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Abstract 
The analysis of the secretome provides important information on proteins defining intercellular communication and the 
recruitment and behavior of cells in specific tissues. Especially in the context of tumors, secretome data can support decisions 
for diagnosis and therapy. The mass spectrometry–based analysis of cell-conditioned media is widely used for the unbiased 
characterization of cancer secretomes in vitro. Metabolic labeling using azide-containing amino acid analogs in combination 
with click chemistry facilitates this type of analysis in the presence of serum, preventing serum starvation-induced effects. 
The modified amino acid analogs, however, are less efficiently incorporated into newly synthesized proteins and may perturb 
protein folding. Combining transcriptome and proteome analysis, we elucidate in detail the effects of metabolic labeling 
with the methionine analog azidohomoalanine (AHA) on gene and protein expression. Our data reveal that 15–39% of the 
proteins detected in the secretome displayed changes in transcript and protein expression induced by AHA labeling. Gene 
Ontology (GO) analyses indicate that metabolic labeling using AHA leads to induction of cellular stress and apoptosis-related 
pathways and provide first insights on how this affects the composition of the secretome on a global scale.

Key messages 
•	 Azide-containing amino acid analogs affect gene expres-

sion profiles.
•	 Azide-containing amino acid analogs influence cellular 

proteome.

•	 Azidohomoalanine labeling induces cellular stress and 
apoptotic pathways.

•	 Secretome consists of proteins with dysregulated expres-
sion profiles.
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Introduction

The development of tumors is a multistep process in which 
healthy cells of the body develop into uncontrolled grow-
ing tumor cells. Tumors, however, are much more than just 
malignant transformed cells alone. They consist of a hetero-
geneous collection of infiltrating and resident host cells, as 
well as extracellular matrix and secreted factors. The sum 
of all these components constitutes the tumor microenvi-
ronment (TME) [1]. Understanding the complex biology of 
the TME has high potential to reveal attractive strategies to 
block tumor growth and metastasis by targeting particular 
components of the TME and achieve durable therapeutic 
efficacy [2]. The detailed cellular composition of the TME 
varies between different tumor types but in general contains 
endothelial cells, fibroblasts, and mesenchymal stromal cells, 
as well as cells of the adaptive (T and B cells) and innate 
(macrophages, dendritic cells, neutrophil granulocytes, NK 
cells) immune system. All these cells constantly secrete pro-
teins and small molecule mediators to orchestrate intercel-
lular communication and other physiological processes [3, 
4]. The totality of all secreted substances of a (tumor) cell is 
termed the secretome and is of high scientific importance as 
the TME is strongly influenced by secreted substances such 
as cytokines and chemotactic and growth factors.

The secretome released by tumor cells displays an altered 
composition compared to the normal tissue from which they 
are derived [5]. It contains a pathophysiological composi-
tion of cytokines, chemokines, hormones, metabolites, and 
growth factors involved in cell–cell communication, angio-
genesis, hypoxia, metastasis, extracellular matrix remod-
eling, and drug resistance [6], which define a microenviron-
ment that significantly contributes to a mechanism called 
immune evasion [7]. Therefore, detailed knowledge of the 
tumor secretome is mandatory for understanding tumor 
growth and metastasis as well as for the design of specific 
tumor therapies [8, 9].

Several approaches have been developed over the past 
years to characterize the secretome of cancer cells. They 
range on the sample side from the analysis of cancer 
cell–conditioned media in vitro to biological fluids ex vivo 
and on the methods side from the use of targeted, e.g., 
ELISA or proximity extension assay (Olink) analysis to 
unbiased, e.g., mass spectrometry–based type of protocols 
[10, 11]. The identification or characterization of tumor-
secreted proteins from serum/plasma biomarkers ex vivo 
is difficult because of the high dynamic range of serum 
and plasma protein concentrations, and the presence of 
molecules secreted by different organs, as well as highly 
abundant proteins such as albumin and immunoglobulins 
that limit the detection of low abundance proteins [12]. 
Therefore, analyses of cell-conditioned medium have been 

widely used to identify tumor-secreted proteins and poten-
tial cancer biomarkers [13], despite the fact that tumor 
cell cultures do not adequately represent tumor tissues 
[11]. Nevertheless, the significantly reduced complexity 
facilitates the detection of even low abundance proteins 
but mostly relies on culture of tumor cells in serum-free 
medium to reduce the interference with serum proteins 
[14], thus often inducing serum starvation in the inves-
tigated cells. Notably, serum starvation bears the risk 
of affecting cell viability and function and as a conse-
quence the secretion of proteins [15, 16] or even releasing 
strictly intracellular components such as proteasomes or 
ribosomes into the culture medium upon cell death [17]. 
To overcome these problems, several protocols have been 
developed employing bioorthogonal metabolic labeling 
using azide-containing amino acids of cultured cells allow-
ing the capture of newly synthesized proteins through click 
chemistry from complex mixtures, like serum-containing 
culture medium [18–20]. This approach is often referred 
to as the “gold standard” of secretome analysis from cell-
conditioned medium, which has been further modified to 
reduce the number of contaminating proteins observed 
after the alkyne-based enrichment [21]. However, azide-
containing amino acid analogs are incorporated at reduced 
rates into proteins. This was shown previously in detail 
for the methionine (Met) analog AHA, which displays an 
around 400-times reduced translational activity [22].

It is therefore to be expected that the use of AHA affects 
protein synthesis and secretion. First experiments reveal that 
the use of AHA resulted in altered expression levels of around 
10% of proteins in human primary fibroblasts after 24 h of 
labeling [23]. To precisely describe and understand the effects 
of AHA on the behavior of cells, we here performed com-
parative transcriptome, proteome, and secretome analyses of 
different tumor cells grown in AHA- or Met-containing media 
and evaluated the differences in gene and protein expression 
profiles between normal (Met) and azide-analog containing 
media. Overall, we observed a significant up- and down-
regulation of genes and proteins in response to the replace-
ment of Met by AHA. Depending on the cell line investi-
gated, 15–39% of the proteins detected in the secretome were 
affected by AHA labeling regarding their expression levels 
in the transcriptome and proteome. GO analysis revealed that 
AHA labeling induces the up-regulation of genes and proteins 
characteristic for cellular stress, regulation of apoptosis, pro-
tein translation and folding, and cell proliferation.

In summary, our experiments provide a highly detailed view 
of AHA effects on cell growth, viability, and AHA-induced 
perturbations of the cellular transcriptome and proteome. GO 
analyses point towards AHA-induced cellular stress, induced 
by protein misfolding and reduced translation rates. These 
aspects should be kept in mind when interpreting the results of 
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click chemistry–based secretome analyses and suggest that the 
presence of specific secretome components of interest should 
be validated by different assays.

Results

AHA labeling affects cell growth and viability

To analyze in detail the consequences of AHA labeling, we 
cultured the mouse colon adenocarcinoma cell line MC38 
up to 24 h under standard labeling conditions as described in 
“Methods.” We observed that the replacement of Met by AHA 
in the culture medium affected cell viability and proliferation 
(Fig. 1a, b) and induced a shift of the entire cell population 
into a pre-apoptotic state as indicated by the staining with TO-
PRO-3 and Annexin V (Fig. 1c). TO-PRO-3 penetrates cells 
with compromised membranes characteristic of dead cells and 
Annexin V detects phosphatidylserine in the plasma mem-
branes of apoptotic cells. This observation was even more 
pronounced in Jurkat cells and primary T cells from OT-I 

mice, activated by in vitro stimulation of splenocytes with 
the cognate synthetic peptide (Fig. 1c). For the Jurkat cells, 
only 40% of the cells can be found in the live gate after 20 h of 
AHA labeling and for the OT-I culture, the number of living 
cells was reduced from around 50% to less than 20%.

This clear indication of AHA affecting cell viability and 
growth can be expected to influence the expression of genes, 
cellular proteostasis, and—as a consequence—also the com-
position of the proteome. We therefore decided to perform an 
in-depth analysis of the transcriptome and proteome of different 
tumor cell lines to further characterize the effects of AHA labe-
ling on protein secretion. Our workflow is depicted in Fig. 2.

Modification of the transcriptome by AHA labeling

To study the effects of metabolic labeling with AHA 
on the transcriptome level, we initially investigated the 
effects on gene expression profiles using MC38 murine 
colon adenocarcinoma cells. Cells were grown in Met- or 
AHA-containing medium for 20 h. Proteins and RNA were 
isolated from the cell pellet as described in “Methods.” 

a

b

C

Fig. 1   Influence of AHA on cell viability and growth. a MC38 cells 
were grown in control medium and medium containing Met or AHA 
for 20  h. Cell viability was determined by eFluor780 staining. b 
MC38 cells were cultured in control medium and medium contain-
ing Met or AHA. At the indicated time points, live cells were counted 

using trypan blue staining. c Indicated cells were cultured for 20 h in 
control medium and medium containing Met or AHA. The percent-
age of living and apoptotic/dead cells was determined by Annexin V 
and TO-PRO-3 Iodide staining followed by flow cytometry analysis
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RNA sequencing analysis was performed and transcrip-
tome profiles were obtained. Subsequently, we performed 
a principal component analysis (PCA) of the results from 
3 biological replicates of MC38 cells either grown in Met 
or AHA. Our PCA revealed a very high similarity of the 
transcriptome within the biological replicates but a notice-
able difference between Met and AHA culture conditions 
(Fig. 3a). Criteria for gene expression and regulation are 
described in “Methods.” A total of 3521 of the 9934 genes 
expressed in MC38 cells were differentially regulated in 
their expression, with 18% being up-regulated and 17% 
being down-regulated in AHA-containing culture medium 
after 20 h (Fig. 3b), indicating a profound perturbation of 
the transcriptome by metabolic labeling with AHA.

To confirm this observation, we extended our analysis 
using the 3 human melanoma cell lines MEL-HO, SK-
MEL-37, and D41-MEL as well as the 3 human lung 
carcinoma cell lines NCI-H1650, NCI-H226, and A549. 
Again, PCA of the transcriptome showed remarkable 

Fig. 2   Schematic representation of the experimental workflow used 
for the transcriptome, proteome, and secretome analysis of the differ-
ent cell lines. (Created with BioRe​nder.​com)

ca

b d

Fig. 3   Transcriptome analysis of cell lines cultured in Met or AHA 
conditions. a PCA analysis of MC38 transcriptome after 20 h culture 
in either Met- or AHA-containing medium. Each dot represents one 
of three biological replicates. b Percentage and number of differen-
tially expressed (DE) genes in MC38 cells after 20 h culture in either 
Met- or AHA-containing medium. c PCA analysis of the transcrip-

tome of different human tumor cell lines after 20 h culture in either 
Met- or AHA-containing medium. In every plot, each dot represents 
one of three biological replicates. d Percentage and number of DE 
genes in the different human tumor cell lines after 20  h culture in 
either Met- or AHA-containing medium

https://www.biorender.com/
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differences between Met and AHA culture conditions 
(Fig. 3c). Similar to our observation for MC38 cells, 13 
to 35% of the genes expressed in the human tumor cells 
were up- or down-regulated in their expression with a 
slight tendency for more down-regulated genes (Fig. 3d), 
confirming the AHA-induced transcriptome perturbation.

Effects of AHA labeling on proteome composition

From the identical cell pellet of cultures used above for RNA 
sequencing analysis, the proteins were isolated and subjected 
to tryptic digestion and subsequent label-free quantitative 
mass spectrometry analysis as described in “Methods.” For 
the analysis of the proteome of MC38 cells, the proteins 
identified in 3 technical replicates from each of the 3 bio-
logical replicates were analyzed with PCA comparing Met 
and AHA culture conditions. Criteria for protein expression 

and regulation are described in “Methods.” Technical and 
biological replicates showed remarkable differences between 
the two culture conditions (Fig.  4a) and of the total of 
3228 proteins detected, 14% were up- and 7% were down- 
regulated (Fig. 4b). Analyzing the proteins detected in the 
3 human melanoma cell lines MEL-HO, SK-MEL-37, and 
D41-MEL as well as in the 3 human lung carcinoma cell 
lines NCI-H1650, NCI-H226, and A549, we observed again 
a clustering of cells grown in Met or AHA conditions after 
PCA analysis (Fig. 4c). Clustering was more pronounced 
for NCI-H226, A549, D41-MEL, and SK-MEL-37 cells and 
less pronounced for NCI-H1650 and MEL-HO cells. The 
total number of quantified proteins ranged from 3550 to 4152 
and up- or down-regulated proteins varied from 6 to 19% 
(Fig. 4d). These results indicate that metabolic labeling with 
AHA modifies cellular protein expression profiles, and thus 
likely also modifies the secretome composition.

Fig. 4   Proteome analysis of cell lines cultured in Met or AHA condi-
tions. a PCA analysis of MC38 proteome after 20 h culture in either 
Met- or AHA-containing medium. The nine dots represent three tech-
nical replicates derived from each of the three biological replicates. b 
Percentage and number of differentially regulated proteins in MC38 
cells after 20  h culture in either Met- or AHA-containing medium. 

c PCA analysis of the proteome of different human tumor cell lines 
after 20  h culture in either Met- or AHA-containing medium. The 
nine dots in every plot represent three technical replicates derived 
from each of the three biological replicates. d Percentage and number 
of differentially regulated proteins in the different human tumor cell 
lines after 20 h culture in either Met- or AHA-containing medium
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Gene Ontology analysis of genes and proteins 
with modulated expression after AHA labeling

Having observed that AHA labeling affects the expression 
levels of a significant number of genes and proteins, we 
performed GO analyses to identify the affected biological 
processes and pathways using the Enrichr software tool 
[24–26]. Initially, analyzing genes and proteins detected in 
MC38 cells with up- and down-regulated expression after 
AHA labeling, we observed that pathways correlated with 
cellular stress and apoptosis were up-regulated (Fig. 5a) 
whereas pathways involved in cell growth were down- 
regulated (Fig. 5b), thus indicating that AHA might induce 
protein misfolding and reduced protein translation. Extend-
ing the analysis to the other six cell lines investigated, a 
highly similar picture emerged, confirming that pathways 
associated with cellular stress were up-regulated (Fig. 6a) 
and pathways relevant for cell growth were down-regulated 
(Fig. 6b).

Influence of AHA‑induced regulation of gene 
and protein expression on the secretome

To understand the potential consequences of metabolic AHA 
labeling on the composition of the secretome, the superna-
tants of MC38 as well as the six human tumor cells grown 
in Met and AHA conditions were subjected to secretome 

analyses by mass spectrometry. We identified 521 proteins in 
the secretome of MC38 cells, based on a protocol similar to 
Eichelbaum et al. [18] and described in detail in the “Meth-
ods” section. From these proteins, 388 were also detected in 
both transcriptome and proteome analyses (Fig. 7a). Within 
this group, 254 secreted proteins (corresponding to 66%) 
showed no up- or down-regulation at the transcriptome and 
proteome levels. In contrast, 134 secreted proteins (corre-
sponding to 34%) displayed a regulated expression in both 
transcriptome and proteome analyses.

The same analysis, again with a focus on secreted proteins 
detected also in the transcriptome and proteome analyses, 
was performed for the six human tumor cell lines (Fig. 7b). 
Starting with the different melanoma cell lines, we obtained 
the following results. The percentage of secreted proteins 
with regulated expression profiles in the transcriptome 
and proteome was 27% for MEL-HO cells, 39% for SK-
MEL-37 cells, and 15% for D41-MEL cells. Analyzing the 
secretome of the different lung adenocarcinoma cell lines, 
we found 16% of the secreted proteins from NCI-H1650 
cells, 15% from NCI-H226 cells, and 29% from A549 cells 
to be regulated in their expression in the transcriptome and 
proteome analyses. In Supplementary Information SI1, we 
also provide the information for all proteins identified in the 
secretome, which were unchanged, up- or down-regulated, 
including those that could only be detected in the transcrip-
tome or proteome analyses.

Fig. 5   GO analysis of the regulated genes and proteins in MC38 cells 
cultured in Met or AHA conditions. Transcriptome and proteome 
profiles of MC38 cells obtained after 20 h culture in either Met- or 
AHA-containing medium were analyzed using Enrichr software to 

identify biological pathways affected by AHA labeling. The com-
bined scores for selected GO in the biological processes category are 
indicated. Pathways identified by up-regulated genes and proteins are 
shown in a, and down-regulated pathways are shown in b 
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Discussion

The analysis of proteins secreted by cells represents an 
important tool for the understanding of cellular com-
munication, the behavior of cells in tissues, and—more  
specifically—the composition of the TME. While work-
flows to analyze the secretome in serum-containing media 
have been described, they are hampered by the presence of 
highly abundant serum proteins, which limit the observable 
dynamic range and thus the analytical depth of the secretome 
[27]. To overcome these issues associated with serum- 
containing media, serum-free culture conditions have been 
used for secretome analysis and the identification of low 
abundant secreted proteins [28].

However, cells grown under these conditions often display 
limited cell growth, show in many cases reduced viability, 
and will adapt their intracellular pathways to these condi-
tions [20], this potentially skewing the composition of the 
secretome. To overcome these issues, bioorthogonal meta-
bolic labeling approaches represent an attractive alternative 

as they allow to grow cells in the presence of serum and to 
specifically isolate newly synthesized [29–31] and secreted 
proteins using click chemistry [32] out of complex protein 
mixtures, e.g., present in the serum-containing culture super-
natant. While the analysis of the secretome based on azide-
containing amino acid metabolic labeling in combination 
with click chemistry pioneered by Eichelbaum et al. [18] 
has distinct advantages, the use of amino acid analogs may 
induce yet undescribed effects in the investigated cells. Along 
these lines, it was reported that azide-containing amino acids 
are incorporated at reduced rates into proteins. This has been 
illustrated for the Met analog AHA, showing an around 400-
times reduced translational activity [22].

These previous observations prompted us to investigate 
in detail the consequences of AHA labeling on the gene and 
protein expression profiles and correlate changes with the 
presence of proteins in the secretome. We observed distinct 
effects on cell viability (Fig. 1a) and proliferation (Fig. 1b) 
after 18–24 h of AHA labeling using MC38 cells. Further-
more, AHA labeling for 20 h resulted in the induction of 

Fig. 6   GO analysis of the regulated genes and proteins in the six 
human tumor cell lines cultured in Met or AHA conditions. Tran-
scriptome and proteome profiles of the different human tumor cell 
lines obtained after 20  h culture in either Met- or AHA-containing 
medium were analyzed using Enrichr software to identify biologi-

cal pathways affected by AHA labeling. The combined scores for 
selected GO in the biological processes category are indicated. Path-
ways identified by up-regulated genes and proteins are shown in a, 
and down-regulated pathways are shown in b 
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apoptosis ranging from delicate, as observed for MC38 cells, 
to large effects, as observed for Jurkat cells or primary T cells 
from OT-I mice (Fig. 1c). This clearly indicates that AHA 
labeling can affect cell viability with different severities and 
thereby can be expected to have an impact on the secretome. 
In line with this, secretome analysis of Jurkat and OT-I T 
cells after 20 h of AHA labeling revealed, unlike what was 
observed for MC38 cells (Supplementary Information SI2 
a), no significant increase in the number of detected proteins 
and peptides after click chemistry enrichment in the AHA vs. 
Met condition (Supplementary Information SI2 b, c). This 
could indicate that these cells cannot efficiently take up and 
incorporate AHA and thus experience methionine starvation. 
For these cell types, alternative secretome workflows using 
either click chemistry–based enrichment of secreted glyco-
proteins [33, 34] or click-selective tRNA synthetases [35, 
36] might be viable alternatives. However, these approaches 
either focus on a subset of the secretome or require transfec-
tion of the cells of interest.

As MC38 cells were only marginally affected in viability, 
showed no significant induction of apoptosis (Fig. 1), and 
allowed for a significant enrichment of AHA-containing pro-
teins (Supplementary Information SI2 a), they appeared to be 
well suited for AHA-based secretome analysis. We therefore 
decided to investigate potential AHA effects in detail using 
the workflow depicted in Fig. 2. Our results indicate that 
AHA labeling resulted in the up- or down-regulation of more 

than 30% of the genes identified in transcriptome analysis 
(Fig. 3a, b) and more than 20% of the proteins identified 
in proteome analysis (Fig. 4a, b). GO analysis revealed that 
AHA labeling resulted in the induction of an unfolded protein 
response and induction of cellular stress as well as inhibition 
of gene transcription, DNA replication, and the induction of 
apoptosis (Fig. 5). These findings are well in line with the 
reduced translational activity of AHA previously described 
[22] and point towards effects of AHA on protein folding 
and/or stability. This is supported by our observation that 
proteins containing higher levels of methionine are enriched 
in the down-regulated fraction of most cell lines analyzed 
(Supplementary Information SI3). In addition, only a weak 
correlation between changes of protein and transcript abun-
dance could be detected (Supplementary Information SI4).

Aligning the regulated expression of genes and proteins 
with proteins secreted by MC38 cells, we found that more 
than 30% of the proteins identified in the secretome were 
up- or down-regulated with regard to their gene and protein 
expression profile (Fig. 7a). This can be expected to have a 
significant quantitative and qualitative impact on the com-
position of the secretome, resulting in an under- or over-
representation of proteins in the secretome, thus inducing 
an unwanted and unpredictable bias in the data. We next 
extended this type of analysis to 3 human lung carcinoma 
and to 3 human melanoma cell lines. Similar to our obser-
vations for MC38 cells, AHA labeling caused an up- or 

Fig. 7   Heatmaps showing the number of secreted proteins with regu-
lated gene and protein expression profile induced by AHA labeling. 
a Distribution of secreted proteins from MC38 cells with regard to 
their regulation in the transcriptome and proteome expression profile. 
The colors indicate the number of proteins present in the secretome 
that show an up-, down-, or not regulated profile in the transcriptome 
and proteome analysis. The total number of proteins identified in the 

secretome, which were also detected in transcriptome and proteome 
analysis, was 388. b Analysis as in a for the secretome of the six 
human tumor cell lines. The total number of proteins identified in the 
secretome and also in transcriptome and proteome analysis was 329 
for MEL-HO cells, 299 for SK-MEL-37 cells, 327 for D41-MEL, 37 
for NCI-H1650, 100 for NCI-H226, and 109 for A549 cells
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down-regulation of genes ranging from 13 to 35%, result-
ing in a clear clustering and separation of cells grown in 
Met or AHA conditions after PCA analysis (Fig. 3c, d). The 
observed regulation of gene expression affected also the com-
position of the proteome and again, we found a clustering of 
cells grown in Met or AHA conditions after PCA analysis 
and an up- or down-regulation of protein expression vary-
ing from 6 to 19% (Fig. 4c, d). Not surprisingly, the level 
of changes in the gene expression profile correlated with 
changes in the proteome composition, as nicely exemplified 
by SK-MEL-37, showing the highest, and NCI-H1650 cells, 
showing the lowest level of alterations (Figs. 3d and 4d). As 
observed for MC38 cells, a substantial number of proteins 
identified in the secretome of the six human tumor cell lines 
displayed an AHA-induced up- or down-regulated expression 
profile, ranging from 15 to 39% (Fig. 7b). This strongly sug-
gests that the detected secretome composition is modulated 
by the AHA labeling. In line with this, the GO analysis of 
the regulated genes and proteins (Figs. 5 and 6) indicated that 
AHA might induce protein misfolding and reduced protein 
translation.

Across all cell lines, over 95% of the proteins that we 
consider secreted are also present in the Human Cancer 
Secretome Database [37]. The low number of proteins 
detected in the secretome of the lung carcinoma cell lines 
compared to what was identified in the melanoma cell lines 
might be a consequence of the observed slow growth rate 
of these cells. As a consequence, these cells might display a 
lower rate of protein translation and therefore lower numbers 
of proteins carrying an AHA label, allowing their purifica-
tion by click chemistry.

To alleviate the effects on the qualitative and quantita-
tive protein composition of the secretome induced by AHA 
labeling, shorter incubation times may be used, but those 
will also reduce the amounts of labeled proteins and thus 
limit the sensitivity of this approach, as it will reduce the 
amounts of proteins available for click chemistry–based 
enrichment from serum-containing culture medium. Alter-
natively, novel approaches employing nanoparticles to com-
press the dynamic range of biological fluids [38, 39] may 
also be adapted to analyze the secretome of cells cultured in 
the presence of serum.

Concludingly, our data describe a profound effect of 
metabolic labeling using AHA on both transcriptome and 
proteome level. In addition, not all cell types seem to be able 
to either take up or incorporate AHA. This became evident 
during the analysis of proteins secreted by the Jurkat T cell 
line or primary T cells derived from TCR-transgenic OT-I 
mice. These cells displayed high rates of cell death (Fig. 1c) 
and in contrast to, e.g., MC38 cells, showed no significant 
enrichment of click chemistry–captured proteins (Supple-
mentary Information SI2).

Our results indicate that bioorthogonal metabolic  
labeling–based analyses targeting newly synthesized [40] 
and/or secreted proteins should be preceded by detailed anal-
yses regarding cellular viability, the induction of apoptosis, 
and, if possible, alterations in the gene expression profiles. 
This will provide helpful insights for adapting existing pro-
tocols, e.g., by reducing labeling times or selecting alterna-
tive methods, better suited for the cells to be analyzed.

Methods

Cell culture

MC38, SK-MEL-37, and A549 cell lines were maintained 
in DMEM containing 10% FCS, 2 mM glutamine, 1 mM 
sodium-pyruvate, 100 units/mL penicillin, and 100 μg/mL 
streptomycin (control medium). The cell lines Jurkat, MEL-
HO, D41-MEL, NCI-H226, and NCI-H1650 were cultured in 
RPMI complemented with 10% FCS, 2 mM glutamine, 1 mM 
sodium-pyruvate, 100 units/mL penicillin, and 100 μg/mL 
streptomycin (control medium). MC38 cells were kindly pro-
vided by H.-C. Probst (Institute for Immunology, University 
Medical Center, Johannes Gutenberg University Mainz), NCI-
H226 (CRL-5826) and NCI-H1650 (CRL-5883) cells were 
obtained from ATCC, A549 (ACC 107) and MEL-HO (ACC 
62) cells were obtained from the DSMZ-German Collec-
tion of Microorganisms and Cell Culture GmbH, D41-MEL 
cells were kindly provided by Catherine Wölfel (Department 
of Hematology and Oncology, University Medical Center, 
Johannes Gutenberg University Mainz), Jurkat cells were 
kindly provided by Ari Waisman (Institute for Molecular 
Medicine, University Medical Center, Johannes Gutenberg 
University Mainz), and SK-MEL-37 cells were obtained from 
Sigma-Aldrich (SCC262).

OT-I transgenic mice, purchased by Charles River Labora-
tories, were used to generate primary T cells. OT-I splenocytes 
were cultured in control medium: RPMI 1640 supplemented 
with 10% FCS, 2 mM glutamine, 100 units/mL penicillin, 
100 μg/mL streptomycin, 50 μM β-mercaptoethanol, in the 
presence of IL-2 (supernatant of XL-63 cells used at a dilution 
of 1:250, kindly provided by H.-C. Probst (Institute for Immu-
nology, University Medical Center, Johannes Gutenberg Uni-
versity Mainz)), and peptide (1 μg/mL ovalbumin 257–264) for 
5 days. The culture in Met or AHA conditions was performed 
using the appropriate Stable Isotope Labeling by Amino acids 
in Cell culture (SILAC) medium without l-leucine, l-arginine, 
l-lysine, and l-methionine (SILAC DMEM or SILAC RPMI, 
both purchased by Athena Enzyme Systems) containing all the 
supplements used in the control medium and supplemented 
either with 0.8 mM l-leucine, 0.8 mM l-lysine, 0.4 mM 
l-arginine, and 0.2 mM l-methionine (SILAC medium + Met) 
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or with 0.8 mM l-leucine, 0.8 mM l-lysine, 0.4 mM l-arginine, 
and 0.1 mM l-AHA (SILAC medium + AHA). All cells were 
maintained in a humidified incubator with 5% CO2 at 37 °C.

Cell growth and viability

Cell viability was performed using MC38 cells incubated 
either in control medium or in SILAC medium supplemented 
with Met or AHA. After 20 h of incubation, cells were fixed 
and stained using the fixable viability dye eFluor780 (eBiosci-
ence) before analyzing live and dead cells using the BD FAC-
SCanto system and the DIVA software. For cell growth deter-
mination, 0.2 × 106 MC38 cells were seeded in 6-well plates 
and grown in control medium or in SILAC labeling medium 
supplemented with Met or AHA. After 18 and 24 h, cells 
were harvested and counted microscopically using trypan blue 
staining for dead cell exclusion. For each condition, three bio-
logical replicates were generated. For the Annexin V stain-
ing, 1 × 106 MC38, Jurkat, or primary OT-I cells incubated 
for 20 h in three different media (control medium, SILAC 
medium + Met, or SILAC medium + AHA) were harvested, 
washed in Annexin-binding buffer (10 mM Hepes, 140 mM 
NaCl, and 2.5 mM CaCl2), and stained with Annexin V–FITC 
(BD Biosciences) according to the manufacturer’s protocol 
for 15 min at 20 °C in the dark. Before analysis, TO-PRO-3 
Iodide (Invitrogen) was added to a final concentration of 
40 nM and samples were acquired using the Amnis Imag-
eStream MK II and analyzed using the FlowJo software.

AHA labeling and enrichment of newly synthesized 
proteins

Secretome analysis was performed using the click chem-
istry–based approach similar to the method developed by 
Eichelbaum et al. [18]. Cells were grown in their appropri-
ate control medium to 70% confluency in two T75 flasks 
(Greiner Bio-One CELLSTAR) for each biological replicate. 
After removing the medium, cells were washed twice with 
warm PBS and 7 mL of starvation medium (appropriate 
SILAC medium with the required supplements as described 
for the control media of the different cells used, includ-
ing 0.8 mM l-leucine, but without Met or AHA, l-lysine, 
and l-arginine) was added. After 30 min of starvation, the 
medium was removed and cells were cultured either in 
AHA labeling medium (SILAC medium supplemented with 
0.8 mM l-leucine, 0.8 mM l-lysine, 0.4 mM l-arginine, and 
0.1 mM l-AHA) or in Met medium (same SILAC medium 
supplemented with 0.2 mM l-methionine instead of l-AHA). 
After 20 h labeling, the supernatants were collected, centri-
fuged for 5 min at 1000 g and 4 °C to remove remaining cells, 
and concentrated using Amicon Ultra-15 tubes (molecular 

mass cutoff 3000 Da, Millipore) to 0.25 mL. For all the cell 
lines and for the primary OT-I cells, three biological repli-
cates were generated. Newly synthesized, AHA-containing 
proteins were isolated from the concentrated supernatants 
by performing click chemistry–based enrichment using the 
Jena Bioscience Click Chemistry Capture Kit according to 
the manufacturer’s protocol. For both conditions (AHA and 
Met), supernatants were washed thoroughly to remove unspe-
cifically bound proteins. For subsequent proteomic analysis 
by mass spectrometry, proteins bound to the beads were 
reduced, alkylated, and digested with trypsin. For digestion, 
beads were suspended in 50 µL digestion buffer (50 mM Tris, 
pH 8, 2 mM CaCl2, and 0.1% RapiGest), and 0.5 μg trypsin 
was added and incubated overnight at 37 °C. The peptide 
solution was collected and the resin was washed with 50 μL 
50 mM ammonium bicarbonate (NH4HCO3). Both solutions 
were combined and kept frozen until sample preparation for 
mass spectrometry analysis.

RNAseq—sample preparation and biostatistics

After collecting supernatants for secretome analysis, pel-
lets from the same cells grown in both conditions (Met 
and AHA) were washed twice with PBS and subjected to 
transcriptome analysis. RNA was purified with the RNeasy 
Plus Micro Kit according to the manufacturer’s protocol 
(Qiagen). RNA was quantified with a Qubit 2.0 fluorometer 
(Invitrogen) and the quality was assessed on a Bioanalyzer 
2100 (Agilent) using an RNA 6000 Pico chip (Agilent). 
Samples with an RNA integrity number (RIN) of ≥ 8 were 
used for library preparation. Barcoded mRNA-seq cDNA 
libraries were prepared from 150 ng of total RNA using 
NEBNext® Poly(A) mRNA Magnetic Isolation Module and 
NEBNext® Ultra™ II RNA Library Prep Kit for Illumina® 
according to the manual with a final amplification of 12 
PCR cycles. Quantity was assessed using Invitrogen’s 
Qubit HS assay kit and library size was determined using 
Agilent’s 2100 Bioanalyzer HS DNA assay. Sequencing 
was performed on Illumina’s NovaSeq 6000 at Novogene 
(Cambridge, UK). Raw sequencing reads (approx. 30 mio 
150 PE reads per sample) were preprocessed according 
to the Illumina standard protocol. Sequence reads were 
trimmed for adapter sequences and further processed using 
Qiagen’s software CLC Genomics Workbenchv20.0 with 
CLC’s default settings for RNAseq analysis. Reads were 
aligned toGRCm38 (file version GRCm38.p6) or GRCh38 
(file version nGRCh38.104) genome dependent on cell line 
with the following settings: mismatch cost = 2; insertion 
cost = 3; deletion cost = 3; length fraction = 0.8; similarity 
fraction = 0.8. Detailed tables with expression values TPM, 
RPKM, total, and unique gene reads for each sample are 
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deposited under the GEO accession number GSE211231. 
PCA plots were generated using CLC’s tool “PCA for 
RNA-Seq” with the following filtering and normalization 
settings: (a) “log CPM” (counts per million) values are 
calculated for each gene. The CPM calculation uses the 
effective library sizes as calculated by the TMM normaliza-
tion. After this, a Z-score normalization is performed across 
samples for each gene: the counts for each gene are mean 
centered, and scaled to unit variance. Genes or transcripts 
with zero expression across all samples or invalid values 
(NaN or + / − infinity) are removed.

For differential expression analysis, in order to fil-
ter out non- or low-expressed genes, genes with TPM 
mean expression ≥ 4 in any group (Met or AHA treated) 
were used for subsequent analysis. For statistical analy-
sis, CLC’s count based “Empirical analysis of Differen-
tial Gene Expression” implementing the “Exact Test” 
for two-group comparisons developed by Robinson and 
Smyth [41] was applied for each Met- versus AHA-
treated cell line. For the generation of pie charts show-
ing up- and down-regulated genes upon AHA treatment, 
the gene list of Met vs AHA comparism of each cell line 
was filtered on absolute fold change ≥ 2 and p values less 
than 0.05, which were considered statistically significant 
in this study.

Mass spectrometry—sample preparation

Secretome samples were digested “on-bead” during 
secretome protocol and subsequently desalted, using a Sep-
Pak tC18 µElution Plate (Waters Corporation, Milford, MA) 
and a vacuum manifold. Purified peptides were lyophilized 
and reconstituted in 20 µL 0.1% (v/v) formic acid (FA) for 
LC–MS analysis. Proteome samples were digested accord-
ing to filter-aided sample preparation (FASP) as described 
previously [42]. In brief, cell pellets were solved in 500 µL 
lysis buffer, containing 8 M urea, and disrupted in 15 cycles 
at 30 s sonification, followed by 30 s break in a Biorup-
tor (Diagenode, Liège, Belgium). Protein concentration 
was determined via Pierce 660 nm protein assay (Thermo 
Fisher Scientific), according to the manufacturer’s pro-
tocol and 20 µg protein was reduced using dithiothreitol 
(DTT), followed by alkylation with iodoacetamide (IAA). 
DTT was added again, to quench excess IAA. Buffer was 
exchanged by washing the membrane three times with 
50 mM NH4HCO3 prior to digestion overnight at 37 °C 
using trypsin at an enzyme-to-protein ratio of 1:50 (w/w). 
After digestion, peptides were eluted via centrifugation, fol-
lowed by washing the membrane once again with 50 mM 
NH4HCO3. Next, the samples were lyophilized and finally 
the purified peptides were reconstituted in 20 µL 0.1% (v/v) 
FA for LC–MS analysis.

Mass spectrometry—data acquisition

Nanoscale liquid chromatography (nanoLC) of tryptic pep-
tides was performed on an Ultimate 3000 RSLCnano LC 
system (Thermo Fisher Scientific) equipped with a PEP-
MAP100 C18 5 µm 0.3 × 5 mm trap (Thermo Fisher Scien-
tific) and an HSS-T3 C18 1.8 μm 75 μm × 250 mm analyti-
cal reversed-phase column (Waters Corporation). Mobile 
phase A was 0.1% (v/v) FA and 3% (v/v) dimethyl sulfoxide 
(DMSO) in water. Mobile phase B was 0.1% (v/v) FA and 
3% (v/v) DMSO in acetonitrile. Peptides were separated 
running a gradient from 2 to 35% at a flow rate of 300 nL/
min at 55 °C over 40 min. Together with wash- and column 
re-equilibration steps, the total analysis time was 60 min. 
Eluting peptides underwent mass spectrometric analysis on 
an Orbitrap Exploris 480 (Thermo Fisher Scientific) in a 
data-dependent acquisition (DDA) mode targeting the 10 
most abundant peptides for fragmentation (Top10). Spray 
voltage was at 1.8 kV, the funnel RF level at 40, and heated 
capillary temperature at 275 °C. Full MS resolution was 
set to 120,000 at m/z 200 and full MS automated gain con-
trol (AGC) target to 300% with a maximum injection time 
of 50 ms. Mass range was set to m/z 350–1500. The limit 
of isolated peptide precursors for MS2 scans was set to 
an ion target of 1 × 105 (AGC target value of 100%) with 
maximum injection times of 25 ms. Fragment ion spectra 
were acquired at a resolution of 15,000 at m/z 200. Inten-
sity threshold was kept at 1E4. Isolation window width of 
the quadrupole was set to m/z 1.6 and normalized collision 
energy was fixed at 30%. All data were acquired in profile 
mode using positive polarity.

Mass spectrometry—data processing

Acquired raw data were processed in MaxQuant Version 
2.0.3.0 [43] with database search performed in the inte-
grated search engine Andromeda. For human cell lines, 
the UniProt human proteome database (UniProtKB release 
2020–3-2_2-0–11, 20,365 entries), including 172 common 
contaminants, was used and for MC38 and OT-I cell line 
the UniProt mouse proteome database (UniProtKB release 
2020–3-2_2-0–11, 17,033 entries), including 172 common 
contaminants. Trypsin was specified as enzyme for diges-
tion and a maximum of two missed cleavages per peptide 
was allowed. Fixed modification was set for carbamidome-
thyl cysteine and variable modification was set for oxidized 
methionine. False discovery rate assessment for peptide and 
protein identification was done using the target-decoy strat-
egy by searching a reverse database and was set to 0.01 for 
database search in MaxQuant. TOP3 quantification [44] was 
used to infer protein level quantities.
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Mass spectrometry—statistical analysis

Obtained LFQ intensities were statistically analyzed in 
Microsoft Excel (2019) by performing two-tailed, unpaired 
t-tests across all technical and biological replicates and sub-
sequent Benjamini–Hochberg correction [45]. The log2 ratio 
was calculated for each cell line by subtracting the log2 of 
the average LFQ intensities across all technical and biologi-
cal replicates in the AHA group from the log2 of the average 
LFQ intensities across all technical and biological replicates 
in the methionine group. For entries with no detection in 
either group (Met or AHA), values were imputed by dividing 
the minimum intensity available in the corresponding dataset 
by 2. To define the secretome dataset, we applied a filter to 
retain only proteins with a log2 ratio ≤  − 1 between Met and 
AHA conditions after click chemistry–based enrichment. In 
the proteome data, proteins with a log2 ratio ≤  − 1 or ≥ 1 
were considered to be differentially expressed, in AHA or 
Met condition, respectively. To align secretome, proteome, 
and transcriptome data, the entry lists of each dataset were 
used to detect uniquely or commonly present entries (pro-
teins or genes), using R version 4.0.4 (2021–02-15).

Bioinformatics

Differentially expressed genes between both Met and AHA 
conditions were subjected to a GO analysis using the Enrichr 
web application (https://​maaya​nlab.​cloud/​Enric​hr/) [24–26]. 
The enrichment results in the category biological process 
were visualized in tables ranking the enriched gene set 
library terms according to their combined score. Before reg-
ulated proteins between Met and AHA treatments were ana-
lyzed using the Enrichr software, the UniProt proteins IDs 
were converted to gene IDs using the SYNGO tool (https://​
www.​syngo​portal.​org/​conve​rt) [46]. GO enrichment results 
of regulated proteins in the category biological process were 
listed in tables, allowing visualization of GO terms with the 
highest combined scores.
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