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Abstract: The history of Neisseria research has involved the use of a wide variety of vertebrate and
invertebrate animal models, from insects to humans. In this review, we itemise these models and
describe how they have made significant contributions to understanding the pathophysiology of
Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look
ahead, briefly, to their potential replacement by complex in vitro cellular models.
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1. Introduction

To date, about 40 Neisseria species have been reported (Neisseria isolates (pubmlst.org))
within the genus Neisseria (Class B-proteobacteria, Order Neisseriales, Family Neisseriaceae).
These Gram-negative bacteria have been isolated from humans, other mammals and even
from the environment [1]. They are considered as constituents of the normal, commensal
microbiota on mammalian mucosal surfaces. Of these species, two are human-restricted:
Neisseria gonorrhoeae (the gonococcus) is an obligate pathogen and Neisseria meningitidis (the
meningococcus) can be regarded as a commensal organism and opportunistic pathogen
that can cause overt disease [2]. Gonococci primarily colonize the mucosal epithelium of
the male urethra and female endo/ectocervix, causing the sexually transmitted disease
gonorrhoea [3,4]. Meningococci colonize the nasopharyngeal mucosa and can become
potentially invasive and cause cerebrospinal meningitis and septicaemia [5,6]. However,
atypical infections by both gonococci and meningococci have been reported, often at
other anatomical sites, as well as infections with commensal Neisseria species behaving
as opportunistic pathogens [7]. Worldwide, there are ~87 million cases of gonorrhoea
reported annually [8], with the highest burden in the least developed and low-to-middle
income countries on the Development Assistance Committee List of Official Development
Assistance Recipients. By contrast, cases of meningococcal meningitis and septicaemia
have fallen dramatically because of global uptake of meningococcal vaccines. The lack of
an effective licensed gonococcal vaccine is a significant bottleneck in disease control and
the ability of gonococci to develop resistance to every class of antibiotic introduced means
that treatment relies on an ever-dwindling arsenal.

In the current review, we examine the different vertebrate and invertebrate animal
models that have been used in studies of Neisseria pathobiology and for the development
of vaccines and new antimicrobials. By virtue of the considerable number of studies using
normal mice, rats and rabbits for Neisseria research, these will be discussed in brief and
information assembled in supplementary tables with accompanying bibliographies. Focus
will be on those important models that try to mimic several different aspects of natural
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human infections. In addition, we look ahead and discuss alternatives to these models with
a view to possible Replacement, Reduction and Refinement (the 3Rs).

2. Vertebrate Animal Models

The history of Neisseria research has involved the use of a wide variety of vertebrate
animal models, and we begin with studies involving humans.

2.1. Humans
2.1.1. Neisseria gonorrhoeae Studies

Controlled human infection with N. gonorrhoeae has a long-recorded history in clinical
and laboratory medicine, predating even the discovery of the organism by Albert Neisser in
1879 [9]. For example, the Austrian ophthalmologist Joseph F. Piringer inoculated the eyes
of blind people with ‘blennorrheal’ (gonorrhoeal) pus, some 38 years before the discovery
of the gonococcus by Neisser, as an attempt to cure those patients whose eyes had been
damaged by trachoma [10,11]. Benedek reviews the research on ocular inflammation
associated with gonorrhoea and studies from the C18th to early C20th on the experimental
induction of gonorrhoeal ophthalmia in humans, following the observations that animals
were refractory to gonococcal infection [10]. As early as 1835, the British surgeon John
Hunter described his repeated inoculations of human patients with ‘venereal matter’ to
test the hypothesis that venereal disease had an infectious aetiology [12].

Neisser’s identification of the gonococcus and its culture in the laboratory by the
Frenchman Frédéric Weiss in 1880 [13] and the German Leo Leistikow in 1882 [14,15] led to
decades of experimental gonococcal infection studies in humans that became central to the
development of clinical research ethics [10]. Neisser could not satisfy Koch’s postulates
with his isolate, but this was achieved by the challenge experiments of the Hungarian
physician Arpad Bokai, the German physician Max Bockhart and the Austro-German
gynaecologists Ernst von Bumm and Ernst Wertheim. In 1880, Bokai inoculated six medical
students urethrally with gonococcal culture fluid and reported that three of the patients
developed acute gonorrhoea [16]. In 1883, Bockhart inoculated the urethra of a man and
reported the development of classical gonococcal urethritis after three days [17]. In 1885,
von Bumm grew axenic cultures of Neisser’s gonococcus and proved that it causes gon-
orrhoea (urethritis) by instilling the pathogen into humans [18,19]. This experimental
urethritis was reproduced by Wertheim in 1891 [20]. In 1893, Steinschneider, working in
Neisser’s laboratory, induced gonorrhoea in a colleague following urethral instillation of
bacteria [21]. In the same year, the Austrian dermato-venerologist Ernst Finger and his
colleagues examined whether previous gonorrhoea infection conferred immunity against
re-infection. In their pioneering experiment, gonococci were instilled into the urethra of
six men who had a history of gonorrhoea but were currently ‘healthy’. Each subject subse-
quently developed gonorrhoea, leading Finger to conclude that ‘the gonorrhoeal process
is capable of re-infection and super-infection’ [22]. Other inoculation experiments by the
American surgeon Edward Martin in 1982 [23], the American paediatrician Henry Heiman
in 1895 [24], the Swedes Jundell and Ahman in 1897 [25] and the Italian clinician Guido
Bordoni-Uffreduzzi in 1894 served to reinforce the now obvious conclusion that gonococci
experimentally instilled into the urethra can induce gonorrhoea! By the turn of the C20th,
these human inoculation experiments with gonococci were essentially abandoned as new
pathophysiological findings were not being reported. Furthermore, the justifiable ethical
criticism of many of these and earlier studies described above was a major factor in their
discontinuation, given that some were especially unpalatable, e.g., the application of gon-
orrhoeal cultures to the eyes of sick children [10] and Heiman’s instillation of gonococci
into the urethra of intellectually disabled children aged 4 and 16. Indeed, the emergence of
ethics in human research owes a great deal to the way these human challenge experiments
were performed.

The N. gonorrhoeae-controlled human infection model (Ng CHIM) involves urethral
inoculation of males that results in urethritis. It is the most relevant model of natural
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gonococcal infection that is available today, but only for men; women cannot be infected
with gonococci because of the possibility of infection ascending into the upper reproductive
tract and causing pelvic inflammatory disease (PID) and other complications. The Ng
CHIM was developed during the 1980s by researchers at the Walter Reed Army Institute of
Research and at the University of North Carolina, Chapel Hill, and is reviewed extensively
by Waltmann et al. [26]. A step-by-step experimental protocol is available [27], and has been
used for both vaccine and pathogenesis studies. The model is safe, and several hundred
men have volunteered for experimental infection over the past decades and shown no
severe adverse reactions.

The Ng CHIM was used prior to the only human gonorrhoea vaccine trials. Brinton
et al. showed that a purified single antigen pilus vaccine protected human volunteers in
the Ng CHIM from infection with the homologous strain (rate of protection ~50%), and
induced serum and genital antibodies [28]. However, the vaccine showed no protection
against a heterologous strain expressing antigenically variant pili in a subsequent human
trial [29], and no protection in a large-scale field trial in which it was used to vaccinate
high-risk US military personnel stationed in Korea [30]. The Ng CHIM was also used to
test a gonococcal vaccine composed of isolated PorB/Outer Membrane Vesicle (OMV), but
contaminated with lipooligosaccahride (LOS), Rmp and Opa protein. The findings from
this study with the Ng CHIM were that immunity against PorB, LOS and Opa ‘transpired
theoretically to predict protection from infection’, whereas Rmp was subversive for PorB
immunogenicity in humans and enhanced the likelihood of infection [31,32]. In contrast
to active immunization, there is one recent report of a passive protection study using
the Ng CHIM to test the hypothesis that a human monoclonal antibody raised to β-(1-6)-
linked poly-N-acetyl-d-glucosamine (PNAG), and bactericidal for gonococci, could prevent
gonococcal infection [26]. Infusion of this monoclonal antibody did not reduce bacterial
load in the urine of infected volunteers, with four out of seven infused volunteers, and
one out of three control volunteers, i.e., without antibody infusion, developing urethritis.
The experiment has its flaws and is perhaps too under-powered to draw any definitive
conclusions, and certainly does not exclude a potential protective role for polyclonal
antibodies and/or a cell-mediated immune response.

The Ng CHIM model has been used in pathogenesis studies, and this is reviewed in
detail elsewhere [33]. Briefly, the two most often used strains in the Ng CHIM have been
N. gonorrhoeae FA1090 and MS11mcK, with discernible differences between the two, e.g., in
serum sensitivity, presence of gonococcal genetic island, lactoferrin utilization, Mtr efflux
pump expression and (hyper)piliation [33]. The earliest report of a link between gonococcal
virulence and clonal phenotypic variation in infected human volunteers was from Kellogg
and colleagues in 1963 [34]. The course of infection has been extensively characterised
microbiologically and clinically with descriptions of transmission [35], inflammatory pro-
cesses [36], gonococcal infection and reinfection [37], changing population dynamics and
antigen variation, e.g., in pili and Opa expression. The model has demonstrated the effects
of LOS [33,38–40], Opa [41,42], pilE pilin [43–46], IgA protease [47] and the iron-binding
proteins lactoferrin and transferrin [48,49] during natural infection.

At present, there is a pipeline of candidate gonococcal vaccine antigens that are
being tested for antigenicity in rodents and rabbits for their ability to generate bactericidal
antibodies, before moving to testing in the female mouse genital tract infection model.
None of these antigens have yet been tested in the Ng CHIM, and the model does have
some limitations in use; these include difficulty in recruiting sufficient volunteers to provide
statistical significance during vaccine trials (especially if several antigens are promising),
the probable need to challenge with several heterologous strains to determine broad vaccine
coverage, and the lack of known correlates of protection and mechanisms of clearance.
Nevertheless, success in the Ng CHIM must be a pre-requisite for larger vaccine field trials.
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2.1.2. Neisseria lactamica Studies

A CHIM has been developed using N. lactamica [50], and in its first published use in
2011, the model showed that intranasal inoculation of N. lactamica resulted in colonization
and carriage of the organism. In addition, colonization induced mucosal and systemic
humoral immunity to N. lactamica and cross-reacting opsonophagocytic antibodies to
meningococci. However, bactericidal antibodies were not induced, and, not unexpectedly,
meningococcal acquisition was not inhibited by the presence of humoral immunity to
N. lactamica [51]. Subsequent work showed that nasal inoculation of N. lactamica statis-
tically reduced meningococcal carriage from 24.2% at inoculation to 14.7% at 2 weeks
after inoculation [52] and that natural immunity to meningococci after colonisation with
N. lactamica might be due to cross-reactive adaptive responses [53]. In addition, N. lactamica
bacteria undergo microevolutionary changes during nasopharyngeal colonization [54].
More recently, N. lactamica were engineered to express the meningococcal Bexsero vaccine
antigen Neisseria Adhesin A (NadA). Intranasal inoculation generated NadA-specific IgG-
and IgA-secreting plasma cells within 14 days of colonization, NadA-specific IgG memory B
cells within 28 days of colonization, and, importantly, serum bactericidal antibody activity
against NadA-expressing meningococci [55]. This study suggests that intranasal inoculation
of genetically modified bacteria could be a useful vaccine platform to generate potentially
protective immune responses to heterologous antigens from different bacterial pathogens.

2.1.3. Neisseria meningitidis Vaccine Studies

There is no meningococcal controlled human infection model (Nm CHIM), due to con-
cerns over the rare possibility of systemic disease following instillation of live meningococci
into the nasopharynges. Nor is one needed for vaccine studies, given the global success of
the ACYW capsular polysaccharide-conjugate vaccines and the serogroup B Bexsero OMV
and Trumenba vaccines. The success of these vaccines owes a great deal to the innumerable
phase I, II and III trials carried out over the years.

2.2. Non-Human Primates (NHPs)

NHPs are the animals most closely related to humans, and have seen some use for
studying immune response to vaccines and modelling human disease(s) [56]. The most
used NHPs have been chimpanzees, baboons and old-world monkeys such as the rhesus
macaque, the first two sharing 95–96% similarity of their entire genome with humans, and
the latter 93%.

2.2.1. Chimpanzee (Pan troglodytes)

The first historical attempts to infect NHPs to try to reproduce gonococcal urethritis
involved instilling pus from patients with gonococcal urethritis or with saline suspensions
of gonococcal cultures, and date back to the 1880s–1930s. They were unsuccessful [14,57,58].
In 1971, Lucas et al. reported the first established infection of chimpanzees with gono-
cocci [59]. In this study, urethral exudate from human males with gonococcal urethritis
was instilled into the urethras of three male chimpanzees, who subsequently developed
gonococcal urethritis. Notably, gonococcal urethritis was transferable from chimpanzee
to chimpanzee and one chimpanzee developed gonococcal conjunctivitis. All the infected
animals developed serum complement-fixing antibodies to gonococci. A year later, Brown
et al. showed that in vitro passaged gonococci could still infect chimpanzees and provided
the first report of natural transmission of gonorrhoea from male to female chimpanzee [60].
These same authors reported that one male chimpanzee, who had been a chronic nasopha-
ryngeal carrier of meningococci for a year, frequently engaged in self fellatio with the result
that meningococci were isolated from his urethra [61].

The chimpanzee model mimics human gonococcal infection in signs, symptoms, and
host response, and in the development of natural resistance to gonococcal challenge [62].
Kraus et al. inoculated the urethra, pharynges and cervix of chimpanzees with gonococci
isolated from men with urethritis, and then re-challenged the animals one week after termi-
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nation of the initial infection. The study demonstrated that (1) after natural infection, the
cervix and pharynx resisted more gonococci than the urethra, (2) anatomical and environ-
mental factors influenced resistance to gonococcal pharyngitis, (3) chimpanzees acquired
post-infection immunity, (4) following gonococcal pharyngitis, the pharynx resisted more
gonococci than were initially resisted and (5) more gonococci were successfully resisted
in the re-challenged urethra. Their conclusion was that acquired immunity following
gonococcal infection suggested that a vaccine approach may be of value in controlling the
gonorrhoea pandemic. Indeed, the subsequent papers from Arko and colleagues from
1974 to 1977 tested the feasibility of crude gonococcal vaccines in the chimpanzee. Arko
et al. immunized four male chimpanzees intramuscularly with a formalin-killed vaccine
prepared from a gonococcal isolate virulent for chimpanzees. They showed that vaccination
greatly increased urethral resistance to infection with the homologous isolate [63]. Resis-
tance was dependent on the dose of urethral challenge, with higher bacterial doses leading
to urethral infection, but this was significantly shorter in duration and accompanied by
substantially lower numbers of gonococci recovered from urethrae, compared to unimmu-
nized chimpanzees. Notably, immunized chimpanzees were resistant to re-infection with
the homologous isolate, but not to a heterologous isolate. In an expanded serological trial
of the formalin-killed vaccine, the serological response (indirect fluorescent antibody and
serum bactericidal activity measurements) correlated with the resistance of n = 5 vaccinated
individual chimpanzees when they were challenged in the pharynx and urethra with live
gonococci, compared with n = 5 sham controls [64]. After this flurry of papers, research with
chimpanzees effectively came to an end in the reported literature. Even though urethral
infection in chimpanzees anatomically resembles human infection and is biologically more
accurate, the utility of the model for immunological and vaccine research is limited due
to their high cost and the ethical issues around their use, as well as the fact that they are
outbred animals that tend to have more variable individual immune responses, which are
compounded by the presence of interfering micro-organisms in the urethra.

2.2.2. Rhesus Macaque (Macaca mulatta)

Rhesus macaques (RMs) are also frequently used to model human disease, including
infection with Neisseria. Indeed, macaques are naturally infected with a Neisseria spp.,
N. macacae [65], whose genome contains genes encoding for many proteins that are compo-
nents of current meningococcal vaccines and are being studied as candidate gonococcal
antigens [66]. Infant macaques are frequently used to test immune responses to Neisseria
vaccine antigens when tested alone or when used as adjuvants with other vaccines. These
are summarised in Table 1. The model has been used to extensively study the molecular
mechanisms of colonization, transmission, persistence and horizontal gene transfer of
N. macacae [66], and antimicrobial resistance in the pharynx [67]. It has also been used to
study heterogeneity and affinity of monkey complement factor H binding to fHbp [68–70],
to inform primate selection for assessing vaccine immunogenicity. Several other studies
have used rhesus serum in vitro, and not the animals directly, to analyse the mechanisms
of gonococcal serum resistance [71–73] and interactions of primate transferrins [74].

Table 1. Studies reporting the use of rhesus macaque monkeys in Neisseria vaccine-related research.

Rhesus Macaque Monkeys Used in Neisseria Vaccine-Related Research Reference

Vaccine
studies

Immunization with meningococcal OMV vaccine with overexpressed mutant factor H binding
protein (infant RMs) [75]

Trivalent native OMVs derived from three genetically modified serogroup B meningococci (infant RMs) [76]

MenB-4C immunization (infant RMs) [68,77,78]

MenB capsular polysaccharide–protein conjugate vaccines (juvenile RMs) [79,80]

Chemically modified Escherichia coli K1 N-propionylated polysialic acid coupled to purified
recombinant rPorB [81]
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Table 1. Cont.

Rhesus Macaque Monkeys Used in Neisseria Vaccine-Related Research Reference

Adjuvant
studies

Bacillus anthracis polyglutamic acid capsule covalently conjugated to the N. meningitidis serotype B
OM protein complex [82,83]

Recombinant modified human vascular endothelial growth factor (VEGF) combined with
proteoliposomes of meningococcal OM [84]

Plasmodium falciparum circumsporozoite protein NANP6 peptide conjugated to N. meningitidis
serotype B OM protein (in adult RM) [85]

Domain III of the dengue 1 virus fused to meningococcal P64k protein (in adult RM) [86]

P. falciparum recombinant Pfs25H transmission-blocking protein conjugated to N. meningitidis
serotype B OM protein complex [87]

Influenza virus A M2 peptide-N. meningitidis serotype B OM protein complex conjugate [88]

Pneumococcal capsular polysaccharide (Ps)–N. meningitidis serotype B OM protein
complex conjugate [89,90]

Haemophilus influenzae type B polysaccharide conjugated to meningococcal Class 2 porin (in infant RMs) [91]

H. influenzae type B polysaccharide–meningococcal OM protein complex conjugate [92]

2.2.3. Other Monkeys

Several other monkey species have been used for Neisseria research. In an early
report, inoculation of the urethra, conjunctiva, pharynx and anal canal of crab-eating
macaques (Macaca fascicularis, cynomolgus monkey) with urethral exudate from male
patients with gonorrhoea or with laboratory gonococcal strains was unsuccessful in es-
tablishing infection [93]. Cynomolgus monkeys have been used for vaccine studies, e.g.,
of a recombinant bivalent meningococcal rfHbp vaccine [94], the Norwegian wild-type
OMV vaccine and the Dutch hexavalent PorA OMV vaccine [95] and for the meningococ-
cal P64k protein used as a fused adjuvant with a dengue virus protein [86,96]. African
Green Monkeys (Cercopithecus aethiops) have been used in vaccine studies for the meningo-
coccal serogroup C capsular polysaccharide conjugated to the P64k protein [97], and
baboons (Papio spp.) have been used for testing a chemically modified Escherichia coli K1
N-propionylated polysialic acid coupled to purified recombinant rPorB [81]. In addition, a
male baboon infection model of gonorrhoea is redundant, given the report that baboons
inoculated intraurethrally with gonococci did not produce discharge or significant neu-
trophil infiltration and the animals failed to shed bacteria or develop a humoral immune
response [98]. However, the epididymis of some baboons was inoculated by percutaneous
injection and an anamnestic antibody response was produced following urethral inocu-
lation. The common marmoset (family Callitrichidae, Callithrix jacchus) has been used to
demonstrate the interactions of anti-gonococcal antibodies with proteins in the choroid
plexus and brain, in a study of the role of maternal bacterial infections during prenatal
brain development. This followed the observation that prenatal maternal infections with
gonococci appeared to correlate with an increased lifetime probability for the offspring to
develop psychosis [99].

2.3. Mouse

N. musculi sp. nov. is the only species of Neisseria that can naturally colonize the
oral cavity of the wild house mouse, Mus musculus subsp. domesticus [100]. Infecting
laboratory mice with this species has been proposed as a ‘natural approach’ for studying the
interactions of Neisseriae with the vertebrate host, and is thus potentially useful for testing
the efficacy of vaccines and antimicrobials [101]. The advantages include no requirement
for antibiotics and hormones (which will become apparent when discussing the mouse
intravaginal model of gonococcal infection below), and no transgenetic manipulation of the
host or the use of invasive procedures. In a study from Ma et al., long-term colonization,
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of up to a year in some mouse species, was achieved with a single oral dose of N. musculi.
However, there was variation in susceptibility to colonization between the inbred mouse
strains [101]. Thus, mouse genetics and innate immunity responses influenced susceptibility
to colonization, although all colonized mice remained healthy. Expression of type IV pilus
by N. musculi was essential for colonization of mucosae, and a judicious choice of inbred
mouse to use with this species should increase our understanding of the mechanisms
involved in colonization and establishment of commensalism. Surprisingly, the broader
scientific community has made limited use of this model.

2.3.1. Mouse Models for Pathobiology Research

The mouse is an important animal for pathobiology and infection studies with gono-
cocci and meningococci.

• Studies with N. gonorrhoeae.

Infection of subcutaneously implanted chambers with gonococci has been described
and used to examine gonococcal survival and neutrophil infiltration into the chamber
and surrounding tissue [102]. The model has been used to show how gonococci were
protected from humoral and cellular factors in the chambers only if the bacteria were inside
primary tissue culture cells derived from whole 14- to 16-day-old mouse embryos [103].
This in vivo study demonstrated how an intracellular stage enables the gonococcus to
evade the innate immune response. The histopathological findings in tissues within and
surrounding these chambers infected with gonococci were examined for up to 30 days in
mice and guinea pigs [104]. The pathological findings are similar to those of disseminated
gonococci infection (DGI) in humans, with polymorphonuclear neutrophil (PMNL) influx
into the chamber and adjacent tissues, tissue necrosis and haemorrhage, accompanied by a
steady decrease in the presence of gonococci [104]. Early studies on complement-mediated
and complement-independent mechanisms of protection have also been reported with
the mouse chamber model [105]. A model of intracerebral challenge has been described,
and, although it does not mimic the course of natural infection, mice died between 1 and
6 days after challenge with bacteria disseminated to the liver, kidney and spleen [106]. A
model of gonococcal pneumonia has been reported in which gonococci were introduced by
intranasal inoculation into the lungs of mice, with the organs becoming acutely inflamed
with infiltration of bronchioles and alveoli by PMNLs. The inflammatory response and
infection, however, was self-limiting and resolved within 4 days [107]. Artificial air pouches
in the connective tissue of mice were evaluated for studying gonococcal infection [108]: as
expected, infection is characterised by PMNL infiltration, and a persistence of intracellular
bacteria in connective-tissue fibroblasts was observed. Disseminated gonococcal bacter-
aemia with peritonitis and fatal septicaemia has also been modelled in the mouse; this
required exogenous mucin and haemoglobin, which served to increase virulence of the bac-
teria administered intraperitoneally [109]. This disseminated gonococcal infection model
was subsequently used with endotoxin-resistant and endotoxin-susceptible mouse strains
to examine the role of endotoxin responsiveness in host defence [110]. In a further study of
gonococcal bacteraemia, resistance to gonococcal infection was shown to be dependent on
inflammatory cells and sex of the animal [111].

However, all these models have fallen into disuse, and it is clear from the literature
that wild-type mice are not naturally colonized by gonococci. However, this limitation has
been obviated to some extent with the generation of ‘humanized’ mouse models through
the introduction of human transgenes. For example, neutrophils from transgenic mice
carrying the human carcinoembryonic antigen-related cell adhesion molecule (CEACAM)
3 gene have been shown to respond to gonococci, and that engagement with CEACAM3
stimulates the pro-inflammatory response typical of gonorrhoea [112]. These transgenic
mice expressing human CEACAM3 were crossed with mice deficient in key phagocytic
(Rac2), inflammatory signalling (B cell lymphoma/leukaemia 10 [Bcl10]) and Mucosa-
associated lymphoid tissue lymphoma translocation protein 1 (Malt1), to study processes
downstream of CEACAM3 in the anti-gonococcal responses of neutrophils [113]. These
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models suggested that Bcl10 in particular was a key molecule in the inflammatory cascade
downstream of CEACAM3 and TLR4. Gonococci instilled intravaginally have been shown
to bind to human CEACAM5 receptors expressed on the mouse urogenital tract surface,
which triggered expression of CD105 (the transforming growth factor receptor) and altered
cell adhesion properties and aided colonization by reducing epithelial cell sloughing [114].
Mice carrying the complete CEA gene (CEAtg) were used in a study to demonstrate
that, after vaginal infection, gonococci binding to CEACAM1 suppressed the exfoliation
of epithelial cells, which depended on nitric oxide (NO) release from the bacteria [115].
Notably, blocking of NO triggered cGMP-PKG signalling cascade, and CD105 expression
restored sloughing of cells colonized by gonococci, hence reducing bacterial levels in the
genital tract. The most recent study involving a CEACAM transgene was the introduction
of the CEACAM1 transgene into BAFF-transgenic mice (a TNF-family member) to study
the role of meningococcal-induced IgA production in the pathogenesis of IgA nephropathy
following nasal infection [116].

It is well-documented that gonococcal infection increases the risk of HIV shedding and
transmission, and an animal model would be useful to explore the interplay between virus,
bacterium and host. Recently, a humanized mouse model was developed that allowed
systemic HIV infection and genital gonococcal infection by grafting immunodeficient NSG
mice with human CD34+ hematopoietic stem cells [117]. The model is important for
demonstrating that systemic HIV challenge results in viraemia and vaginal shedding of
virus and that subsequent gonococcal challenge increases viral shedding in the genital tract
but does not change plasma virus levels. These outcomes mimic clinical observations, and
thus the model has the potential to assess future therapies aimed at reducing viral and
bacterial infection.

Today, the female mouse model of Neisseria gonorrhoeae intravaginal infection has
become the primary model for studying some aspects of gonococcal pathogenesis and for
vaccine studies. Development of the model dates to the papers of Braude [118], Streeter
and Corbeil [110] and Kita et al. [119] from the early 1980s. All reported that female mice
could be colonized by gonococcal instilled intravaginally when the animals were in the
proestrus stage of the oestrous cycle, but that colonization was short-lived, and the bacteria
readily cleared during the metestrus phase. Not unexpected, given the lack of murine host
factors and the human host restriction of the gonococcus. However, this brief colonization
period was extended by Taylor-Robinson et al. [120] in 1990, who showed that treating
mice with the hormone 17β-estradiol increased the duration of gonococcal infection and
thus presented the model for studying the pathogen–host mucosal interactions. Subse-
quent work from Ann Jerse’s laboratory has refined the model [121,122], and step-by-step
methodology is now available [123]. The model can use many different inbred and out-
bred strains of mice, and bacterial colonization and clearance, neutrophil infiltration and
cytokine production can all be measured directly in vaginal samples [32]. Jerse notes that
two types of infections can be established: (1) competitive infections, during which the
differences in fitness-to-colonize between gonococcal strains and the nature of the factors
that aid colonization and persistence in the lower reproductive tract can be studied, and
(2) non-competitive infections, which enable the role(s) of individual virulence factors
during infection and host immune responses to be examined, and this is generally done by
comparing, for example, wild-type and knock-out and/or phenotypic variants [123].

The model continues to play a significant role in determining in vivo the pathogenesis
of gonococcal interactions with the lower genital tract mucosa, how gonococci evade host
innate immunity and suppress adaptive immune responses [124,125], how they adapt
to the hormonally controlled host environment and what mechanisms drive antibiotic
resistance [32,126,127]. It is also an important model for testing the efficacy of an ever-
increasing number of new antimicrobials, antibiotics, immunotherapeutics, vaginal mi-
crobicides and candidate vaccines/antigens to eliminate gonococcal colonization of the
genital tract (Table 2). Demonstrable success of any of these compounds in the model is
generally accepted as a requirement prior to in-human studies. Recently, the model has
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been used to demonstrate that the presence of a commensal Neisseria spp., N. elongata, in
the mouse genital tract accelerated clearance of gonococci in a DNA-uptake-dependent
manner, postulating that DNA could be a potential anti-gonococcal microbicide [128].

In addition to the oft-used intravaginal model of infection, the first model of upper
genital tract gonococcal infection was recently reported [129]. In this study, transcervical
infection of female mice during the dioestrus phase led to rapid gonococcal penetration
into the tissues with production of high levels of inflammatory cytokines and neutrophil
infiltration. By contrast, in the oestrus phase, mice showed little sign of inflammation or
pathology following transcervical infection [129].

Table 2. Examples of compounds tested in the female mouse model of Neisseria gonorrhoeae genital
tract infection.

Compounds Tested in the Female Mouse Model of Neisseria gonorrhoeae Genital Tract Infection Reference

Antimicrobial JSF-2659 [8-(6-fluoro-8-(methylamino)-2-((2-methylpyrimidin-5-yl)oxy)-9H-
pyrimido[4,5-b]indol-4-yl)-2-oxa-8-azaspiro[4.5]decan-3-yl))methanol] [130]

Moenomycin (phosphoglycolipid targeting peptidoglycan glycosyltransferase) [131]

PTC-847 and PTC-672 active on ribonucleotide reductase [132]

Auranofin (gold-containing) [133]

Acetazolamide (carbonic anhydrase inhibitor) [134]

TP0480066, a topoisomerase inhibitor [135]

SCH-79797 [136]

REDX05931 (tricyclic topoisomerase inhibitor) [137]

Resorufin pentyl ether (analogue of resazurin) [138]

Antibiotic MBX-4132 (acylaminooxadiazoles) [139]

Cephalosporins [140]

Cefixime and ceftriaxone [141,142]

Fluoroquinolone [143]

Vaginal microbicide Semen-derived enhancer of viral infection (SEVI) [144]

Lactobacillus crispatus producing hydrogen peroxide [145]

Porphyrin based compound with gallium [146]

CarraGuard, Ushercell, [poly]sodium 4-styrene sulfonate (T-PSS), PRO 2000,
ACIDFORM, cellulose acetate phthalate (CAP), and BufferGel [147]

Immunotherapeutic Complement factor H-based immunotherapeutic [148–150]

C4BP-IgM protein [151]

Aminomethyl spectinomycins (semisynthetic analogues of spectinomycin) [152]

Anti-transforming growth factor β (TGF-β) antibody [153]

Vaccine candidate Meningococcal 4CmenB [154,155]

TMCP2 (peptide vaccine mimicking 2C7 oligosaccharide epitope in gonococcal LOS) [156,157]

Detoxified meningococcal outer membrane vesicle (dOMV) deficient in PorA, PorB,
and RmpM [158]

MetQ lipoprotein formulated with CpG [159]

Hybrid transferrin binding protein B (from Haemophilus parasuis) with neisserial
TbpA loop 10 [160]

Recombinant human IgG1 chimeric variant of MAb 2C7 containing an E430G Fc
modification (2C7_E430G) [161,162]
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Table 2. Cont.

Compounds Tested in the Female Mouse Model of Neisseria gonorrhoeae Genital Tract Infection Reference

MAb 2C7 [163]

2C7 epitope in multiple antigen peptide formulation [164]

Intranasal gonococcal OMV plus microencapsulated interleukin-12 (IL-12) [165]

Gonococcal OMVs plus microencapsulated IL-12 [166]

Gonococcal OMV (intranasally administered) [167]

Gonococcal PI-B synthetic peptide [168]

rrPorB-Virus Replicon Particles prime and boost (rrPorB), both administered
via footpad [169]

Opa-loop specific antibodies (passive protection trial) [170]

• Studies with N. meningitidis.

In 1933, Miller induced peritonitis and sepsis in adult mice by inoculating bacteria in-
traperitoneally in the presence of hog mucin, with death occurring between 6 and 24 h [171],
which was replicated in 1976 by Calver et al. using solutions of ferrous sulphate, iron sor-
bitol citrate or iron dextran [172]. Acute kidney injury can also be observed in mice infected
intraperitoneally [173]. There is also an intraperitoneal mouse infection model modified by
the addition of galactosamine to induce myelosuppression, which was used to study endo-
toxin lethality [174]. The virulence of other meningococcal molecules has also been demon-
strated in the intraperitoneal mouse infection model, including sodC (encoding periplasmic
copper- and zinc-cofactored superoxide dismutase) [175], phoP [176], transferrin-binding
proteins [177], NMB1966, encoding a putative ABC transporter [178] and anti-aggregation
factor NafA [179]. The model found early use for testing antibiotics [180].

Experimental meningococcal infection in neonatal mice as a model for mucosal inva-
sion was reported by Salit et al. in 1984, in which meningococci were instilled intranasally
in mice, which resulted in colonization and bacteraemia in 39% of the animals, and death
in 4% of the animals with purulent leptomeningitis and ventriculitis [181]. Differences
in virulence between disease and carrier strains is demonstrated by both the intraperi-
toneal and intranasal challenge models [182,183]. In addition, severity of meningococcal
infection in neonatal mice can be increased by treating mice with iron dextran or human
transferrin [184]. The neonatal intranasal infection model has shown that LOS immunotype
and capsule are major virulence factors [185]. Furthermore, LOS, capsule and pilin [186]
and the Outer Membrane Protein (OMP) NhhA autotransporter adhesin [187] have been
shown to be necessary for colonization in an adult intranasal model of infection and that
LOS is a critical inducer of inflammation during respiratory infection in mice [188]. A model
of sequential influenza A virus–serogroup C meningococcal intranasal infection in adult
mice also has been developed that reproduces the pathogenesis of human meningococ-
caemia with fatal sepsis and demonstrates the essential role of the capsule in virulence [189],
and also that the inflammatory response is Nod-1-dependent [190]. Interestingly, feeding
mice used in this viral–bacterial infection model with Lactobacillus paracasei CNCM I-1518
appeared to boost host defences against infection [191]. There is also a mouse model of
meningococcal meningitis based on intracisternal infection of adult mice, which has been
used to demonstrate the virulence of the L-glutamate transporter GltT protein [192] and
of siaA [193]. Inhibition of matrix metalloproteinases has been shown to attenuate brain
damage in this experimental meningitis model [194].

There are a few reports using knock-out mice to study the host response to meningo-
coccal infection. Using the meningococcal sepsis model, Sjolinder et al. reported that
Toll-like Receptor- deficient (TLR9(-/-))mice had reduced survival and higher levels of
bacteraemia than wild-type mice [195]. In addition, the contribution of galectin-3 (a glycan-
binding protein that binds to meningococci) to meningococcal bacteraemia was studied
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in galectin-3-deficient (Gal-3(-/-)) mice [196]. Bacteraemia was significantly reduced in
knock-out mice, indicating that galectin-3 provides an advantage to meningococci during
sepsis. The protective role of the Macrophage Scavenger Receptor A (SR-A) in sepsis was
shown by the increased levels of bacteraemia, IL-6 cytokine and mortality in SR-A(-/-)
animals intraperitoneally infected with meningococci [197].

As with the gonococcus, meningococci do not naturally colonize wild-type mice and
this has seen the significant use of ‘humanized’ transgenic mouse models. One of the most
oft used transgenic mouse is the human transgenic CD46 homozygous mouse (CD46+/+),
which is susceptible to lethal sepsis and meningitis [198]. Intranasal rather than intraperi-
toneal challenge is more efficient at inducing systemic disease and expression of CD46
appears to accelerate inflammatory cytokine responses and induce large amounts of M1-
type macrophages with enhanced surface expression of MHC II [199,200]. Use of the CD46
transgenic mouse model with bioluminescent imaging techniques allowed the imaging of
the progression of meningococcal disease following injection of the bacteria directly into
the bloodstream [201] and identified a major role for PilC1 adhesin for interaction with
mucosal surfaces. Intranasal challenge of the same model suggested that one portal of entry
of meningococci into the CSF was by direct passage of the bacteria from the nasopharynx
to the meninges through the olfactory nerve system [202]. The model has also defined the
roles of the glutamate dehydrogenase (GdhA) and Opa1800 [203], polynucleotide phos-
phorylase (PNPase) [204], App and MspA autotransporter [205], and PilU [206] PilE and
PilQ [207] proteins in virulence.

Another transgenic mouse model expresses the human transferrin receptor, and in-
traperitoneal infection of these animals has allowed the process of meningococcal invasion
of the blood, blood vessels, kidneys, heart, brain and skin to be studied [208]. Microar-
ray transcriptional profiling of blood and brain samples from infected transgenic mice
showed expression of genes encoding acute phase proteins, chemokines, cytokines and IL-1
receptor-associated kinase-3 (IRAK-3) [209]. The model has demonstrated the virulence role
of the haemoglobin receptor, HmbR [210], differences in the virulence of serogroup W and
Y bacteria [211] and the effects of corticosteroids on sepsis [212]. The CEACAM1 transgenic
mouse model has highlighted the host specificity of meningococcal interactions and the
essential role of Opa proteins in establishing intranasal and mucosal colonization [213].

And finally in this section, a discussion of the unique humanized mouse model in
which human dermal microvessels were introduced into SCID/Beige mice by xenografting
human skin (Figure 1) [214]. In this model, meningococci are injected intravenously, and
the bacteria exclusively associate with the vessel endothelium in the skin graft. Infec-
tion was associated with a cytokine-dependent inflammatory response, the recruitment of
neutrophils and a replication of purpura fulminans in the grafted skin, with haemostasis,
thrombosis and vascular leakage. This is the first report of the classical purpura of meningo-
coccal septicaemia mimicked in an animal model. Expression of pili was essential for
meningococcal adhesion to dermal microvessels, and was the main determinant of vascular
dysfunction. Subsequent studies with this skin graft model provide an increasingly deeper
understanding of vascular colonization by meningococci and the inflammatory process
that generates purpura fulminans [215,216]. Moreover, it demonstrated the key role of
pilus retraction in promoting a sustained bacteraemia and lethality in the mouse [217], with
meningococcal colonization of capillaries and arterioles creating an intravascular niche that
limited the recruitment of neutrophils [218]. Moreover, the observation that both PilE and
PilV promote adhesion to endothelial vessels in vivo [219] suggests that the pilus could be
targeted as an anti-virulence strategy against systemic meningococcal disease [220].

2.3.2. Mouse Models for Vaccine Research

Immunization of mice is useful for showing efficacy through the induction of serum
bactericidal antibodies (SBA) that require complement to kill meningococci with the in vitro
assay. The SBA assay serves as a correlate of protection for meningococcal vaccines. Vaccine
antigens that have been examined include all the major capsular polysaccharides, OMVs
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and individual purified or recombinant surface antigens (Supplementary Table S1). Less
frequently, the opsonophagocytic capacity of murine serum antibodies for meningococci has
been reported. The mouse is often used to test vaccine efficacy by active protection against
meningococcal infection and bacteraemia, for studying the immune-enhancing effects of
adjuvants and for recording any vaccine–adjuvant toxicity (Supplementary Table S1).
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Similarly, the mouse is used to examine the vaccine potential of gonococcal antigens,
though there are considerably fewer reports of antigens capable of inducing serum bacte-
ricidal and/or opsonophagocytic responses (Supplementary Table S1). Active protection
is generally tested using the female mouse model of gonococcal genital tract infection,
described above, although a few other mouse models are noted. For example, a mouse
model of gonococcal peritonitis induced by intraperitoneal injection of bacteria was de-
scribed by Ito et al., who reported that it could be used to simulate human disease, in
which an iron-rich environment produced by the addition of mucin and haemoglobin was
necessary for the dissemination of infection [221]. Ito et al. demonstrated that vaccination
with a heat-stable antigen protected mice against disseminated infection by stimulating
neutrophil influx that cleared local infection. The heat-stable antigen was not related to LOS,
and protection appeared to be independent of pili and bactericidal antibody. Moreover,
vaccination could protect against heterologous infection with other gonococcal strains.
Another mouse model used to study the immunizing properties of gonococcal LOS (R type)
involved intraperitoneal immunization with antigen followed by intracerebral challenge
with 10–20 LD50’s of gonococci [222]. Immunized mice were significantly protected against
intracerebral challenge with different colony type 1 gonococcal isolates.

Mouse models have also been used to test the efficacy of antibacterial compounds. As
an example, a model of meningococcal bacteraemia induced following intranasal infection
with bacteria was used to demonstrate that administration of sodium tetraphenylborate
could significantly reduce bacterial burden [223].

2.4. Guinea Pig

The guinea pig (Cavia porcellus) is one of the animals used in early Neisseria research
in the 1970s that has been generally abandoned and we need not dwell on it in too much
detail here. Advantages of the guinea pig, however, are that they are sensitive to infection,
less variable in response, free of interfering micro-organisms, and more readily available to

https://doi.org/10.1371/journal.ppat.1003139
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researchers than other animal models. It has been used in many vaccine studies to try to
generate bactericidal antibodies to meningococcal and gonococcal antigens, and guinea pig
serum has often been used as a source of exogenous complement for in vitro bactericidal
assays. In addition to the general method of parenteral administration of vaccines, there is
a guinea pig intranasal immunization model that has been used to examine the adjuvant
properties of meningococcal OMP for Brucella melitensis LPS [224].

The guinea pig has been used to study gonococcal pathogenesis. In 1972, Arko re-
ported the establishment of a subcutaneous chamber infection model [102]. In this model,
plastic chambers/bottles of 2 mL volume are implanted surgically into the subcutis along
the dorsolateral flank of the animal, and at least 2 weeks are allowed before gonococcal
challenge to enable a connective-tissue-lined cavity to form for fluid accumulation and
sampling [104]. The pathological findings in guinea pigs were identical to those described
for the mouse above. By contrast, guinea pigs have had little use for studying meningococ-
cal pathogenesis. In 1933, Branham and Lillie induced experimental meningitis in guinea
pigs by intracisternal injection of boiled or filtered suspensions of meningococci [225].
An acute model of bacterial meningitis has been described in which animals are instilled
intracranially with meningeal pathogens, including meningococci, and used to study the
effects of antibiotics in clearing CSF infection(s) [226].

A summary of vaccine studies carried out in guinea pigs, and of infectivity experi-
ments in the subcutaneous chamber model, is provided in Supplementary Table S2 with a
supporting bibliography.

2.5. Rabbit

Much of the published literature on the use of rabbits in Neisseria research just cites the
use of baby ‘rabbit’ complement as an exogenous complement source in validated bacterici-
dal assays for animal and human sera raised to serogroup A, C, W and Y meningococcal
vaccines. There are studies that use rabbits to generate bactericidal antibodies to meningo-
coccal and gonococcal experimental antigens/vaccines, but these are fewer in number than
studies that use mice (Supplementary Table S3). Rabbits have been used far less frequently
to generate opsonophagocytic antibodies to vaccine antigens [227], and their utility for
testing endotoxicity pyrogenicity has largely been superseded by the availability of in vitro
assays. A N. lactamica OMV vaccine has been reported to induce opsonophagocytic, but
not bactericidal, antibodies in rabbits [228].

The rabbit has been used occasionally for pathogenesis studies. In 1948, Miller de-
scribed a model of intraocular infection in which gonococci were observed to invade and
multiply in the lens and ciliary bodies in the eyes [229]. Experimental infection of sub-
cutaneously implanted chambers with gonococci was established in the 1970s [102], and
intravenous injection of gonococci could induce endocarditis in rabbits with transaortic
valve catheters [230]. Intra-articular injection of virulent gonococci produced an arthritis
characterized by an acute, purulent synovitis with PMNL infiltration [231]. An intradermal
injection model has been used to demonstrate the ability of gonococcal LOS to induce skin
lesions [232], and the intrauterine injection of gonococci in a model of PID has been shown
to cause pelvic adhesions and inflammation [233,234]. There are two models that use rabbit
corneas to study gonococcal colonization: in one model, functional but uncharacterised
human membrane gonococcal receptors that were identified on the surface of cultured U937
lymphoma cells after infection with gonococci were transferred directly by electrofusion
to rabbit corneas in vitro [235]; in the other model, the same receptors were transferred
to rabbit corneas in vivo [236]. Notably, these histologically modified corneas could be
infected in vivo with live gonococci [236].

In the case of meningococci, there is a well-established model of endotoxic meningo-
coccal shock [237,238] and of meningitis, the latter induced following intracisternal injection
of meningococcal LOS [239].
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2.6. Rat
2.6.1. Studies with N. gonorrhoeae

The rat has been little used in gonococcal research, again principally due to the human-
restricted nature of the pathogen. Rats are resistant to experimental intraperitoneal infection
with gonococci [240] and will not produce intra-abdominal abscesses alone, but only when
combined with facultative or anaerobic bacteria [241]. However, rats with subcutaneously
implanted chambers can be inoculated with gonococci, which leads to infiltration of gono-
cocci into the tissue and blood vessels surrounding the infected chamber [102]. The presence
of human complement C1q increases the virulence of gonococci in rat pups [242], and
enables the development of disseminated infection and PID in Sprague–Dawley rats that
were infected on day 20 of pregnancy by intraperitoneal inoculation with gonococci. No-
tably, gonococcal infection could be passed from the pregnant rat to the foetus, resulting in
foetal death [243]. This C1q-dependent experimental model of gonococcal infection of new-
born rats demonstrated that the serum-resistant genotype sac-4 conferred C1q-dependent
virulence, which is uniquely characteristic of PID [244]. In addition, the disseminated
arthropathic properties of gonococcal peptidoglycan fragments were demonstrated in adult
rats [245], and LOS could induce a recurrence of arthritis in rat joints previously injured by
peptidoglycan–polysaccharide fragments [246]. Moreover, injection of rats with purified,
soluble, macromolecular, extensively O-acetylated peptidoglycan fragments decreased
overnight food consumption in male Lewis rats [247].

Little gonococcal vaccine-related research has been carried out in rats. In the literature,
we find one report of rats developing a mucosa-associated IgA response to gonococcal PI
protein intra-intestinally, which was augmented by the inclusion of muramyl dipeptide
adjuvant [248].

2.6.2. Studies with N. meningitidis

The neonatal (infant) rat model of meningococcal infection is a well characterized
model that has been used extensively for pathogenesis studies and for active and passive
immunization studies. Nasal instillation of bacteria is used to establish infection, and the
model has increased our understanding of the metabolic processes and virulence prop-
erties of meningococci during bacteraemia and meningitis. Thus, the infant rat model
has shown that haemoglobin utilization [249], FNR-regulated genes required for anaero-
bic metabolism [250], luxS (involved in the biosynthesis of a quorum sensing molecule,
autoinducer-2) [251], HexR expression (which accounts for some glucose-responsive reg-
ulation) [252] and the involvement of gdhA, encoding the NADP-specific l-glutamate
dehydrogenase [253] and the RNA chaperone Hfq [254], are required for systemic meningo-
coccal infection. Analysis of a library of 2850 insertional mutants of meningococci for
their capacity to cause systemic infection in the infant rat model identified 73 genes that
were essential for bacteraemia [255]. In addition, sRNAs have been reported to influence
meningococcal bacteraemia [256]. With respect to surface-exposed virulence factors, the
sialic acids of both the capsule and the sialylated LOS, the expression of PorB2 and the
protein components of the Bexsero vaccine, including GNA2091, are necessary for meningo-
coccal virulence in the infant rat [257–260]. The only other Neisseria spp. to have been used
in rats is N. sicca¸ for which there is a report of induced thyropathy following inoculation of
the commensal organism into the apex of lingual V [261].

The neonatal (infant) rat has been used extensively for meningococcal vaccine re-
search. In 1986, Salit first reported that intranasal challenge of 5-day-old neonatal rats with
meningococci resulted in 16% of rats developing bacteraemia [262]. The infant rat can also
be infected intraperitoneally to induce peritonitis, bacteraemia and meningitis [263]. The
passive infant rat protection model is most used to test the ability of murine monoclonal
antibodies and polyclonal mouse, rabbit and/or human sera raised to test vaccine anti-
gens, to protect the animals from infection with live meningococci. Moreover, all these
antibodies have demonstrated complement-mediated bactericidal activity in vitro, with
only one exception, to our knowledge; namely, that of mouse antibodies to GNA2132 that
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conferred protection against bacteraemia in the absence of bactericidal activity [264]. The
list of meningococcal vaccine antigens that induce antibodies passively protective in the
infant rat are listed in Supplementary Table S4. As with mice, efforts have also been made
to humanize rats, but they have seen limited use. Intraperitoneal infection of human factor
H transgenic rats with meningococci leads to enhanced bacteraemia [265], and a mouse
monoclonal to fHbp has been shown to augment passive protection against meningococcal
bacteraemia in the same transgenic animals [266].

Rats have been used for testing immuno-therapeutics, e.g., a fusion protein comprising
factor H domains 6 and 7 and human IgG1 Fc reduced bacteraemia in meningococcal-
challenged rats [267], and TNF antibody has been shown to protect infant rats against lethal
meningococcaemia [112]. More commonly, they are valuable for studying the pharmokinet-
ics of anti-gonococcal antibiotics and for toxicity/reactogenicity studies of gonococcal and
meningococcal antigens and vaccines [102–105].

2.7. Horse

To our knowledge, the horse has been used only to produce hyperimmune serum for
meningococcal research. Specifically, hyperimmune serum from a single horse (number 46)
that had been immunized with a killed serogroup B (strain B-11) meningococcal vaccine
has been used as a reagent for primary isolation media, large-scale serogrouping and
immunochemical studies on capsular polysaccharides [268].

2.8. Chicken Embryo Model

The use of chicken embryos as an animal model for gonorrhoea dates to the 1970s
with the papers from Finklestein and colleagues [269–271]. The model has shown some
use in demonstrating passive protection by immune sera against lethal infection and for
investigating gonococcal virulence, e.g., the role of cardinal components such as LOS, pili
and the opacity proteins, and the dependence on iron [270,272–274]. Different routes of
inoculation can be used, including intravenous routes, and routes through the yolk sac and
chorioallantoic membrane [275]. Diena et al., were able to show that immunity to gonococci
could be transferred from vaccinated hens to embryos [276]; for example, embryonated
eggs obtained from hens immunized intravenously with LOS, were protected against lethal
gonococcal challenge [222].

The model has also been used in some early vaccine-related studies. For example,
Robertson showed that rabbit antisera to whole OM and pilus could protect chick embryos
challenged with a lethal dose of gonococci, whereas the effect with LOS itself was less
pronounced and antisera raised against individual OMPs were non-protective [277]. The
model has also proved useful for studying meningococcal vaccine antigens; Ashton et al.
immunized hens with meningococcal serotype 2 OMP (SP-2) and showed that embryos
from these animals were protected against challenge with up to 10,000 LD50 doses of
the homologous strain, with significant protection also shown against challenge with
heterologous strains [278].

Despite the flurry of activity around the hen embryo model for a decade or so, it is no
longer used. More recently, however, a study reported the isolation of Neisseria spp. from
eggs of the Greater white-fronted goose (Anser albifrons) on the Arctic Coastal Plain of Alaska,
where mortality of developing embryos had been observed. These Neisseria spp. most closely
resembled N. animalis and N. canis and isolates were used to infect developing chicken eggs,
with mortality rates reaching 100% by day 7 post-infection, depending on the inoculation
dose [279]. Thus, bacterial infections can result in embryo mortality in bird populations.

2.9. Pig (Sus domesticus)

There is an experimental porcine meningococcal sepsis model for studying the patho-
physiology of endotoxic shock [280]. The model has been used to study the in vivo re-
sponses of a large animal to LOS and non-LOS structures after the infusion intravenously
of LPS-replete and LPS-deficient meningococci [281]. Such studies confirmed the role
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of LOS in endotoxic shock and that non-LOS structures can induce cardiovascular and
hematologic changes, but with higher doses required. The porcine model mimics cardinal
aspects of human sepsis, including the production of inflammatory mediators and organ
inflammation [282,283] and microvascular findings in tongue and skin [284]. It also offers
an opportunity for testing anti-sepsis therapies; for example, the bradykinin receptor antag-
onist icatibant has been tested, but without success in preventing meningococcal-induced
oedema, shock and inflammation in the pig [285].

There are Neisseriaceae and related species that can infect pigs, but the pig has not been
used for in vivo gonococcal research, which contrasts with their use for studying Chlamydia
pathogenesis [286]. An ex vivo porcine vaginal mucosa model has been reported but not
used extensively [287].

2.10. Zebrafish (Danio rerio)

The zebrafish (Phylum Chordata, Class Actinopterygii, Order Cypriniformesis) has become
a widely used vertebrate model in biological research and for studying infection with many
human and animal bacterial pathogens [288], including some reported use with meningo-
cocci. The zebrafish embryo innate immune system shares similarities with the mammalian
system, including the expression of TLRs, and the presence of phagocytic neutrophils and
macrophages [289]. A key attribute of the embryo is its transparency, which makes it an
interesting model with which to study bacteria–host interactions in real time using fluorescent
tools. Recently, the zebrafish embryo was developed as a meningococcal infection model
to study pathogenesis and, in particular, the effect of CPS structure on virulence [290]. In
this study, CPS meningococci were injected in the caudal vein of the zebrafish embryo and
shown to replicate and cause a dose-dependent lethal systemic infection, with a characteristic
pericardial oedema (Figure 2). By contrast, zebrafish embryos could clear infection with
non-CPS meningococci and were not killed. The study also demonstrated that the capability
of meningococci to kill zebrafish embryos and deplete neutrophils was correlated with the
number of carbons per CPS repeat unit during its biosynthesis [290]. The model could see
further use in studying bacteria–host interactions, with a focus on pathogen interactions with
the innate immune system and with high-resolution imaging of bacterial interactions with
cellular barriers, e.g., the blood–cerebrospinal fluid/brain barriers.
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Figure 2. Fluorescence microscopy of zebrafish embryos infected with mCherry expressing N.
meningitidis strain H44/76. Panels (A–D) show zebrafish embryos infected with red fluorescent
meningococci, with (A) no meningococci visible, (B) meningococci in the head, (C) meningococci
in the tail and (D) meningococci throughout the body. Arrow denotes pericardial oedema. (E) The
distribution of meningococci in infected zebrafish embryos. © 2022 Schipper, Preusting, van Sorge,
Pannekoek and van der Ende. Reproduced from Schipper, K.; Preusting, L.C.; van Sorge, N.M.;
Pannekoek, Y.; van der Ende, A. Meningococcal virulence in zebrafish embryos depends on capsule
polysaccharide structure. Front. Cell. Infect. Microbiol. 2022, 12, 1020201. https://doi.org/10.3389/
fcimb.2022.1020201 [290].
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3. Invertebrate Animal Models

In contrast with the wide variety of vertebrate animal models used in Neisseria research,
the use of invertebrates has been under-explored. This is not entirely unexpected, as
invertebrate animals are unlikely to express the precise pattern recognition receptors (PRRs)
that can recognise Neisseria pathogen associated molecular patterns (PAMPs) or receptors
binding specific bacterial adhesins. Despite this, invertebrates do share some similarities
with mammals in their innate immune systems.

3.1. Galleria Mellonella Larvae

Recently, the utility of larvae of the greater wax moth Galleria mellonella (Subfamily
Galleriinae, Family Pyralidae, Order Lepidoptera) has been examined as an in vivo model of
Neisseria infection [291]. There is extensive literature describing the use of G. mellonella
larvae to study infection by many bacteria, fungi and parasites, and its use as a model
for testing new antibacterial, antifungal and antiparasite strategies and novel drugs and
antibiotics [291]. Infection was carried out via injection of live Neisseria into the last left
pro-leg of the larvae, although the oral route is available and has been used for periodontal
pathogens [292], although not assessed with the Neisseriae. A threshold of ~106–107 gono-
cocci/larva was needed to kill >50% of larvae, with increased toxicity correlating with
reduced health index scores and pronounced histopathological changes such as increases in
the total lesion grade, melanized nodules, hemocyte reaction and multifocal adipose body
degeneration (Figure 3). Infection with meningococci and N. lactamica had similar outcomes,
and all Neisseria spp. were significantly less toxic than P. aeruginosa. This is probably related
to the lack of cytotoxic virulence factors. Indeed, larval death was independent of the
expression of pilus or Opa protein or LOS sialylation, although it could be induced with
physiologically excessive amounts of LOS-replete OM. Larval death required live bacteria
and interestingly could be enhanced significantly if larval haemocytes were depleted. The
larval innate immune system does share some similarities with the mammalian innate
immune system, with haemocytes functioning in phagocytosis, nodulation and encapsula-
tion [293]. Larvae can also undergo melanisation, express a prophenolaxidase-activating
system (Pro-PO-AS) and can synthesise small antimicrobial peptides and lysozyme. The
model did prove useful for testing the anti-gonococcal properties of antibiotics and novel
antimicrobials; for example, ceftriaxone could protect larvae from systemic infection with
different gonococcal isolates, but not azithromycin or the fatty acid monocaprin or ligand-
coated silver nanoclusters.

However, the model has some clear limitations. Such larvae are not a natural target for
infection with Neisseria spp., as shown by the lack of bacterial replication within the larvae
over time. The most probable explanation is that the larvae do not express the specific
receptors that recognise gonococcal ligands, e.g., the absence of pilus-binding receptors
or CEACAM receptors. Interestingly, heparin sulphate proteoglycan (HSPG) molecules
and mucopolysaccharides are produced by insects, and, speculatively, may play a role as
receptors for Neisseria Opa proteins. The exact mechanism by which Neisseria kill larvae
is not known, but may involve toxic components such as the release of peptidoglycan
fragments or other potential toxins [294]. Thus, the model may not prove useful for
studying Neisseria adhesion and invasion events in vivo but may be valuable for assessing
putative toxins/virulence factors, without resorting to cell cultures and mammalian models,
and for testing novel antimicrobials.

3.2. Can Neisseria Infect Other Insects?

The literature describes the identification of Neisseria in other insects, most often from
metagenetic analyses of 16S rRNA genes in insect microbiota (Table 3), although only at
the genus level, and the exact species is not provided. Intriguingly, there is one paper
that describes the Australian bushfly as a possible vector of gonococcal conjunctivitis,
although as the author notes in his hypothesis, the gonococcus is likely to be an accidental
passenger [295]. Yet, a previous report of the association of high densities of flies with a
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community outbreak of gonococcal conjunctivitis in Ethiopia, where genital transmission
could not explain the outbreak, suggested that flies and a lack of personal hygiene were
important in person-to-person transmission [296]. The identification of Neisseriaceae-related
bacteria as a dominant obligate symbiont in species of louse [297] can be postulated as
a potential means of transmission of bacteria causing sexually transmitted diseases. For
example, Pierzchalski et al. reported that Phthirus pubis (pubic louse) infestation was
predictive of a concurrent Chlamydia trachomatis infection in a population of sexually active
adolescents at a juvenile detention centre, and gonococcal infection was reported as higher
in index cases (18%) than in controls (9%) [298]. In their discussion of the literature, the
authors suggested that adolescents with pubic lice infestation should be screened for
sexually transmitted diseases, including chlamydia and gonorrhoea, but did not discuss
the louse as a possible transmission vector. In our opinion, the identification of Neisseria
16sRNA gene signatures, but not a definitive culture, does not definitely suggest that these
insects can be developed as other invertebrate models of infection.
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Figure 3. Images of larvae infected with gonococci. The images show the development of melanisa-
tion, i.e., the observed blackening of the larval body as a marker of larval death with time. © Dijokaite,
Humbert, Borkowski, La Ragione, Christodoulides. Reproduced from Dijokaite, A.; Humbert, M.V.;
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Table 3. Identification of Neisseria spp. in insects.

Insect Species Reference

Musca vetustissima Walker (Australian bushfly) N. gonorrhoeae [295]

Apis mellifera capensis and Apis mellifera scutellata
(worker honeybees)

Sequences related to Simonsiella/Neisseria
(amongst others) [299]

Musca domestica (housefly)
Neisseria in pupae; denaturing gradient gel
electrophoresis analysis identifies N. gonorrhoeae
NCTC83785 (X07714) and Neisseria sp.93S1 (EU370420)

[300]

Ruspolia differens (edible grasshopper) Neisseria (operational taxonomic unit) [301]

Platypus cylindrus Fab. (Ambrosia Beetle) Neisseria spp. [302]

Hoplopleura acanthopus, Polyplax microbiomes (louse) Neisseriaceae-related bacterium (dominant obligate
symbiont) [297]

https://doi.org/10.1080/21505594.2021.1950269
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4. Can the 3Rs Be Applied to Neisseria Research?

‘Replacement, Reduction, Refinement’(3Rs) is a trio of principles first suggested in 1959
by WMS Russell and RL Burch [303]. The goal of the 3Rs is to find alternatives to animal
models (replacement), to maximise the use of data obtained from fewer animals (reduction),
and to adopt housing and husbandry protocols that minimise animal suffering that can affect
homeostasis during experiments (refinement). These principles serve to improve the quality
of preclinical research and of animal welfare when the use of animals is unavoidable, and they
are given significant weight by agencies funding biomedical research [304]. The use of animal
models in Neisseria research is being constantly questioned both ethically and biologically,
given the human-restricted nature of the pathogens. Thus, all Neisseria animal models have
their limitations, and it can be argued that the use of alternative, non-animal-based approaches
could provide more flexibility, reproducibility and cost-efficiency savings. To apply the 3Rs,
several models have been proposed and are discussed briefly below.

In Vitro 3D Models and Organoids

Over the past fifty years, most research studying Neisseria colonization and invasion
has been carried out using simple monolayer cultures of primary cells and immortalized
cells and using explants of primary tissues. These are reviewed extensively by Heydarian
et al. [305], and not all of these cell lines have come from relevant tissue; this raises questions
about the validity of extrapolating from in vitro data to in vivo biology. The numbers of
papers using cell culture models to study Neisseria–host cell interactions are too numerous to
detail. However, recent efforts have been dedicated to transitioning from simple monolayer
cell culture approaches to more complex cell cultures, including three-dimensional (3D)
approaches and ex vivo tissue culture or organoids, which are proposed to provide a more
realistic physiological environment to simulate the site of infection of the original hosts.

Three-dimensional cultivated cells are spatially organized cells that grow and interact
with each other and with the surrounding extracellular scaffold in three dimensions, and
are suggested to mimic the in vivo cell configuration. Organoids are tiny, self-organized
3D masses of tissue that are obtained from stem cells. Such cultures can be fashioned
to replicate much of the complexity of an organ, or to express particular aspects of it,
e.g., the production of only certain kinds of cells [306]. They are believed to respond
better to physiological signals than conventional monolayer cultures, and can provide
new insights into the pathophysiology of bacterial infection by addressing questions, for
example, on the role of the microbiota, cell structures, extracellular matrix (ECM) and
tissue exfoliation. Moreover, using natural-based scaffolds, such as decellularized ECM
derived from different human tissues, produces 3D models with optimal mechanical and
biochemical properties and immunological responses like those of the host. To produce
acellular ECM scaffolds, the cellular components of organs are removed and certain ECM
proteins retained, e.g., collagen, fibronectin and laminin. In the case of porcine small
intestinal scaffold (SIS), a network with interconnected pores offers a great support for cell
growth and differentiation [307–309]. In addition, more advanced techniques have been
introduced to culture cells under conditions equivalent to an in vivo microenvironment,
such as perfusion-based bioreactor techniques that have been used to study gonococcal
infection under dynamic culture conditions, which also provides an opportunity to mimic
specific immunological responses that are impossible with static culture [310]. New ap-
proaches also include the fabrication of 3D ‘artificial tissues and organs’ from biological and
biocompatible materials made using computer-controlled techniques in a process called
‘3D bioprinting’. These artificial organs and tissues are engineered to closely mimic the
native organs using three types of materials—(i) building materials or hydrogels such
as collagen [311], hydrogel from sodium alginate [312], agarose [313] and novogels [314];
(ii) supportive materials such as carbohydrate glass (glucose, sucrose, dextrane) [315],
pluronic F127, gelatin [316] and hydrophobic high-density perfluorotributylamine [317]
and (iii) cells or tissues derived from humans or animals. Sophisticated software and
printing systems such as nozzle-based, laser-based and bioprinter-based systems can be
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used to recreate the structure and behaviour of the organ and provide an environment for
all of the cell types present within an organ. These approaches are being used to develop 3D
printed experimental models of infectious diseases, inflammatory disorders or therapeutic
replacements of human tissues. For example, they have been used extensively to build
neurovascular units resembling the human brain and vascular system in combination with
microfluidic chips to produce models that can be perfused. However, bioprinting faces
major challenges to exactly match all material and mechanical requirements of the printed
materials for different biological and physicochemical needs [315,318–320].

The normal sites of colonization of gonococcus and meningococcus are the urogenital
tract and the respiratory tract, respectively, although both pathogens can colonize other
mucosal body sites [7]. Different animal-derived 3D models and organ cultures such as
rabbit oviducts [321], guinea pig urogenital tract [322] and a 3D artificial scaffold model
of the bovine cornea [323] have been used for studying Neisseria pathogenesis and host
immune responses. However, for human-restricted pathogens such as N. gonorrhoeae and
N. meningitidis, the use of animal-derived cells might not be wholly relevant. Human-
derived cell and organ cultures provide striking features of specificity and selectivity and
give better information about gonococcal and meningococcal colonization, adhesion and
invasion during infection [324]. Several organoids, ex-vivo and 3D cell culture human-
derived models relevant to gonococcal and meningococcal infections have been established
to include epithelial, endothelial, stromal and immune cells, and key models are sum-
marised briefly in Supplementary Table S5. Recently, an in vitro hollow fibre infection
model (https://hollowfiberinfectionmodel.com/ “URL accessed on 30 May, 2023”) has
been used to simulate gonococcal infections and study the pharmacokinetic and pharma-
codynamic properties of new antimicrobials, and obviate the need for animal models of
toxicity testing [325].

5. Prospectus and Conclusions

The use of vertebrate and invertebrate animal models has been indispensable in
helping us understand the mechanisms of Neisseria interactions with the host and for
the development and testing of vaccines and antibiotics/antimicrobials. Many of these
models mimic aspects of Neisseria infection in humans, and these are summarized in
Table 4. In addition, the researcher is provided with an explanation of the potential
uses of each model to aid their choice and whether they are in use today; the latter is
important, as many of these models require training from experienced users and for some,
e.g., the human challenge models, a high degree of collaboration is needed. All these
models have their advantages and disadvantages, but several of them are still likely to be
used over the next decade to address the significant gaps in Neisseria research (Table 4).
Notably, the female mouse intravaginal infection model and the Ng CHIM will help to
address the biggest gaps, which are the lack of an effective gonococcal vaccine and of new
antimicrobials for treating local and systemic infections. Wild-type and transgenic mouse
models will continue to be useful for studying the finer details of gonococcal and, to a
lesser extent meningococcal pathogenicity, and new insights into Neisseria–host interactions
could inform new intervention strategies, e.g., for limiting colonization, enhancing innate
immune responses and reversing immunosuppressive responses.

https://hollowfiberinfectionmodel.com/
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Table 4. Vertebrate animal models mimic aspects of human infection and many still have significant potential for Neisseria research.

Pathogen Animal Aspect of Human Infection Mimicked
by the Animal Potential of Model In Use Today

Neisseria gonorrhoeae Ng CHIM
Natural urethral male challenge model;
mimics clinical symptoms of pus
urethritis

Essential for studying transmission, inflammation, re-infection, changing
bacterial population dynamics, antigen variation, immunity and
immunosuppression and vaccine trials.

Yes

Chimpanzee Mimics clinical symptoms of pus
urethritis and pharyngitis

• Utility for immunological and vaccine research is limited due to their
high cost

• Ethical issues around their use
• Outbred animals with more variable individual immune responses

No

Rhesus macaque
Colonization of nasal cavity and
epithelium covering the cribiform plate,
and persistence

Potential for studying
• commensal Neisseria colonization, transmission, long-term persistence,

horizontal gene transfer
• asymptomatic carriage by pathogenic Neisseria
• preclinical testing of vaccine antigens
• persistence of antibiotic resistant determinants in a population

Limited

Wild-type mouse Used to mimic histopathology of DGI,
neutrophil infiltration, pneumonia

Most models have fallen into disuse as wild-type mice are not naturally
infected with gonococci, and aspects of histopathology are dependent on route
of infection and iron supplementation.

No

‘Humanized’ mouse
Aspects of the human inflammatory and
cellular response and neutrophil
infiltration

Transgenic mice overcome the resistance to natural colonization by gonococci
and are useful for studying the cellular biology of infection. Yes

Mouse model of intravaginal
infection

Hormone-influenced colonization of the
lower genital tract mucosa

Important for studying gonococcal
• virulence factor interactions with host cell receptors
• induced inflammation and clearance
• evasion of innate immunity and suppression of adaptive immunity
• adaptation to host environment
• mechanisms of antibiotic resistance
• Key model for preclinical testing of vaccines, by active and passive

immunization, and of therapeutics

Yes

Mouse model of upper genital
tract infection

Mimics tissue invasion, inflammatory
cytokine production and neutrophil
infiltration

Useful for studying aspects of disseminated infection, including endometritis,
salpingitis (Fallopian tube) and peritonitis, and associated organ damage and
potentially infertility.

Yes

Guinea pig Pathological findings as with mouse Guinea pigs have the advantages of sensitivity to infection, less variable in
response, free of interfering micro-organisms, ready availability. No

Rabbit Conjunctivitis, endocarditis, arthritis,
pelvic inflammatory disease

Useful for studying aspects of gonococcal pathogenesis and host response, but
largely superseded by small rodent models, which can provide animal
numbers for better reproducibility.

No
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Table 4. Cont.

Pathogen Animal Aspect of Human Infection Mimicked
by the Animal Potential of Model In Use Today

Rat Disseminated infection and pelvic
inflammatory disease; arthritis Useful for studying induced pelvic inflammatory disease processes. No

Chicken embryo Lethality Useful for studying gonococcal virulence factors, immunity, and for passive
protection studies of anti-gonococcal sera. No

Neisseria meningitidis Wild-type adult mouse Peritonitis, bacteraemia, sepsis,
meningitis, kidney damage

Useful for studying aspects of systemic meningococcal disease, pathogen
virulence factors and host innate immune responses.
Vaccine studies—active and passive protection against infection and
generation of bactericidal and/or opsonophagocytic antibodies.

Yes

Knock-out mice Peritonitis, bacteraemia, sepsis,
meningitis, kidney damage

Useful for studying aspects of systemic meningococcal disease host innate
immune responses.
Vaccine studies—active and passive protection against infection and
generation of bactericidal and/or opsonophagocytic antibodies.

Yes

Neonatal mouse
Intranasal infection leading to
colonization, bacteraemia, meningitis
and ventriculitis

Useful for studying mucosal invasion and pathogen virulence factors and host
innate immune responses. Yes

Adult mouse human skin
xenograft Replicates purpura fulminans

Useful for deeper understanding of vascular colonization by meningococci
and the inflammatory process that generates purpura fulminans, and
virulence factors involved.

Limited

Guinea pig Acute meningitis As above, but more generally useful for vaccine studies. No

Rabbit Meningococcal shock and meningitis Useful for studying systemic meningococcal disease, but largely superseded
by small rodent models. No

Infant rat Bacteraemia, peritonitis, meningitis Used extensively for pathogenesis studies and for active and passive
immunization studies. Yes

Pig Sepsis Established model for studying the pathophysiology of endotoxic shock and
anti-sepsis therapies. Limited

Zebrafish Innate immune responses to infection

Not generally used, yet. Potential for studying bacteria–host interactions,
pathogen interactions with the innate immune system, high-resolution
imaging of bacterial interactions with cellular barriers, e.g., the
blood–cerebrospinal fluid/brain barriers.

Limited

Neisseria lactamica Nlac CHIM Neisseria colonization of nasopharynges Useful for studying Neisseria colonization and carriage, host mucosal
immunity, vaccine delivery with genetically modified bacteria. Yes
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Without considerable further research to correlate responses in vitro with in vivo,
the complete replacement of animals with new in vitro models and organoids is a matter
for debate. And finally, and the subject of a review in itself, the use of computational
methods, modelling and the plethora of emerging artificial intelligence and deep/machine-
learning algorithms offers a different opportunity for the 3Rs by enabling the study of host–
pathogen interactions in silico at the molecular and genetic levels. For example, computer-
aided methods can be used to (i) investigate the structure and function of pathogenic
factors, (ii) determine antigen variation and diversity, (iii) map T- and B-cell epitopes
for designing new subunit vaccines, (iv) discover new antimicrobials through artificial
intelligence screening of compound libraries, (v) study a variety of omics and (vi) develop
sequence-based diagnostics. All these approaches have broad applicability to controlling
infectious diseases of all aetiologies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pathogens12060782/s1, Table S1: Use of the mouse for testing Neisseria
vaccine efficacy, through the generation of bactericidal antibodies, opsonophagocytic antibodies and
active protection against infection; Table S2: The guinea pig in Neisseria research; Table S3: Use of
the rabbit for testing Neisseria vaccine efficacy, through the generation of bactericidal antibodies;
Table S4: The neonatal (infant) rat model of passive protection used to test the ability of antibodies
generated to meningococcal antigens to protect against infection with live meningococci; Table S5:
Human-derived cell culture-based models for studying Neisseria pathogenesis.
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