
Citation: Park, J.; Mah, A.J.; Nguyen,

T.; Park, S.; Ghazi Zadeh, L.; Shadgan,

B.; Gandjbakhche, A.H. Modification

of a Conventional Deep Learning

Model to Classify Simulated

Breathing Patterns: A Step toward

Real-Time Monitoring of Patients

with Respiratory Infectious Diseases.

Sensors 2023, 23, 5592. https://

doi.org/10.3390/s23125592

Academic Editor: Roozbeh Ghaffari

Received: 19 May 2023

Revised: 8 June 2023

Accepted: 13 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Modification of a Conventional Deep Learning Model to
Classify Simulated Breathing Patterns: A Step toward
Real-Time Monitoring of Patients with Respiratory
Infectious Diseases
Jinho Park 1 , Aaron James Mah 2,3 , Thien Nguyen 1, Soongho Park 1 , Leili Ghazi Zadeh 2,3,
Babak Shadgan 2,3 and Amir H. Gandjbakhche 1,*

1 Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of
Health, 49 Convent Dr., Bethesda, MD 20894, USA; jinho.park@nih.gov (J.P.); thien.nguyen4@nih.gov (T.N.);
soongho.park@nih.gov (S.P.)

2 Implantable Biosensing Laboratory, International Collaboration on Repair Discoveries,
Vancouver, BC V5Z 1M9, Canada; aamah@student.ubc.ca (A.J.M.); lili.ghazi@gmail.com (L.G.Z.);
babak.shadgan@ubc.ca (B.S.)

3 Department of Pathology & Laboratory Medicine, University of British Columbia,
Vancouver, BC V6T 1Z7, Canada

* Correspondence: gandjbaa@mail.nih.gov

Abstract: The emergence of the global coronavirus pandemic in 2019 (COVID-19 disease) created
a need for remote methods to detect and continuously monitor patients with infectious respiratory
diseases. Many different devices, including thermometers, pulse oximeters, smartwatches, and
rings, were proposed to monitor the symptoms of infected individuals at home. However, these
consumer-grade devices are typically not capable of automated monitoring during both day and
night. This study aims to develop a method to classify and monitor breathing patterns in real-
time using tissue hemodynamic responses and a deep convolutional neural network (CNN)-based
classification algorithm. Tissue hemodynamic responses at the sternal manubrium were collected
in 21 healthy volunteers using a wearable near-infrared spectroscopy (NIRS) device during three
different breathing conditions. We developed a deep CNN-based classification algorithm to classify
and monitor breathing patterns in real time. The classification method was designed by improving
and modifying the pre-activation residual network (Pre-ResNet) previously developed to classify
two-dimensional (2D) images. Three different one-dimensional CNN (1D-CNN) classification models
based on Pre-ResNet were developed. By using these models, we were able to obtain an average
classification accuracy of 88.79% (without Stage 1 (data size reducing convolutional layer)), 90.58%
(with 1 × 3 Stage 1), and 91.77% (with 1 × 5 Stage 1).

Keywords: COVID-19; deep learning; convolutional neural network; respiratory disease; NIRS;
wearable device

1. Introduction

Infectious respiratory diseases are caused by various microorganisms such as viruses,
fungi, parasites, and bacteria [1,2]. Examples of infectious respiratory diseases include
tuberculosis, diphtheria, bacterial pneumonia, and viral pneumonia, such as influenza
and COVID-19 disease [3–5]. These diseases affect not only individuals but can also
have a significant impact on society, depending on the extent. COVID-19 disease was
declared a global pandemic in 2020 by the World Health Organization (WHO) and has had
a great economic and social impact worldwide [5]. To prevent the severe consequences of
infectious disease, it is of utmost importance to develop an effective method to monitor
infected individuals. The current practice of treating individuals with infectious respiratory
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disease requires in-person examination, chest radiography, and, if necessary, blood and
sputum tests [6–8]. In a global pandemic, it is impossible to monitor individual patients due
to the large number of patients and limited medical personnel [9,10]. Additionally, in the
case of highly contagious infectious diseases, in-person examination poses an increased risk
of infection to healthcare providers [11]. Therefore, there is a need for remote methods to
monitor patients with infectious diseases to facilitate more efficient treatments and prevent
the spread of infection [12,13].

Common features of infectious respiratory diseases are symptoms caused by ab-
normalities in the respiratory system, such as cough and rapid and shallow breathing
(tachypnoea) [14,15]. These symptoms are often accompanied by fever, headache, fatigue,
and lethargy [16,17]. To examine these symptoms without direct contact with the patient,
different methods are being conducted to analyze abnormal breathing patterns. Among
these methods, radar [18,19], CT scans [20], X-rays [21], and ultrasounds [22] have shown
promising results. However, limitations regarding accessibility, patient movement, and
high costs prevent these techniques from being suitable for real-time and continuous patient
monitoring [18–25]. To overcome these difficulties, various wearable biosensors that can
test and monitor patients in real-time are being developed [26]. Among them, near-infrared
spectroscopy (NIRS) is receiving great attention due to its simple optical device structure,
low-cost, and capability to non-invasively monitor changes in tissue hemodynamic and
oxygenation responses to respiratory infections [27]. In addition to a conventional pro-
vision of heart rate and respiratory rate, commercially available wearable sensors such
as smart watches can measure peripheral arterial blood oxygen saturation (SpO2), which
was reported as a critical indicator of deterioration in patients with infectious respiratory
diseases [28]. The commercial wearable smart sensor can provide convenience when ob-
serving biological signals, but it can cause false readings due to various factors including
poor circulation, skin thickness, and skin color [29]. While SpO2 is measured from arterial
blood circulation, NIRS can measure changes in hemoglobin concentration within tissue
microvasculature. This provides a significant advantage to standard pulse oximeters, as
venous capillary blood provides the majority of the contribution to the hemoglobin absorp-
tion spectrum [30]. Furthermore, NIRS can measure tissue oxygenation without pulsatile
flow, which provides a significant advantage in the critically ill patient monitoring [31].
Additionally, Cheung et al. found that transcutaneous muscle NIRS can detect the effects of
hypoxia significantly sooner than pulse oximetry [32]. In patients with severe respiratory
disease, early diagnosis and treatment are essential to ensure improved patient prognosis
and reduce long-term negative health consequences [33]. Hence, in order to detect the
effects of infectious respiratory diseases on patients earlier, a NIRS device was used to
measure tissue hemodynamics.

In our previous studies, we employed a wearable NIRS device to monitor tissue
hemodynamic responses, including changes in tissue oxygenated hemoglobin (O2Hb),
deoxygenated hemoglobin (HHb), total hemoglobin (THb), and tissue saturation index
(TSI) from the chest of healthy volunteers during different simulated breathing tasks [34].
Measured O2Hb signals were then processed to extract three features: O2Hb change,
breathing interval, and breathing depth, averaged over a period of 60 s. These features
were then fed to a well-known machine learning model (Random Forest classification) to
classify different simulated breathing tasks: baseline (rest), rapid/shallow, and loaded
breathing. We were able to achieve a classification accuracy of 87%. However, a drawback
that can hinder the real-time monitoring capability of this methodology is the extra step of
feature extraction. In this study, to eliminate this time-consuming step, we propose using a
deep learning model to classify the three breathing patterns.

When the AlexNet model based on deep CNN won the 2012 ImageNet Large Scale
Visual Recognition Challenge (ISLVRC) with an overwhelming performance [35], various
types of convolutional neural network (CNN) models were proposed in various fields,
including image classification, image enhancement, computer vision, medical imaging, and
network security. The development of these deep learning algorithms has high potential
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for applications in the classification and monitoring of infectious respiratory diseases.
Cho et al. used a thermal camera to track breathing patterns using temperature changes
around an individual’s nose [36]. Following this study, a CNN-based algorithm was used
to classify psychological stress levels automatically. Shah et al. proposed a method to
identify characteristic patterns of COVID-19 disease from CT scan images taken using
a deep learning algorithm [37]. Chen proposed a deep learning model that adds a 3D
attention module to the 3D U-Net model [38], enabling the segmentation of COVID-19
lung lesions from CT images [39]. Rabbah et al., Haritha et al., and Qjidaa et al. proposed a
method of detecting COVID-19-infected individuals from chest X-ray images using a CNN-
based algorithm [40–42]. Wang et al., used a depth camera to measure depth variations in
the chest, abdomen, and shoulder of participants to classify six breathing patterns (Eupnea,
Tachypnea, Bradypnea, Biots, Cheyne-Stokes, and Central-Apnea) using the BI-AT-GRU
algorithm, which combines bidirectional and attentional mechanisms in a Gated Recurrent
Unit neural network [15]. Sarno et al. proposed a method that utilizes an electronic nose
(E-nose) to collect sweat samples from the human axilla and employed a stacked Deep
Neural Network to classify individuals as having or not having respiratory conditions [43].

All of these methods showed promising results for classifying patients suffering from
respiratory disease. However, the data acquisition method is unsuitable for continuous
monitoring due to the constant inconvenience to the patients. To solve this problem, we
aimed to apply a deep learning algorithm to the data acquired from a wearable NIRS
device. We hypothesize that the capability of a deep learning model to enact automatic
feature extraction will enable the use of a wearable NIRS device for real-time monitoring
and increase classification accuracy.

2. Materials and Methods
2.1. Data Collection

Tissue hemodynamic indices, including O2Hb, HHb, THb, and TSI were measured
at the manubrium using a wearable NIRS device. The NIRS device consists of three
light sources, emitting light at two wavelengths (760 nm and 850 nm), and one light
detector. Data were collected from 21 healthy adult volunteers (12 males and 9 females;
mean age = 29.47 ± 9.73 years old) through a clinical protocol approved by the Clinical
Research Ethics Board at the University of British Columbia. Each participant performed
three separate breathing conditions: baseline (3 min), loaded (5 min), and rapid/shallow
(5 min). During the baseline phase, participants breathed normally through the nose or
mouth at a relaxed pace of breathing. To simulate dyspnea, a common breathing issue
observed during acute pneumonia, a respiratory trainer was used during the loaded
breathing phase. The respiratory trainer increases resistance during breathing, forcing
respiratory muscles to work harder to facilitate breathing. The rapid/shallow breathing
phase was designed to simulate tachypnea—the condition of being unable to take deep
breaths during acute pneumonia. Participants were instructed to breathe 25 times per
minute during this phase. The data acquisition rate was 10 Hz. The signals acquired
through a NIRS device are obtained in the form of a one-dimensional signal. Figure 1 shows
the O2HB signal data obtained using the NIRS device during the three phases. During
the three phases, the signal obtained under the loaded phase has the largest amplitude,
while the signal obtained under the rapid phase has the shortest period. The data for each
condition is cropped at 6.4-s intervals and used as input data for model training and testing.
Further description of data collection can be found in our previous publication [34].
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Figure 1. O2Hb signal during three breathing phases.

2.2. Classification Model for Simulated Breathing Model

In this paper, we propose a classification model based on deep CNN to classify
simulated breathing patterns. The classification algorithm was developed by improving
and modifying the pre-activation residual model (Pre-ResNet)—a two-dimensional (2D)
image classification algorithm [44]. The parameters of CNN are learned by stochastic
gradient descent (SGD) [45] with a backpropagation [46]. However, this approach presents
a vanishing gradient problem—where the gradient becomes smaller as the depth of the
network increases [47–49]. To solve this problem, He et al. proposed a residual unit
that adds a shortcut connection between building blocks for the residual learning [44].
The building block is proposed to increase the depth of the network and is composed of
standardized layers. Short connections mitigate gradient loss by skipping one or more
layers during backpropagation. This short connection has been applied to various CNN
models [50–52]. The residual unit is defined as follows:

xl+1 = F(xl , Wl) + xl , (1)

where xl and xl+1 represent the input and output features of l − th units, respectively.
Wl is the weight parameters of the residual unit, and F is the residual function. The
residual function includes a convolutional layer, an active function (ReLU) [53], and a batch
normalization (BN) [54] as shown in Figure 2b.
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The Pre-ResNet model is designed for a 2D signal with a size of 32 × 32. To apply
this model to the 1D signal obtained from the NIRS device, the 2D convolutional layer was
changed to a 1D convolutional layer. Additionally, we added a residual unit consisting of a
1 × 5 kernel to create a global feature while reducing the data size at the front of the network.
We confirmed that adding a residual unit with a 1 × 5 kernel shows better classification
performance than simply downsampling the data through experiments. Figure 2a shows
the architecture of the CNN model for the classification of breathing patterns. The detailed
parameter information is shown in Table 1. BN and ReLU functions are omitted from
the table. Each convolution block belonging to the same group has the same kernel size
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and number of kernels. The block structure represents the kernel size and number of the
convolutional layer included in each block. Block number indicates the number of residual
units constituting each group. The input size and output size indicate the size of the input
feature and output feature of the stage, respectively.

Table 1. Classification model architectures of a CNN with 1 × 5 kernel Stage 1.

Group Name Input Size
Output Size

Block Structure
(Kernel Size,

Number)

Block Numbers
(113-Layers)

Stage 0 1 × 64 1 × 5, 16 1

Stage 1 1 × 64
1 × 32

1 × 1, 16
11 × 5, 16

1 × 1, 16

Stage 2 1 × 32
1 × 32

1 × 1, 16
121 × 3, 16

1 × 1, 64

Stage 3 1 × 32
1 × 16

1 × 1, 32
121 × 3, 32

1 × 1, 128

Stage 4 1 × 16
1 × 8

1 × 1, 64
121 × 3, 64

1 × 1, 256

Average pooling 1 × 8
1 × 256 1 × 8 1

Fully connected layer 1 × 256
Classes number 1

As the depth of the network increases, downsampling by 1/2 was performed using
a stride of 2, and the feature map dimension is doubled in the first convolutional layer
of the first residual unit in Stage 1, Stage 3, and Stage 4 to reduce the feature map and
generate high-dimensional feature maps. The parameter optimization of the network was
performed using SGD. SGD is an iterative optimization algorithm widely used in machine
learning applications to find model parameters that minimize the error between predicted
output and the ground truth value. The gradient descent algorithm computes the gradient
using the entire training dataset for each iteration to update the model. In contrast, SGD
uses a single random training example to compute the gradient. As a result, SGD exhibits
faster learning speed compared to gradient descent. Cross entropy loss was used as the
loss function.

3. Results

We used data obtained from a customized wearable NIRS device for a classification
experiment. The outputs of the NIRS device are O2Hb, HHb, THb, and TSI. A customized
data acquisition software collects and converts measured signals to changes in these out-
puts [34]. Collected data were preprocessed, and signals containing movement artifacts
were removed. The preprocessed signal is cropped at 64 data intervals, which is equivalent
to a signal length of 6.4 s. As a result, 531 baseline samples, 780 loaded samples, and
874 rapid/shallow samples were generated. The entire dataset was randomly selected at a
ratio of 80:20 for model training and evaluation. For classification, only O2Hb and HHb
datasets were used. The classification did not include THb (total hemoglobin, which is
the sum of O2Hb and HHb) and TSI (the ratio of O2Hb to THb) because they are directly
affected by changes in O2Hb and HHb. Table 2 displays the number of O2Hb and HHb
datasets used for training and testing.
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Table 2. The number of the datasets.

Class Train Test

Baseline 425 106
Loaded 624 156

Rapid/shallow 700 174

The classification model used in this experiment consists of a total of 113 layers, as
shown in Table 1. Our classification model was trained using SGD with a batch size of
64 samples and momentum of 0.9 for 120 epochs. The initial learning rate started at 0.1
and was divided by a factor of 10 every 30 epochs. All classification models used in the
experiment were trained from scratch.

Table 3 shows the test results of the classification model. Each CNN-based method
was tested five times, except for the Random Forest method, and Table 3 shows the average
accuracy, standard deviation (STD), and best accuracy. The accuracy of the results can be
calculated using Equation (2).

Accuracy(%) =
Total number of true positive

Total number of dataset
× 100%, (2)

Table 3. Classification results. Where DS denotes downsampling.

Method Data Type Mean
Accuracy (%) STD Best

Accuracy (%)

Random Forest O2Hb - - 87.00

Pre-ResNet with DS
O2Hb 88.79 0.423 89.44
HHb 86.28 0.550 87.16

O2Hb and HHb 88.02 0.490 88.76

Pre-ResNet with Stage 1, (1 × 3)
O2Hb 90.58 0.488 91.51
HHb 89.63 0.639 90.37

O2Hb and HHb 90.23 0.658 91.28

Pre-ResNet with Stage 1, (1 × 5)
O2Hb 91.77 0.456 92.43
HHb 89.68 0.490 90.60

O2Hb and HHb 90.78 0.523 91.74

The Random Forest method is a classification model we have tested in previous re-
search [34]. This model contains 100 trees, and the characteristics of the average amplitude,
interval, and magnitude of the signal are used for training and evaluation of the model.
The Pre-ResNet with DS shows the test result after downsampling the signal to 1/2 size
without Stage 1.

As a result of the experiment, the CNN-based classification model shows better overall
performance than the Random Forest method. Adding Stage 1 improves the classification
performance compared to direct downsampling of the signal. Additionally, the CNN-
based model using a 1 × 5 kernel in Stage 1 achieved the highest performance on the
O2Hb dataset, with an accuracy of 92.43%. In the experiments using Pre-ResNet with
downsampling and Pre-ResNet with Stage 1 (1 × 5 kernel), classification experiments were
compared using individual signals of O2Hb and HHb, as well as combined signals of HHb
and O2Hb, and it was found that the best performance was achieved when using only the
O2Hb data.

Figure 3 shows the normalized confusion matrix of different CNN-based methods.
The true label represents the label of the data sample, and the predicted label represents
the label estimated from the model. It can be seen that the Loaded class has the lowest
classification accuracy across all three different models.
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Table 4 shows the recall values of each class and the balanced accuracy of best classifi-
cation accuracies after five-times testing. The balanced accuracies in Table 4 show a similar
performance to the best accuracies in Table 3.

Table 4. Balanced accuracy of each CNN based methods on the O2Hb dataset.

Metric Pre-ResNet with DS Pre-ResNet with
Stage 1, (1 × 3)

Pre-ResNet with
Stage 1, (1 × 5)

Recall Baseline 0.92 0.94 0.93
Recall Loaded 0.81 0.85 0.90
Recall Rapid 0.96 0.95 0.94
Balanced Accuracy 89.66% 91.33% 92.33%

Table 5 shows the results of the classification experiment conducted using the dataset
split on a participant basis. Out of 21 participant datasets, 17 participant datasets were
randomly selected for model training, and the remaining 4 participant datasets were used
for classification testing. The classification of the datasets split on the subject level yields
slightly less accurate results compared to the classification of the datasets of all the subjects.

Table 5. Classification results on the dataset split on the subject level.

Method Data
Type

Number of
Parameters FLOPS

Mean
Accuracy

(%)
STD

Best
Accuracy

(%)

Pre-ResNet with DS

O2Hb

0.7 M 15 M 87.25 0.472 88.07
Pre-ResNet with Stage 1, (1 × 5) 0.7 M 15 M 90.14 0.649 91.28
EfficientNetV2 m with DS [55] 52 M 225 M 91.05 0.562 91.97
PyramidNet with DS [51] 17 M 396 M 87.39 0.481 88.89
CF-CNN with DS [52] 29.7 M 627 M 89.27 0.531 90.74

To compare the classification performance of our proposed method with other ad-
vanced deep learning classification algorithms, we used EfficientNetV2 m [55], Pyra-
midNet [51], and CF-CNN [52]. EfficientNetV2 m and PyramidNet models are CNN-
based algorithms developed for image classification and are being utilized in various
fields [56–60].

CF-CNN proposed a classification model with multiple coarse sub-networks and a
multilevel label augmentation method to enhance the training performance of the base
model. For comparison experiments, we replaced the 2D convolutional layer of this model
with a 1D convolutional layer. PyramidNet is composed of 272 layers, and the widening
factor is set to 200. To train and test the CF-CNN model, we used PyramidNet as the base
model. The layers of coarse 1, coarse 2, and the fine network were set to 26, 52, and 272,
respectively, with group labels of 1, 2, and 3.
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Each classification model was tested five times and trained from scratch. The model
training parameters and input data size were set as used in the experiment that yielded
the results in Table 1 and used for training. The experimental results show that, despite
having a smaller number of parameters and floating point operations per second (FLOPS),
the Pre-ResNet model with Stage 1 (1 × 5) demonstrates similar classification performance
to the EfficientNetV2 m model.

4. Discussions

The authors of this study modified a conventional deep convolutional neural network
(CNN) to classify three different breathing patterns: baseline, loaded, and rapid/shallow
breathing. Since the CNN shares parameters, they can create robust features for shifted
data. In addition, the CNN performs convolution operation using the kernel; hence, it
shows good performance in detecting repetitive patterns. As a result, we were able to
obtain a high classification accuracy when using the CNN (92.43%) in Table 1.

In this experiment, data sampled from all participants were randomly divided into
training and testing sets at an 80:20 ratio for classification experiments. The experimental
results showed that the classification models based on 1D-CNN (92.43%) yielded much bet-
ter performance than the classification model using Random Forest (87%). To obtain good
classification performance of traditional machine learning methods such as Random Forest,
features and classification methods that can distinguish breathing patterns are required.
However, it is not easy to generate various features and/or classification models. The
CNN-based classification model demonstrates increased performance because it automati-
cally generates numerous features and performs classification simultaneously during the
learning process. Additionally, when Stage 1 using the 1 × 5 kernel was added, it showed
better classification performance than Stage 1 using the 1 × 3 kernel due to its ability to
detect important features in a wider temporal domain. In Figure 3, the data of the loaded
class showed the lowest classification accuracy due to the intermediate characteristics
between the baseline and rapid/shallow respiration.

The results of Table 3 reveal that solely employing the O2Hb data type yields higher
accuracy in comparison to utilizing both O2Hb and HHb data. This can be related to
the characteristics of the data. The O2Hb signal has a higher signal-to-noise ratio and
acceptable high reproducibility compared to the HHb signal [61–63]. Additionally, lower
classification accuracy when using both O2Hb and HHb could be because HHb contains
additional information other than respiration. O2Hb is formed when hemoglobin combines
with oxygen molecules during the process of respiration. On the other hand, HHb is a
protein that releases the oxygen molecules it was carrying and travels back to the lungs to
pick up more oxygen [64]. HHb is indirectly linked to oxygenation and can be influenced
by factors such as changes in blood flow, vascular conditions, and tissue metabolism, which
are not solely related to respiration.

Table 4 demonstrates that the similarity between the general accuracy and the balanced
accuracy confirms that the classification model is well-trained regardless of the difference
in the number of data in each class. Based on our results, it can be confirmed that the O2Hb
data obtained using the NIRS device has suitable characteristics for classifying breathing
patterns. Furthermore, by automatically generating appropriate features for classification,
the CNN-based algorithm shows better performance than the Random Forest algorithm,
which uses handcraft-based features (average amplitude, interval, and magnitude).

The high classification accuracies obtained when datasets were divided at the par-
ticipant level (Table 5) prove the generalizability of our proposed model. Additionally,
the performance of our proposed model was compared with the following state-of-the-art
models: EfficientNetV2-M, PyramidNet, and CF-CNN. From the experimental results, it
was confirmed that the proposed method shows similar performance to the EfficientNetV2
m model while using much fewer parameters and FLOPS compared to other models.

While this study has yielded promising results, it is important to acknowledge a
notable limitation. Specifically, the NIRS respiratory data utilized in our research were
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obtained exclusively from healthy individuals. Consequently, the simulated symptoms of
acute respiratory diseases such as COVID-19 and viral pneumonia were based on loaded
breathing and rapid/shallow breathing patterns. To enhance the classification method,
future studies should aim to broaden the scope by collecting respiratory signals from
individuals diagnosed with acute pneumonia and incorporating this data into the analysis.
This would provide valuable insights and improve the applicability of our findings.

5. Conclusions

In this study, we proposed a CNN-based method to classify respiratory patterns in
patients with infectious respiratory diseases. This method employs oxygenated hemoglobin
change measured with a wearable NIRS device as the input. The wearable NIRS device
used for data acquisition is small, portable, and attachable to the human body. Additionally,
the NIRS device has no environmental constraints, which allows for continuous monitoring.
We designed a 1D-CNN-based classifier by improving and modifying the pre-activation
residual network developed for 2D image classification to classify respiratory patterns.
With the developed classification model, we were able to obtain a maximum classification
accuracy of 92.43%. The proposed method can be used for the remote detection and
real-time monitoring of various respiratory diseases, including COVID-19, tuberculosis,
influenza, and pneumonia.
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