugs have neurotoxic, nephrotoxic, cardiotoxic, 
and gonadotoxic like disadvantageous effects. Subsequently, 
the search for anti-cancer BPs in food has enhanced a cell-
specific peptide- HVLSRAPR, isolated from Spirulina 

platensis hydrolysates, had a significant inhibitory effect 
on cancer cell growth but had no consequence on normal 
liver cells (Gutierrez et al. 2016). Enhancing p21 and p27 
expression levels and reducing cyclin A expressions, the 
peptides cause arrest in the S phase of the cell cycle. The 
peptides further cleaved caspase 3, which decreased PARP, 
aBcl-2, and caspase 9 expression while increasing p53 and 
Bax expression.

Membrane based: one of the key distinguishing features 
between a cancerous and non-cancerous cell is the nega-
tively charged phosphatidyl serine exposure on the outer 
leaflet of the plasma membranes.It observed that BPs spe-
cifically bind the membrane components of cancer cells 
mainly phosphatidylserine (PS), heparan sulphate or sialic 
acid, which causes depolarization of cytoplasmic mem-
branes. This results in the membrane swelling and blebbing 
as reported with fluorescently labelled peptides. Thus, target 
the cancerous cells by disrupting their cellular membranes 
and eventually cause cell death (Farsinejad et al. 2015). 
The cell cytotoxicity is because of pore formation in the 
membranes about 3.7 nm approximately that increases per-
meability of anionic molecules rather than cations. Various 
models are given to describe the plasma membrane lysis 
mediated by BPs. These models are barrel stave model, 
toroidal model and carpet models. The barrel stave model 
states that the peptides diffuse laterally through the lipid 
bilayer and arrange into helices and form barrel or stave 
like channel which spans the membranes. For example, 
BPs derived from animal sources are reported to follow 
this model and cause cell lysis (Pino-Angeles et al. 2016). 
Similarly, according to the toroidal model, the BPs show a 
parallel orientation with the plasma membrane and a hollow 
core is formed at the center of pore while as the lipid groups 
and BPs forms the pore wall.

Non-membrane/Mitochondria dependent apoptosis: 
in addition, to the membrane-based lysis, anticancer BPs 
are found to cause apoptosis using mitochondrial path-
ways. The mitochondrial apoptotic disruption is an impor-
tant therapeutical management of cancer cells therefore, 
understanding these pathways are very significant in using 
BPs (Whelan et al. 2012). The various bioactive peptides 
derived from plant and animal sources have been observed 
to strongly inhibit the fate of cancer cells in a dose depend-
ent and time-dependent manner thus, showing oncogenic 
activity (Orafaie et al. 2021). These peptides target the 
mitochondria and cause a loss of membrane potential by 
producing reactive oxygen species (ROS) and lead to inhibi-
tion of DNA replication enhance the pro-apoptotic protein 
levels such as, Bax and decrease the antiapoptotic protein 
levels such as, Bcl-XL, Bcl-Xs, Bcl-2, and XIAP. Thus, 
BPs induce apoptosis by caspase independent as well as 
caspase dependent pathways in the mitochondria (Wang 
et al. 2017a, b).
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Effect of BPs on cell cycle regulation

Various food derived peptides have been reported to prevent 
various cancer stages which includes initiation, promotion 
and finally progression. These BPs induce proapoptotic fac-
tors and block the cell division by reducing the expression of 
genes of cyclin D, bcl-2, c-myc and the expression of PCNA 
protein. They are also reported to increase p21, p16, p27 and 
Bax expression. The peptides also induce apoptosis in-vitro 
as well as in vivo cancer cells by activating P53, PARP, and 
Mcl-1 which mediates apoptosis. The cation charge strongly 
binds to the negative charge on the cancer cells imparted 
due to the sphingocholine and results in the destabilisation 
of the membranes of cancer cells. The anticancer peptides 
induce apoptosis by activation of voltage gated calcium chan-
nels due to which influx of calcium ions occurs and causes 
depolarization of the cancerous cells (Perego et al. 2012), 
modulate expression of genes, cell cycle arrest and prevents 
angiogenesis as observed under in-vitro studies (De Mejia 
and Dia 2010). The different sources of peptides responsible 
for anti-cancerous activity are given in Table 1.

Bioactive peptides as antioxidants (redox balance)

An imbalance between antioxidants and reactive oxygen 
species (ROS) may bring about oxidative damage to proteins, 
lipids, and nucleic acids (Nwachukwu and Aluko 2018). 
Moreover, oxidative stress may lead to illnesses such as 
cancer, diabetes, cardiovascular disease, and inflammatory 
disorders. Various antioxidant peptides from diverse dietary 
proteins have been found and their antioxidant activity has 
been explored. Moreover, BPs extracted by proteinase K 
hydrolysates from peptic fractions of Spirulina platensis 
exhibited higher antioxidant activity (Yu et  al. 2016). 
Similarly, BPs extracted from Chlorella ellipsoidea aid 
in scavenging DPPH and peroxyl radicals and help to 
scavenge free radicals in monkey kidney cells. Food-derived 
antioxidant peptides are healthy compounds and safe with 
high activity, low weight, low cost, and easy absorption. 
The antioxidant capacity has been examined with reference 
to peptides' potential to inactivate reactive oxygen species 
(ROS), scavenge free radicals, and safeguard cells from 
oxidative stress, chelate oxidative metals, and enhance 
the activation of intracellular antioxidant enzymes. The 
antioxidant peptides using a different molecular mechanism, 
induces synthesis of major antioxidant enzymes catalase 
(CAT), superoxide dismutase (SOD) and peroxidases (Px) 
and stimulates the nuclear factor erythroid-related factor-2 
(Nrf2) anti-oxidant defense mechanism. The mechanism of 
antioxidants using dietary BPs depends upon the peptide 
length, hydrophobicity and peptide composition. The main 
anti-oxidant pathway which prevents oxidative stress and 
help in maintaining the redox balance inside the body 

involves Nrf2-antioxidant response element (ARE) and 
Kelch-like ECH-associated protein 1-(Keap1-) (Huang et al. 
2015). It is a leucine zipper Transcription factor. The BPs 
are reported to prevent the degradation of Nrf2 and GSK-3β 
phosphorylation and protein kinase B (Akt) activation. 
Keap1 acts as suppressor protein to the Nrf2, under a 
normal ROS level, Keap1 is bound with Nrf2 and causes 
proteasomal degradation of the Keap1-Nrf2 complex. Under 
oxidative stress the Nrf2 gets separated from the Keap1 and 
enters the nucleus where it binds to the ARE to promote 
the expression of antioxidant enzymes. Peptide-EDYGA, 
derived from the soft-shelled turtle increased the Nrf2 levels 
by binding of glutamate residue of the derived peptide to 
the Arg 415 of the Kelch receptors (Wang et al. 2020a, b).

Bioactive peptide against inflammation (the NF‑κB 
pathway)

Inflammation is one of the important body’s immune response 
against external or internal stimulus, such as pathogen inva-
sion, tissue damages, injury, or any infection (Korniluk et al. 
2017). The BPs mainly food-derived are found to have anti-
inflammatory activity were analysed under both in-vitro as 
well as in vivo animal models (Guha and Majumder 2019). 
These are reported to show inhibitory role against MAPK-
JNK pathway or inhibit the Renin–Angiotensin system (RAS) 
in endothelium and leukocytes and in macrophages and adi-
pocytes respectively (Li et al. 2018). The severe inflamma-
tion involves nuclear factor-kappa B (NF-κB) pathway, janus 
kinase-signal inducer pathway (JAK-STAT) under the stimu-
lus of tumor necrosis factor-α (TNFα), lipopolysaccharides 
(LPS) and interleukin-1 (IL-1), and the mitogen activated 
protein kinase-c-jun N-terminal kinase (MAPK-JNK) path-
way (Soliman et al. 2022). The activated MAPK phosphoryl-
ates different transcriptional factors such as c-Myc, c-Jun, and 
ATF-2 that in turn activates numerous cellular functions such 
as cell proliferation, differentiation, survival for the ERK-1/2 
signalling cascade, autophagy, inflammation and apoptotic 
stress (Kassouf et al. 2020). Different peptides are reported 
to have anti-inflammatory properties (Güneş et al. 2022). 
However, it is still yet to understand about peptide specific 
receptors and the signalling pathways associated with the 
anti-inflammatory activity and furthermore, the crosstalk in 
between RAS components and the inflammatory signalling 
pathways requires further investigation and elucidation.

Antimicrobial activity of bioactive peptides

From last few years, different peptides with antibacterial, 
antifungal and antiviral activities have been isolated in 
vertebrates as well as invertebrates, which being a vital 
part of the innate immune system of the host as given in 
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Table 1. In majority of the cases, the mechanism of action 
of antimicrobial peptides is different from the conventional 
antibiotics. This is the reason why these peptides are 
proving efficient as new drugs to fight infectious agents. 
The effectiveness of these biologically active peptides as 
antimicrobial agents depends on structural properties e.g. 
amino acid composition, peptide size, or charge (Akbarian 
et al. 2022). It has been concluded that in the case of some 
antimicrobial peptides, although the peptides reduce the 
harmful microbial growth, they do not directly interact 
with the target microbes or microorganisms, but do so 
with the stimulation of the host immune system. These 
activities include stimulating of the stimulating macrophage 
phagocytosis, natural killer cells proliferation, and 
encouraging the expression of many antibodies, cytokines, 
and chemokine. Antimicrobial peptides on the one hand, 
have a dual potential as they protect the host against harmful 
pathogens through antimicrobial activity, and on the other 
hand, these prevent the host from the adverse effects of 
excess of inflammatory responses (Patil et al. 2015).

Cholesterol lowering activity of bioactive peptides

Different BPs have been reported which are responsible for 
lowering the cholesterol, reduce cholesterol micelle produc-
tion, inhibit lipase activity, and bind strongly to bile acids, 
suggesting that they may decrease cholesterol when ingested 
(Siow et al. 2016). For instance, the rats when fed with a 
high-cholesterol diet, sericin-derived oligopeptides, reduced 
total cholesterol levels in blood and non-high-density lipo-
protein (HDL) cholesterol levels. The peptides decreased 
cholesterol absorption and reduce cholesterol solubility in 
lipid micelles. They also bind to taurocholate, deoxytau-
rocholate, and glycodeoxycholate, may be turning down 
cholesterol absorption in the intestine (Lapphanichayakool 
et al. 2017). LPYP, IAVPGEVA, and IAVPTGVA are soy-
bean derived peptides that have been shown to inactivate 
the LDLR-SREBP 2 pathway (LDL receptor mediated 
sterol regulatory element binding protein-2 pathway) and 
decreases LDL uptake (Lammi et al. 2015). The peptides 
also decrease HMG-CoA reductase activity to prevent cho-
lesterol biosynthesis.

Conclusion and future directions

Modern technological interventions and recent literature 
are strongly proven that our daily food stuff is enriched 
by bioactive peptides (BP) evolved by peptide linkage of 
amino acids or encrypted from the native protein structures 
having desirable bioactive potential. Biological activities-
associated with BPs are antioxidants, antihypertensive, 
antimicrobials, anti-inflammatory and anti-cancerous for 

the prevention of various health related diseases. Moreover, 
BPs are nowadays evolved as biologically active molecules 
with the potential scope to enhance microbial degradation 
in foods, ward off oxidation of foods, amend a diverse range 
of human diseases to enhance the overall quality of human 
life. In conclusion, BP are naturally produced biologically 
active compounds which possibly act as valuable tool kits 
to restore human health. However, we are still facing issues 
pertaining to the in-depth information regarding the sev-
eral aspects of bioactive peptides such as, pharmacokinetics, 
peptide bioavailability and metabolic role in humans. Fur-
ther progress in BPs regarding their extraction, delivery and 
biological properties under both in-vitro and in vivo condi-
tions requires complete discovery and technical interven-
tion. Recently we observed that some of the underutilised 
crops like Buckwheat, which is considered as nutrient dense 
food sources with gluten-free protein has potential of being 
an excellent sources of BP (Sofi et al. 2022; Mir et al. 2022).
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