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Abstract: This article provides a thorough overview of the available resorbable biomaterials appro-
priate for producing replacements for damaged tissues. In addition, their various properties and
application possibilities are discussed as well. Biomaterials are fundamental components in tissue
engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity,
biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate
host response. With ongoing research and advancements in biomaterials for medical implants, the
objective of this review is to explore recently developed implantable scaffold materials for various
tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL,
PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin,
collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG,
PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of
these biomaterials in both hard and soft TE is considered, with a particular focus on their physic-
ochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds
and the host immune system in the context of scaffold-driven tissue regeneration are discussed.
Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal
capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in
this strategy.

Keywords: biomaterials; biopolymers; bioceramics; hybrid biomaterials; 3D scaffolds; tissue engi-
neering; foreign body response; immunoengineering

1. Introduction

Increasing demand for organs and tissues, driven by the need to address limitations
associated with autografts and allografts, has stimulated the development of TE as a field of
scientific inquiry. In recent years, the discipline of materials science in TE has amalgamated
an engineering-oriented approach with knowledge derived from the natural sciences and
medicine. The objective has been to fabricate biological substitutes capable of restoring,
securing, or enhancing the functionality of damaged tissues or organs [1]. Biomaterials
represent the basic components and play a crucial role in scaffold engineering [2]. Biocom-
patibility is an essential prerequisite for biomaterials, encompassing specific mechanical,
biochemical, and physical properties [3]. Biocompatibility, as defined broadly, denotes

Materials 2023, 16, 4267. https://doi.org/10.3390/ma16124267 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16124267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5074-9621
https://orcid.org/0000-0002-5487-0875
https://orcid.org/0000-0001-8905-8468
https://doi.org/10.3390/ma16124267
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16124267?type=check_update&version=3


Materials 2023, 16, 4267 2 of 30

the ability of a material to interact with living cells or tissues without inducing toxicity
or provoking immunological responses. Given that biomaterial cell interactions signifi-
cantly influence cell viability, primarily through mechanisms such as proliferation and
differentiation, the characteristics of biomaterials, including surface chemistry, charge,
roughness, reactivity, hydrophilicity, and rigidity, necessitate careful consideration [4]. A
scaffold, which constitutes a three-dimensional (3D) mesh composed of diverse biocom-
patible, bioactive, and biodegradable materials, assumes the role of providing structural
support to the attached cells and creating an appropriate environment conducive to their
proliferation, migration, and differentiation [5]. The primary objective of scaffolds is to
mimic the structure and function of the extracellular matrix (ECM) of the original tissue [6].

An ideal scaffold must possess suitable physical, chemical, and biological properties
to facilitate cell proliferation, migration, and tissue formation within 3D space. These
structures should enable adequate oxygenation, nutrient supply, and removal of metabolic
waste during tissue regeneration. Furthermore, scaffolds should exhibit the ability to
withstand mechanical stress [7,8]. The presence of a porous structure favors effective
cell colonization (Figure 1a,b). Additionally, the surface structure and chemistry of these
polymeric matrices need to be taken into account to ensure optimal cell attachment.
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Figure 1. Porous structures of fractured biopolymer-based scaffolds. Scanning electron microscopy
(SEM) imaging technique was applied for the analysis of the scaffolds’ cross-sections. (a) An image
depicting the porous architecture of the matrix. Both larger, as well as smaller pores, are displayed,
which are distributed in an inhomogeneous manner; (b) observation of the multiple micropores with
a homogenous distribution, creating the inner environment for cell attachment, proliferation, and
migration, as well as differentiation.

Scaffolds can be engineered with bio-based and fossil-based polymers, or with bio-
based ceramics with suitable combinations [9]. Bio-based polymer scaffolds generally
exhibit minimal immune responses and promote favorable cell interactions, while fossil-
based polymers are comparatively more economical, possess greater strength and offer
improved functionality. However, they may exert toxic effects and elicit adverse immune
responses. Polymers, in general, serve as widely utilized biomaterials for constructing soft
matrices used in the production of highly transplanted organs such as the kidneys and liver.
Furthermore, they have successfully found applications in the regeneration of muscles,
tendons, heart valves, arteries, bladder, and pancreas [10]. Hybrid biomaterials, comprising
combinations of two or more biomaterials, exhibit enhanced functionalities and can address
the limitations associated with individual materials, thereby satisfying a broad range of
clinical requirements. The subsequent text provides a comprehensive analysis of recent
literature focused on biopolymers within the context of TE. Key parameters necessary for
scaffold design are also discussed. Notably, the interaction between biomaterial-based
scaffolds and the host organism is described, as this phenomenon is deemed crucial for
their successful translation into clinical medicine.
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2. Materials Used for 3D Scaffold Engineering
2.1. Fossil-Based Polymers

Fossil-based polymers (FBPs) are polymers that are artificially produced under lab-
oratory or industrial conditions from fossil raw materials, usually petroleum or natural
gas. They are man-made and assembled by chemical reactions. Representatives that can be
used in TE are poly-(ε-caprolactone) (PCL), poly(vinyl) alcohol (PVA), polyurethane (PU),
poly-(propylene fumarate) (PPF), and polyethylene glycol (PEG) (Table 1). They usually
have a controlled structure, no immunological reaction, and a higher degree of processing
flexibility. They can also provide better control over the synthesis and design of the polymer
itself [11]. FBPs have several advantages for regenerative medicine applications. They
can be produced in reproducible high quality and purity. In addition, they have good
mechanical properties and thermal resistance compared to natural polymers [12]. FBPs are
widely used in TE, and their chemical, physical, mechanical, and morphological properties
(e.g., pore size and distribution, surface texture, typology, and crosslinking) can be adjusted
according to the intended application (Figure 2) [13]. The chemical structure of FBPs de-
termines their degradability and other properties that are important for scaffold design.
These polymers can form unlimited structures and shapes, which is a great advantage.
The degradation of polymers used in TE is mainly by hydrolysis. The rate of degradation
can be modulated by adjusting the composition, molecular weight, and end groups in the
polymer, as well as by the composition and geometry of the device [14]. Moreover, they
can be easily engineered and chemically modified. These properties present important
requirements in the context of TE and subsequent medical applications. Compared to
natural biodegradable polymers, bioresorbable FBPs offer better controlled mechanical
properties while biodegradability is maintained. One of their major advantages is their
customizable porosity, large-scale production, and long shelf life [15]. These polymers can
be classified according to their hydrophilicity, hydrophobicity, and degradability [16].
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of acellular or cell-seeded constructs to restore damaged organs. However, because of the great
regenerative potential, current studies are mostly focused on effective scaffold colonization with stem
cells. Created with BioRender.com.
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Table 1. Summarization of the most common characteristics of fossil-based polymers.

Polymer Advantages Disadvantages TE References

Poly(ε-caprolactone)

bioresorbable
biocompatible

mechanical stiffness
elasticity

thermal stability
low inflammability

low cell adhesion
slow degradation

bone
dental
retina

skin, vascular
liver

cartilage
ligaments

muscle, neural

[12,16–18]

Poly(vinyl) alcohol

biocompatibility
hydrophilicity
permeability

water solubility

biodegradability after
crosslinking
cell adhesion

cardiac
vascular

bone
skin

cartilage
neural
corneal

[14,16,19–25]

Polyethylene glycol

biodegradability
non-ionic

water-soluble
thermally stable

protein repellency

cellular adhesion
antigenicity

bone
drug delivery [16,26–32]

Polypropylene fumarate

biodegradability,
biocompatibility

excellent strength
osteoconductivity

hydrophobicity
orthopedic, neural

bone, ophthalmology
cardiac

[33–36]

Polyurethane

biodegradability
biocompatibility

flexural endurance
thrombo-resistance

oxygen permeability

low interfacial tension
cardiac

bone
cartilage

[16,37–41]

2.1.1. Poly(ε-caprolactone) (PCL)

PCL is an extremely tough aliphatic polyester and is widely used in various biomedical
applications [16]. It is a polymer with repeating hexanoate units and has a low melting point
of 60 ◦C. PCL is bioresorbable and has good stiffness, mechanical elasticity, thermal stability,
biocompatibility, and rheological and viscoelastic properties. It has low decomposition
rates and is highly flammable, non-toxic, and inexpensive [16]. On the other hand, poor
cell adhesion and slow degradability are disadvantages of this synthetic biopolymer [17].
To minimize these limitations, the combination of PLC with other polymers, e.g., poly-
lactic acid (PLA), has been developed to create a less hydrophobic construct with better
mechanical properties and improved degradability. When applied in vivo, PCL proves to
be stable and shows no visible degradation after 6 months [18]. PCL has been used in the
production of hard (bone and dental applications) and soft tissues (skin, liver, cartilage,
ligaments, muscle, nerves, retina, and blood vessels) [17]. In the context of skin TE, studies
have demonstrated that a layer-by-layer method is suitable for modeling PCL scaffolds.
These provide a suitable matrix for the fabrication of cell-colonized constructs consisting
of epidermal and dermal skin layers. Experiments also showed that the proliferation
and survival rates of fibroblasts were sufficient, allowing skin regeneration [16]. Porous
PCL scaffolds can also be utilized in vivo. Their long-term degradation behavior is very
favorable for their in vivo performance, especially in the context of hard tissue TE. Studies
have described that the optimal porosity for PCL scaffolds should be greater than 90% to
effectively control the rate of degradation and provide an appropriate environment for cell
attachment, proliferation, and subsequent differentiation [12].
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2.1.2. Poly(vinyl) Alcohol (PVA)

PVA can be utilized in various biomedical applications. Due to its properties, such
as good biodegradability, biocompatibility, hydrophilicity, permeability, flexibility, and
the possibility to be blended with other biopolymers, PVA is an attractive polymer for
scaffold engineering. It is often blended with chitosan, or polyhydroxy butyrate to produce
nanofibers for wound healing [16]. In addition, studies have described the possibility of
re-epithelization of PVA nanofibers prepared by electrospinning, which were subsequently
mixed with Carica papaya and gelatin. This phenomenon happened due to the moist
environment provided by this composite scaffold [20]. PVA nanofibers also show significant
anti-bacterial activity against Staphylococcus aureus (gram-positive) and Escherichia coli
(gram-negative), which is important for the healing process and confirms their potential
for wound healing applications [21]. PVA is also typical for its ability to store a significant
amount of water or biological fluids and to act as a lubricant resembling the cartilage
surface [22]. Another reason why it attracts attention in the field of artificial cartilage TE is
its elastic physical properties and low coefficient of friction [23,24]. Disadvantages of PVA-
based scaffolds are biodegradability, which is lower after crosslinking, and reduced cell
adhesion due to the hydrophilic moieties (i.e., hydroxyl groups) presented on the polymer
scaffold. Combining PVA with other synthetic or natural materials could be the solution
for these drawbacks [25]. PVA is soluble in water and therefore needs to be crosslinked to
reduce its solubility and improve mechanical properties. PVA-based scaffold design with
>85% is favorable for the TE applications [14].

2.1.3. Polyethylene Glycol (PEG)

PEG (polymer of ethylene oxide) is known as polyethylene oxide (PEO) or poly-
oxyethylene [16]. PEG is a water-soluble, non-ionic, and biodegradable synthetic polymer
that has a wide range of applications in TE [29]. The mechanical properties of compos-
ites can be improved by the good mechanical stiffness of PEG [30]. PEG exhibits low
immunogenicity and nontoxicity [29]. Moreover, PEG-based scaffolds present hydrated
structures that improve cytocompatibility [31]. As mentioned above, mechanical stiffness
is one of the most important properties. This phenomenon can be improved by chemical
crosslinking [32].

2.1.4. Polypropylene Fumarate (PPF)

PPF is a linear polyester composed of fumaric acid and propylene glycol as monomer
units. This biodegradable polyester offers excellent strength due to the crosslinking of dou-
ble bonds to form a polymeric network [33]. This characteristic is ideal for its orthopedic
applications. It can be combined with PEG, PLA, or PCL to improve their hydropho-
bicity [34]. Degradation of PPF occurs by hydrolysis of the ester bonds, and the rate of
degradation depends on the molecular mass of the main chain, used crosslinkers, and
the crosslink density [35]. PPF is mainly used in orthopedic applications because of its
extremely good mechanical strength, good biocompatibility, and osteoconductivity. The
aforementioned properties pre-determine PPF-based scaffolds for use in bone TE. Moreover,
these matrices have also been described to degrade in the time frame relevant to bone
healing and remodeling [36]. Moreover, PPF-based scaffolds have been investigated for
their potential use in ophthalmology, cardiac, and neural TE applications [35].

2.1.5. Polyurethane (PU) and Modified Polyurethanes (MPUs)

PU holds attractive properties as a framework material for TE applications. This is due
to its wide range of versatile mechanical, physical, and biological characteristics, along with
good biodegradability, biocompatibility, and high flexural strength [40]. Typical advanta-
geous qualities include elasticity and the ability to convert to poly(ester-urethane) urea [16].
In addition, PU exhibits low cytotoxicity, interfacial tension, high thrombo-resistance,
oxygen permeability, and suitable mechanical properties for various pharmaceutical and
biomedical applications, such as wound dressing materials, drug carriers, and antimicro-
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bial filters [40]. The bioactive behavior of PU scaffolds can be enhanced by biodegradable,
electroactive, surface–functionalized products, ceramic, and natural polymers, leading to
the formation of modified polyurethanes (MPUs) [41]. PU and MPUs can be used for both
soft and hard TE [40].

FBPs have numerous applications in TE and represent one of the main groups within
the polymers used for 3D scaffolds. However, current trends in scaffold fabrication are
more focused on natural or bio-based polymers. These are derived from renewable re-
sources such as plant waste and algae and are, therefore, more environmentally friendly.
In addition, their biological background is more favorable in the context of in vivo ap-
plication. Therefore, the majority of the text in this article is oriented on natural and
bio-based polymers.

2.2. Natural and Bio-Based Polymers

Natural polymers (biopolymers) are obtained from natural materials and provide a
guarantee of natural structure, biomimetic and bioactive nature [42]. Bio-based polymers
can be constructed in a synthetic way based on monomers originating in biomass, obtained
by extraction or the transformation of biomass sources into monomers for polymerization
of new polymers, which naturally do not exist in nature. PLA is a typical example of such a
bio-based polymer. Biopolymers often contain multiple polysaccharides (chitosan, alginate,
and cellulose) and polypeptides (gelatin, fibrin, and silk). In addition, many functional
groups have recently been introduced into biopolymers to modify their physical and
physiological properties, making them multifunctional and smart [43]. They fulfill diverse
functions in their natural environment. Biocompatible and bioresorbable natural polymers
that mimic the ECM are preferred over synthetic ones in the context of scaffolding in TE.
Their degradation should be in balance with the formation of new tissue. Table 2 offers the
summarization of their basic properties together with the most common TE applications.

Table 2. Basic characteristics of natural polymers.

Polymer Advantages Disadvantages TE References

Chitosan

biocompatibility
bioresorbability
physiologically

degraded

mechanical properties
resistance to enzymatic

degradation

skin
bone [44–49]

Collagen
biocompatibility
bioresorbability
cell interaction

mechanical properties
rapid degradation
immunogenicity

skin
bone [50–56]

Hyaluronic acid

biocompatibility
bioresorbability bone

enhances cell
proliferation poor cell adhesion muscle [57–63]

immunosuppressive
antioxidative

properties

Fibrin

biocompatibility mechanical properties skin
bioresorbability
cell interactions
common natural

protein

scaffold contraction
cardiovascular

musculoskeletal
nerve

[64,65]

Xanthan gum biocompatibility mechanical properties soft tissues [66–69]
bioresorbability difficult processing bone
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Table 2. Cont.

Polymer Advantages Disadvantages TE References

Dextran

biocompatibility high cost skin
bioresorbability
antithrombotic

properties
easily derived

low availability vascular [70–72]

Starch
biocompatibility
bioresorbability

low cost

dimensional stability
mechanical properties

difficult processing
high water uptake

bone [73–78]

Poly (lactic acid)

biocompatibility cardiovascular

bioresorbability
mechanical strength

processability

acidic degradation
by-products

degradation rate
low cell adhesion

bone
skin

tendon
[79–91]

Polyhydroxybutyrate

biocompatibility crystallinity skin [92]
bioresorbability
natural human

metabolite

brittleness
hydrophobic

thermal stability

bone
cardiovascular [93–100]

Poly(3-hydroxybutyrate-
co-3-hyxdroxyvalerate)

biocompatibility fragility
bioresorbability

mechanical properties
flexibility

impact resistance
hydrophobicity
thermal stability

bone
cartilage [101–106]

2.2.1. Collagen

With no immunological or inflammatory response, collagen is a biocompatible biopoly-
mer that is simple to produce. It also has a porous structure with interconnecting pores.
It is also crucial for preserving the biological and structural integrity of ECM. The devel-
opment and wound healing of organs and tissues, including skin, bone, the neurological
system, and the vascular system, have all benefited from its exceptional biocompatibility
and bioresorbability [50,51].

Collagen fibrils are the basic supporting element in the connective tissues. There are
seven collagens that can produce fibrils (types I–V, types XI, XXIV, and XXVII). Type I is the
quantitatively predominant fibrillar collagen in vertebrates [52]. The D-periodic spacing
and orientation of the modified collagen fibers (MCF) serve as typical representations of
the morphology of the collagen network. Open sites for mineral nucleation, proteoglycan
binding, and crosslinking are provided by the D-periodic spacing of MCF. The deposition
of minerals is facilitated by the appropriate arrangement of collagen fibrils, which also
enhances the bone’s mechanical qualities [53]. Because of the mentioned properties, this
polymer found its applications in TE of bone grafts (Figure 3) [54].

Standard use of collagen graft substitutes involves seeding them with mesenchymal
stem cells, which have the capacity for osteogenic differentiation [55]. Additionally, numer-
ous investigations on collagen scaffolds for endometrial regeneration have been conducted.
Li et al. created collagen scaffolds that were targeted with human basic fibroblast growth
factor (bFGF), for instance. After 90 days, endometrial cells completely replaced the colla-
gen/bFGF scaffold. This phenomenon was determined by the results of hematoxylin and
eosin staining [56].
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Figure 3. SEM images revealing the surface topography of the collagen scaffold. (a) Collagen fibers
(red arrows) create the rough surface of the scaffold. Depicted design enlarges the overall surface of
the matrix, thus providing a larger area for the cell attachment; (b) a detailed analysis of the scaffold’s
architecture displays collagen fibers oriented in an unaligned manner (blue arrows).

2.2.2. Hyaluronic Acid (HA)

HA is a linear polyanionic polysaccharide, with the structure of glucuronic acid and
N-acetylglucosamine repeating units linked via alternating β-1,4 and β-1,3 glycosidic
bonds, which occurs naturally in all living organisms and maintains an appropriate level
of tissue hydration [57]. It is one of the main components of the ECM and can be used
to crosslink collagen fibrils, as it participates in mineralization [58]. In addition, HA is
biocompatible, bioresorbable, and flexible in composition and structure. It has been widely
used to produce hydrogel composite materials for bone TE and oral disease treatment [59].

HA affects various physiological processes, which are dependent on its molecular
weight. High molecular weight HA inhibits cell proliferation and migration, while low
molecular weight HA is involved in cell reproduction [60]. In the context of TE applications,
HA is commonly modified with various chemical groups (e.g., methacrylate) to improve
its mechanical properties as a hydrogel network [61]. Studies showed that hydrogels with
a middle pore size of 200–250 µm supported the best cell proliferation and furthest 3D
migration [62]. Another study determined that composite scaffolds based on collagen
and HA enhanced the biological properties of seeded cells, which resulted in a higher
proliferation and differentiation rate, leading to bone regeneration [63].

2.2.3. Chitosan, Fibrin

In addition to collagen and HA, two other natural polymers, chitosan and fibrin,
are being investigated for their use in TE. These polymers form fibers or foams. Fibrin
naturally assembles into gels and thrombus formation in vivo during wound healing and is
an important component of the ECM in the body [64]. Chitosan is derived from chitin and is
a suitable and promising biomaterial for articular cartilage regeneration. However, chitosan
is poorly soluble in water under physiological conditions, which limits its widespread
use in TE [44]. The hydroxyl and amino groups of the polymer provide several options
for derivatization or grafting of the desired bioactive groups, and the pH-dependent
solubility of chitosan allows the use of relatively mild processing methods. This property
is particularly important if the incorporation of bioactive substances is desired before the
formation of the 3D microstructure [45].

In the fibrin scaffold, pores can be distributed in the range of 0–35.86 µm and
35.86–89.65 µm, with a total porosity of 43.28% [65]. Chitosan has good biocompati-
bility and bioresorbability, making it a suitable material for TE applications. There is not
much-related research on the direct application of chitosan in 3D scaffolds yet. However,
experiments mainly concern 3D composite scaffolds that are mixed with other biomaterials
for permanent implantation in the human body [46]. The chitosan–alginate (CA) complex
scaffold has numerous benefits over 3D synthetic polymers and protein matrices because
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of its natural origin. When compared to their equivalents, CA scaffolds have a noticeably
higher mechanical strength due to the ionic interaction of the amine group of chitosan with
the carboxyl group of alginates [47]. Alginate and chitosan have reduced immunogenicity
and demonstrated structural stability as well [48]. Compared to other natural polymers,
CA scaffolds can be generated from solutions with a physiological pH, making it possible
to synthesize them while uniformly incorporating growth inputs with a reduced risk of
denaturation. For both in vitro and in vivo stem cell expansion and differentiation, growth
factors are encapsulated in the scaffold matrix. The rate of scaffold bioresorbability, which is
controlled by scaffold synthesis conditions, determines the degree of growth factor release.
This approach can potentially enable the direct implantation of stem cell-populated scaf-
folds for a variety of applications in TE and regenerative medicine, in addition to providing
a clean environment for stem cell regeneration [49].

2.2.4. Polysaccharides

Polysaccharides have good bioresorbability, biocompatibility, easy derivatization, and
low production costs. They offer similarities to the ECM, making them a suitable candidate
for TE. Structured polysaccharides and stored polysaccharides are two different categories
of polysaccharides. Chitin, found in crab shells, is an example of a structural polysaccharide,
whereas glycogen and starch are examples of storage polysaccharides. Natural polymers
have several benefits, but they also have drawbacks related to their branching, sequencing,
and molecular weight distribution that make it difficult to create uniform scaffolds without
negatively impacting biorecognition and rheology [107].

Gram-negative bacteria such as Xanthomonas bacteria can produce xanthan gum
(XG), which is an anionic polysaccharide. Its side chains are made up of D-mannose and
D-glucuronic acid in a 2:1 ratio, and its backbone is the same as that of cellulose [66]. Its
molecular mass is between 2106 and 2107 Da. Because of hydrogen bonds, the main chain’s
helical shape coils around the side chain [67]. Since XG, in its purest form, is bioresorbable
and biocompatible, it is frequently employed in drug administration, bone regeneration,
wound healing, and soft TE. Therefore, there is a demand for biomaterials with possibly
better qualities. Recently, nanocomposite fibers using chitosan and XG were created to
transmit bioactive compounds [68]. After being crosslinked, XG, a natural substance with
good biocompatibility, can become a soft hydrogel. In the realm of spinal cord repair,
freeze-drying technology has made it possible to produce porous structures quickly and
easily [69]. In this instance, the gel scaffold was created using a freeze-drying process after
XG and graphene oxide were joined through metal coordination and hydrogen bonding.
This method creates a scaffold that mimics the spinal cord characteristics and can preserve
the milieu for cell growth, while also resisting compression of the surrounding tissue.
For the regeneration of spinal cord tissue, the porous interior 3D structure resembles the
ECM and offers growing room and nutrient transport channels. Studies conducted under
both laboratory and in vivo conditions (animal model) showed that the electroconductive,
porous, and soft gel scaffold had high biocompatibility, could reduce the growth of as-
trocytes around the site of spinal cord damage, and helped wounded rats to regain their
ability to move.

Among the various polysaccharides, dextran has also been successfully used in TE
applications. It is a hydrophilic carbohydrate biopolymer that decomposes inappropriate
physical environments without any effect on cell viability [70]. Dextran consists of branched
polysaccharides of repeating α-linked d-glucopyranosyl units of various lengths and de-
grees of branching. There are various methods to chemically crosslink dextran to form a
hydrogel [71]. Dextran hydrogels can provide excellent conditions for cell proliferation.
However, their comparatively low biological activity limits their use in hard TE applica-
tions. The bioactivity of dextran hydrogel networks can be improved by incorporating
bioceramics into the matrix [72].

Starch belongs to the group of natural polymers and is widely used in biomedical ap-
plications due to its significant bioresorbability, biocompatibility, availability, renewability,
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and easy processing (Figure 4). This carbohydrate consists of many glucose units connected
by glycosidic bonds [73]. The 6–8 µm voids between starch agglomerates account for about
20% of the total porosity; the 1–35 µm voids around starch granules account for about 60%;
and the very small pores account for 10%. Possible causes of the remaining 10% of the
overall porosity are pores larger than 150 µm [74]. Starch is capable of oxidation and reduc-
tion and can precipitate when forming hydrogen bonds. Its granules exhibit hydrophilic
properties and chain intermolecular association due to the hydrogen bonds formed by
hydroxyl groups on the surface of the granules. The hydrophilicity of starch can be used
to improve the degradation rate of some degradable hydrophobic polymers. This natural
polymer is completely degradable and bioresorbable in a wide variety of environments
and can be hydrolyzed to glucose by microorganisms or enzymes. On the other hand,
it is not suitable for direct use because of its low dimensional stability and mechanical
properties [75]. When combined with hydroxyapatite in the context of bone tissue repair,
the scaffold’s improved structural and biological functions were described [76]. In addition,
the bioresorbable properties of the bone scaffold play an important role in the regeneration
of affected bone tissue. Biodegradable matrices recommended for hard tissue TE must
be uniformly degraded in the human body during bone mineralization to improve bone
tissue replacement and growth processes [77]. The advantage of using a natural polymer
(starch) as an organic component in a bone scaffold is its ability to adapt its bioresorbability
properties. The hydroxyl groups in the starch make the scaffold’s surface more hydrophilic
and thus improve the hydrophilicity of the hydroxyapatite. Starch hydroxyl groups also
increase the attraction of ions (phosphate and calcium) of the bone skeleton, which can
speed up and make the apatite nucleation and subsequent bone mineralization faster and
more efficient, which improves the overall regeneration of the bone tissue [78].
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Figure 4. Starch as a natural polymer for scaffold engineering. (a) SEM image depicting dispersed
starch granules. These units can modulate both topography (surface roughness) and the inner design
of the scaffold; (b) when used as a porogen added to a polymeric blend, starch granules can create a
porous structure.

2.2.5. Poly (Lactic Acid) (PLA)

PLA is a thermoplastic polymer characterized by high mechanical resistance, suitable
biocompatibility, and bioresorbability. It is made from renewable and non-toxic sources of
raw materials [79]. Lactic acid (LA) is converted into PLA through condensation polymer-
ization or ring opening. Due to the chiral nature of LA and the two asymmetric centers
that it has, it can be formed in a wide variety of forms and also have the following isomers:
L, D, and D, L isomers, as well as the D isomer [80]. Amorphous polymers are produced by
a higher share of D monomers (>15%) and more crystalline PLA by using high L monomer
concentrations. While D, L-lactide produces the amorphous structure of poly (D, L-lactide),
highly pure L- and D-lactides create semicrystalline polymers, such as poly (L-lactide)
(PLLA) and poly (D-lactide) (PDLA). With varying distributions of the isomers in the struc-
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ture, PLA can be produced in a variety of molecular weights between several thousand
and several million [81].

PLA has been used in different biomedical applications, as it is fully FDA-approved [82].
PLA is suitable as a material for various medical uses and applications, such as surgical
sutures, orthopedic and cardiovascular implants, drug delivery systems, and more [83].
In the context of TE, PLA satisfies the requirements to produce scaffold-based implants,
since it is a bioabsorbable polymer that is hydrolytically degradable and does not form
hazardous compounds while being broken down (Figure 5) [84]. Due to their outstanding
biocompatibility, bioresorbable polymers such as PLA, PGA, and polycaprolactone (PCL),
as well as their copolymers, are now often employed in biomedical devices [85]. These
polymers are broken down without the use of any enzymes by straightforward hydrolysis
of the ester bonds in their chains [86]. Following hydrolysis, the breakdown process’s
byproducts are changed into non-toxic byproducts that can be reduced and eliminated by
regular cellular function and urine [87]. The ideal pore diameter for the PLA scaffold is
thought to be between 100 and 300 µm, while other studies have found that the presence of
micropores (10 to 60 µm) promotes better cell proliferation. The choice of pore size depends
on the method used to construct the scaffold and may have an impact on its mechanical
and dynamic stability [88].
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Figure 5. PLA-based scaffold. (a) Surface analysis of the PLA scaffold engineered by the pressing tech-
nique (reference sample). SEM image displaying smooth, homogenous area for the cell attachment;
(b) PLA-based scaffold seeded with human fibroblasts (blue arrow). After 7 days of incubation, a
dense cellular layer on the scaffold surface could be observed. Multiple filopodia (red arrows) are also
detected, proving efficient attachment to the scaffold surface. The presented findings demonstrate
good scaffold-cell interactions and determine good biocompatibility of the material.

Since roughly 30 years ago, bioresorbable LA polyesters have been employed in
surgery as bone fixation and suture materials. For the sustained delivery of bioactive com-
pounds, LA and glycolic acid were already proposed as bioresorbable matrices in 1973 [89].
It has been demonstrated that PLA is a practical contender for resorbable plates and screws.
As soluble suture meshes, bioabsorbable fixation devices are frequently utilized. As the
implant bio-resorbs, patients do not need a second surgery to remove it, which lowers
healthcare expenses and enables a progressive restoration of tissue function [84]. However,
PLA’s hydrophobic nature and the absence of functional groups make it difficult for cells to
adhere to this polymer. Another disadvantage is its slow hydrolytic degradation. However,
the mechanical properties can be improved using various methods, such as blending with
other bioresorbable polymers, forming composites, and copolymerization [90]. PLA blend-
ing with other bio-based materials or FBP with better wettability and faster bioresorbability
provides an effective solution to modulate its biodegradability, with respect to the time
required for tissue growth and regeneration [91].
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2.2.6. Polyhydroxyalkanoates (PHAs)

PHAs are linear polyesters that are hydrophobic and bioresorbable and are mostly
made by microbes. In general, polyhydroxyalkanoate is a chemical compound made
from a hydroxyl-alkanoic acid, also known as a carboxylic acid, which is an acid with the
chemical formula HO-R-COOH [108]. Depending on the type of microorganism, growing
circumstances, and method of polymer extraction, they can differ in molecular weight,
structure, and content [109,110]. The morphology and crystal structure of these materials
can be modified and influenced by mixing with additives, mainly nucleating agents,
suitable plasticizers, and fillers, and are expected to significantly affect physical properties
such as thermal, mechanical characteristics, and bioresorbability [111]. Naturally occurring
PHAs are ubiquitous components of animal cell membranes. Low-molecular-weight poly-
3-hydroxybutyrate (P3HB) is present in relatively high concentrations in human blood,
and 3-hydroxybutyric acid (3HB) is a naturally occurring human metabolite found in the
heart, liver, brain, lungs, and muscle tissue [92]. PHAs are used alone or in combination
with other biological polymers for biomedical applications such as sutures, tendon repair
devices, cardiovascular patches, TE scaffolds, orthopedic pins, adhesion barriers, and
adhesion patches. PHAs also have excellent inherent biocompatibility, similar to other
biological polymers [112]. Additionally, numerous other factors of chemical synthesis,
including bulk material processing, surface treatment, sterilization, and adding a plasticizer
to the polymer matrix, have a significant impact on the biocompatibility of the final medical
implant. Therefore, PHAs are interesting subjects to be intensively evaluated under in vitro
and in vivo conditions [113].

Polyhyroxybutyrate (PHB) is a member of the PHA group and shows a good degree
of biocompatibility with various cells. In addition, it can be produced by many types of
microorganisms due to its bacterial origin [92]. As a bioresorbable low-molecular-weight
aliphatic polyester, PHB belongs to the most widely used biocompatible PHAs with an
isotactic semicrystalline structure [93]. The degradation product of PHB is 3HB, which is
non-toxic and, as mentioned above, a natural metabolite occurring in multiple tissues in
the human body [92].

The nanoparticle form of PHB can affect the properties of the engineered scaffolds. In
addition, crystallinity also significantly influences the biological behavior of the seeded
cells, especially cell proliferation [94]. The pore size of PHB-based scaffolds is another
crucial parameter that highly affects cell attachment, proliferation, and differentiation [95].
Therefore, new methods and techniques are still being developed to synthesize porous
materials with optimal pore sizes. The larger surface area and good pore volume of
the scaffold provide increased sites for initial cell insertion and attachment, resulting in
enhanced cell adhesion to the scaffold surface [94]. Although PHB is stiff and brittle, with
an elongation at break typically less than 5%, its thermoplastic polymer can easily be
processed into textiles with good flexibility. PHB textiles have been extensively studied for
applications in soft TE [96]. Tubular PHB textiles are also used to promote tissue healing in
large vessels and hollow organs [97]. Due to its mechanical strength, PHB is also used in
the production of bone plates and fillers [92]. In addition, recent studies have revealed the
inherent piezoelectric properties of PHB, which show great potential to modulate cellular
activity and thereby enhance bone tissue regeneration [98]. However, some disadvantages
of PHB, such as low hydrophilicity, high crystallinity, stiffness, low bioresorbability rate,
and high brittleness, suppress its application [99]. On the other hand, its blending with
natural polymers such as keratin, gelatin, chitosan, starch, or lignin can improve its physical
and biological properties [100].

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a thermoplastic, aliphatic
polyester that also belongs to the PHAs group. This polymer has been known for many
years, but especially in the last decade, there has been significantly increased interest
in this biopolymer. PHBV has a high melting point and high crystallization. Due to its
high crystallinity, PHBV is stiff and brittle, resulting in very poor mechanical properties.
In addition, PHBV is unstable at a temperature close to its melting point, resulting in a
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significant decrease in molecular weight during its processing [101]. However, various
attempts have been made to improve the thermal stability together with the physical and
mechanical properties of PHBV, which include blending or filling techniques [102]. The
biocompatibility, bioresorbability, and wet electrospinnability have allowed PHBV to be
widely accepted as a microbial copolymer that is often used for TE of scaffolds. The ad-
vantage of PHBV is that it minimizes the risk of inflammatory reactions in tissues since its
biodegradation products are components of human blood. Overall, PHBV has been exten-
sively investigated for skin TE applications as a suitable pro-regenerative material [103].
PHBV is also often combined with ceramic particles for the biological purpose of improving
cell growth in vitro (bioactive glass, hydroxyapatite) or antibacterial activity (zinc oxide
(ZnO), titanium dioxide (TiO2)) [104]. Another advantage of such a hybrid structure is
the improvement of the mechanical properties of comparatively weak electrospun PHBV
fibers [105]. PHBV is degraded in vivo to hydroxybutyric acid, which is easily metabolized
by the body [106].

2.2.7. Hydrogels Based on Natural Polymers

A typical 3D polymer network scaffold called a hydrogel can have an interconnected
pore structure that can hold a lot of water and create an environment for cell proliferation,
differentiation, and growth that is similar to the ECM [114]. Additionally, hydrogels
made from natural polymers, such as polysaccharides (sodium alginate, gelatin, chitosan,
hyaluronic acid, and proteins), exhibit good biocompatibility and bioresorbability [115,116].

Covalent bonds can be created during chemical synthesis to create bioresorbable hydro-
gels, or they can be created through physical interactions. Due to these structures’ chemical
resilience, the first technique is usually selected. The issue of bulk deterioration and a
lack of local flexibility is raised by typically irreversible chemical crosslinking [117]. The
interactions between the structural elements of the scaffolding components determine how
hydrogels and water-swollen polymers behave. Most biological hydrogel interactions are
based on hydrogen bonds, Van Der Waals interactions, and electrostatic interactions. They
can be produced by continuously expanding the network system. It is the best method for
developing realistic 3D supramolecular hydrogel materials through adaptive design [118].
To create more porous structures, most self-assembled hydrogels can reconfigure their
crosslinked networks through continuous development using a combination of hydrogen
bonding and intermolecular interactions. The supramolecular design of natural hydrogel
materials with features including bioresorbability, biocompatibility, fibrillar architectures,
porosity, and hydrophilicity depends on optimizing these interactions [119,120].

2.3. Hybrid Biomaterials

The polymer blend (mixture) is obtained by a combination of two or more polymers.
Thanks to this technique, new materials with superior physical properties could be prepared.
However, the blend’s ultimate characteristics are significantly affected by the miscibility
of each component. In addition, miscibility also influences the morphology of separated
phases [121]. Polymer blends are divided into three categories:

1. Homogenous polymer blends (thermodynamically miscible polymers): this blend
type often consists of polymers with similar chemical composition. Their mixing
leads to the preparation of the blends with a single-phase structure and only one glass
transition temperature is observed;

2. Compatible polymer blends: this blend type consists of immiscible polymers, but
thanks to their strong interphase interaction, the macroscopically consistent physical
properties are observed;

3. Heterogenous polymer blends (immiscible polymers): their mixing results in blends
with separated phase structures, and two or more glass transition temperatures are
observed [121].

Interest in these materials has arisen mainly due to their ability to modify properties
and adapt them to the conditions that are required for their application. Another advantage
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of combining several polymers is the cost. By combining, the costs of the final product can
be significantly reduced, and sufficient or even better properties are maintained [122]. The
following text focuses mainly on PCL- and PLA-based blends.

2.3.1. PCL-Based Blends

PCL-based composites are heavily studied and used in biomedical, medical, or phar-
maceutical applications more than PCL-based materials alone. Moreover, PCL blends
exhibited better mechanical, thermal, or viscoelastic properties [123].

PCL/PLA has been noted as one of the most investigated blends among biodegradable
polymer composites, as they have shown improved mechanical and thermal properties of
PCL. Various research groups have been particularly interested in fabrication methods [123],
overall characterization [124], as well as biodegradation [125]. Nowadays, many studies
are oriented toward the electrospinning of PCL/PLA blends [126]. Electrospinning is one
of the most commonly used techniques to obtain continuous fibers in the nanometer size
range. Electrospun fibers have the potential to be used for drug delivery, wound healing,
TE, and regenerative medicine [127]. The porous structure of PCL/PLA scaffolds for TE
is favorable and almost necessary. Except for electrospinning, other techniques allow the
design of PCL/PLA-based matrices in a porous manner. For example, Wang et al. applied
the batch foaming method to create the porous structure of the PCL/PLA scaffold [128].
Another option presents the addition of a component to the blend, which can be extracted
after hardening, e.g., by dissolving [129].

Another popular polymer mixture presents PCL with PEG. This polymeric combi-
nation appears as copolymers [130–138] or as blends [139,140], even though copolymer
use seems to be more popular. PCL/PEG copolymers have the potential to be used in
drug delivery applications [130,141,142], TE, and regenerative medicine [143–146], as well
as cancer treatment [147–149]. The addition of PEG improves the hydrophilicity of PCL,
and so cell adherence is also enhanced. Compared to PCL alone, the PCL/PEG/PCL
triblock copolymer has been noted to have lower acidity, higher rate of degradation, as
well as lower hydrophilicity, thus making it a better alternative to constructing scaffolds
for TE applications [147]. PEG may also act as a plasticizer, leading to the improvement
of the PCL/PEG-based scaffold morphology [150]. Bioceramic filler can also be added to
PCL/PEG copolymers. Liu et al. proved in their study that the addition of PEG and trical-
cium phosphate (TCP) in the PCL-based scaffolds significantly improved cell proliferation,
adhesion, and osteogenic differentiation [151]. Bioceramic/polymer composite systems
have gained importance in treating hard tissue damage by applying tissue-engineered bone
grafts [146]. To gain the porous architecture of PCL/PEG scaffolds, supercritical carbon
dioxide as a foaming agent has been applied in multiple studies [150,152].

PCL can also be combined with natural polymers. Engineered human skin is com-
monly fabricated by using collagen scaffolds that often have poor mechanical properties.
To improve the strength of collagen-based scaffolds, PCL is blended with collagen and
formed into fibers by electrospinning [153]. PCL/collagen blend is a promising material
for skin [153–158] and vascular TE [159–161]. PCL/chitosan mixture could be a promising
strategy for designing wound dressings. This polymer combination allows the engineering
of antibacterial, bioactive material with good physicomechanical properties and biodegrad-
ability [162].

PCL/starch blends present biomaterials with proven biocompatibility and anti-
inflammatory characteristics. The dominant agent controlling the final mechanical prop-
erties is the composite/component ratio, which makes it possible to design a highly stiff
(more starch content) or more flexible and thermoplastic (more PCL content) scaffold. In ad-
dition, controllable mechanical behavior, which can adjust different tissues, made this type
of blend appropriate for different biomedical applications [163]. Although the PCL/starch
blend is biocompatible and biodegradable, attention is currently being drawn mostly to its
agricultural application [164], as it presents environmental-friendly material [165,166].
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2.3.2. PLA-Based Blends

Despite having better processability, reproducibility, and mechanical properties, on
the other hand, crystallization, brittleness, low thermal resistance, and low heat deflection
temperature are considered to be major disadvantageous properties of PLA. Hence the
formation of PLA-based blends and composites can be considered a solution for overcoming
these drawbacks [167]. Several reports are present in the literature documenting the melt
blending of PLA with different bio-based or FBPs, such as PCL, PEG, starch, and PHB [168].
One of the most studied combinations for medical applications is PLA/PCL. This blend
was mentioned in the text above.

PLA can be blended with various polymers to modify tissue-specific scaffolds. Solid
disks, as well as porous 3D structures based on PLA and coated or filled with collagen,
were tested for biocompatibility and endotoxin production [91]. The research confirmed
the biocompatibility of PLA, as well as endotoxin contamination levels, that were below
the FDA limit. In addition, PLA-printed discs supported the growth, spreading, and
proliferation of various cell types, such as osteoblasts, osteoblast-like cells, and human
umbilical vein endothelial cells.

PLA blending with biocompatible ceramics (via composite fiber or ceramic coating on
polymer scaffolds) can result in increased hydrophilicity of 3D printed scaffolds, which
provides a better environment for cell adhesion and subsequent migration [169].

Already in 1990, the PLA/PEG block copolymers were characterized as potential
materials suitable for drug carriers. K. J. Zhu alleged that the rates of drug release and
biodegradation could be tailored by adjusting polymer composition [170]. Currently,
this type of material is being studied for its possible application in nanomedicine, e.g.,
micelles [171]. Nanomedicine is the branch of medicine that seeks to apply nanotechnology,
which involves the manipulation and manufacture of materials or devices that are roughly
1 to 100 nanometers (nm; 1 nm = 0.0000001 cm) in size, to the prevention, diagnosis,
monitoring, treatment, and overall regeneration of the human body [172]. In addition,
PLA/PEG blend could also be potentially used in TE of bone. Moreover, due to the low
melting point, PEG in the blend can act as a plasticizer, which affects the processability [173].
It means that this type of material could be adjusted for 3D printing technology, and thus
achieve the engineering of patient-tailored bone grafts [173–175].

PLA/PEG blend was also studied by Scaffaro et al. [176]. In this study, three-layered
scaffolds with a pore size gradient were developed by melt mixing of PLA/PEG blend with
sodium chloride (NaCl). Pore dimensions were controlled by NaCl granulometry. Finally,
the porogen part of the blends (NaCl and PEG) was removed by selective leaching in
boiling demineralized water. A similar method was also used in the experiment carried out
by Chen et al. [177]. Authors used not only NaCl as a porogen agent but also supercritical
carbon dioxide as a foaming agent to fabricate porous scaffold with high porosity. Porogen
leaching is the most common method to obtain a porous structure for this type of polymer
blend [178,179].

PLA and PHA blends have the potential to be material for commodity and biomedical
applications thanks to their unique mechanical and physical properties with balanced
biodegradability at the same time (Figure 6). The miscibility of PLA and PHB (the most
common type of PHAs) depends on the molecular weight of PLA. While PHB and low
molecular weight PLA are miscible, PHB and high molecular weight PLA are not [168,180].
It has also been described that different compatibilizers also influence the mechanical
properties of the PLA/PHB blend [181]. Moreover, Ausejo et al. also proved this hybrid
biomaterial to be a promising candidate for TE applications. The authors focused on the
characterization of the 3D printed PLA/PHB-derived objects, and results showed their
favorable mechanical properties, thermal stabilities, and cell viability [182]. However,
scaffolds derived from PLA/PHB blends do not have the porous structure necessary for
TE. Currently, there are not many studies that focus on this issue. A study conducted by
Sartore et al. faced this drawback. The authors added superabsorbent polymer, which was
afterward treated with water to achieve the required porosity [183]. Although PLA/PHB
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blends hold great potential to be applied in the form of scaffolds to repair damaged tissues,
more research is needed in this field to adjust the blend’s properties so scaffolds with
advanced characteristics can be engineered.
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Figure 6. PLA/PHB blend in the form of 3D scaffolds. (a) Three-dimensional printed scaffolds with
different designs; (b) SEM image displaying adipose tissue-derived mesenchymal stem cells used
for scaffold colonization (blue arrow). Cytoplasmic protrusions and filopodia (red arrow) enabled
effective cell attachment to the scaffold surface. Observed coherent cell layers indicate adequate
scaffold-cell interactions.

2.3.3. Polymer/Bioceramic Blends

Scaffolds solely composed of polymers often exhibit inadequate mechanical properties,
particularly in terms of mechanical strength, Young’s modulus, and toughness. Another
challenge is their low bioactivity, which can be addressed by incorporating ceramic materi-
als such as hydroxyapatite (HAp), tricalcium phosphate (TCP), or bioactive glasses. These
ceramics interact with physiological fluids and form strong bonds to hard tissues, and in
some cases, soft tissues, through cellular activity. The combination of flexible polymers with
bioceramics promotes tissue regeneration [184]. Bioceramics belong to a class of inorganic
and nonmetallic ceramics utilized for repairing and reconstructing damaged musculoskele-
tal and periodontal structures. They possess excellent biocompatibility, osteoinductivity,
corrosion resistance, and high compressive strength. However, they also have limitations,
including a brittle surface, low fracture toughness, reduced mechanical reliability, low
elasticity, and exceptionally high stiffness compared to human bone’s cortical properties.
Bioceramics exhibit higher strength under compression but are weaker under tension,
necessitating careful consideration when designing scaffolds for specific biomedical ap-
plications [185]. They are more suitable for cementing substances, reinforcing materials,
and implants to repair and replace damaged structures within the skeletal and muscular
systems [186]. Ceramic biomaterials often consist of inorganic calcium or phosphate salts
that possess osteoconductive (promoting new bone ingrowth) and osteoinductive (pro-
moting osteoblastic differentiation) properties. Hydroxyapatite (HAp, Ca10(PO4)6(OH)2)
(Figure 7a,b), β-tricalcium phosphate (β-TCP, Ca3(PO4)2), and bioactive glasses are among
the most commonly used biomaterials for 3D scaffolds in bone regeneration [10].

The incorporation of bioceramics into polymer matrices produces hybrid/composite
materials, which have been extensively studied in the TE of hard tissues such as bone and
teeth. A Swedish research team reported that the degradation rate customization relies
heavily on the material composition, with the incorporation of mineral phases such as HAp
enhancing the degradation of PLA/PCL combinations [187]. Through controlled porous
structures and scaffold design, the material can further regulate degradation and facilitate
new bone formation according to the patient’s requirements.
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Figure 7. SEM images of the HAp-based scaffold. (a) Topography analysis depicts the rough surface
of the matrix; (b) the inner structure of the fractured scaffold. A dense matrix mass can be observed,
which could be beneficial for its application as a cell-free scaffold for TE of the hard tissues. In addition,
HAp is also often combined with other polymers to create hybrid materials with enhanced properties.

One advantage of combining PLA with bioceramics is the possibility of additive
manufacturing, enabling a high degree of personalization [169,188–192]. PLA/bioceramic
blends can exhibit superior biocompatibility and osteogenic induction properties compared
to pure PLA scaffolds [193]. One extensively studied combination is PLA combined with
HAp, which can be processed using low-cost and stable fused deposition modeling (FDM)
technology [189]. The addition of PLA to HAp significantly alters the mechanical properties
from brittle to ductile fracture, leading to notable improvements in flexural and compressive
strength [194].

Nikpour et al. conducted a study on nanostructured bioactive glass/dextran composite
scaffolds for bone TE. They demonstrated that the inclusion of bioactive glass nanoparticles
within the hydrogel matrix resulted in a significant improvement in mechanical strength.
Furthermore, these scaffolds exhibited enhanced reactivity with body fluids, creating active
sites for mineralization [72]. To further enhance bioactivity and improve the mechanical
properties of the material, inorganic materials such as hydroxyapatite (HAp) were also
incorporated into the dextran matrix [195]. Fricain et al. described a composite macrop-
orous material suitable for bone TE, consisting of nano-hydroxyapatite-pullulan/dextran
polysaccharide [196].

In general, ceramic-based materials can be combined with biodegradable polymers,
including those discussed earlier in this review, for use primarily in bone TE applications.

3. Interaction between Biodegradable Scaffolds and Host Immune System
3.1. Immunoengineering as an Emerging Field in the TE

Material studies, especially those focused on the scaffold application in the TE, have
been persistently developing. Traditionally, the first approach was to construct such a
biodegradable polymer-based matrix which should have stayed ‘biologically invisible’ after
implantation into the living organism. Nowadays, this strategy does not seem effective as it
is known that any in vivo intervention triggers intrinsic pathways leading to the inflamma-
tory response [197]. Based on this knowledge, it is believed that inflammatory-driven tissue
regeneration mediated by scaffolds could present a better strategy. In addition, scaffolds
should modulate and cooperate with the immune system so that all biochemical processes
happening in the affected site lead to tissue repair. For this reason, immunoengineering,
as a new scientific field, has emerged [198]. Although many scaffolds have been success-
fully applied in vivo or utilized in clinical medicine to restore damaged tissues, adverse
effects such as extensive inflammatory response leading to transplant rejection were often
observed. This can be related to the fact that fabricated materials were mainly developed
as biologically inert, so they would not have provoked any reaction from the recipient’s
side [199]. However, as mentioned above, successful implantation into the human body
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or any living organism is closely related to the host immune system’s response towards
implanted material. By this mechanism, a transplant could be accepted or rejected [200]. Im-
munoengineering investigates and modulates each component of TE (materials, cells, and
regulatory molecules), considering intervention with the host immune system [198]. It aims
to develop easily accessible, resorbable, immunomodulatory scaffolds that would enhance
the endogenous pro-regenerative environment in affected sites, in situ [201]. Additionally,
immunoengineering also distinguishes that the activity of the immune system, together
with the body’s regenerative capacity, greatly differs within individuals. For this reason,
sex, age, and comorbidities are also taken into consideration, thus allowing personalized
TE [202].

3.2. Scaffolds and Foreign Body Reaction (FBR)

When a scaffold is applied in vivo, a series of specific inflammatory and wound-
healing reactions are activated as affected tissue elicits cellular response [203]. Depending
on the ratio of pro- and anti-inflammatory agents, either extensive fibrosis, in the form
of a fibrous capsule, or tissue regeneration evolves from this process [204]. FBR can be
described as a stage of chronic inflammation of the tissue, which is related to the presence
of foreign material in the body (Figure 8). This phase is characterized by the occurrence of
the foreign body giant cells. A detailed description of this phenomenon is described in the
following text.
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Figure 8. Foreign body reaction. Simplified scheme of the foreign body response development. After
the scaffold implantation, the material interferes with the blood/serum proteins, which are adsorbed
on the surface. Subsequently, neutrophils, the cells of the innate immune system, are activated. By
secretion of the regulatory molecules, macrophages are recruited, and with the material’s persistence
in the body, foreign body giant cells are formed. These cells are typical for foreign body reactions.
Macrophages crosstalk with (myo)fibroblasts, forming a fibrous capsule around the implanted
material. Created with BioRender.com.

At first, implantation of the scaffold causes iatrogenic injury resulting in the onset of
the acute inflammatory reaction. Adjacent capillaries dilate, and cytokines together with
damage-associated molecular patterns (DAMPs) are released from platelets, damaged cells,
and ECM. Simultaneously, proteins from blood and serum are adsorbed on the scaffold
surface, activating the coagulation pathway and leading to the formation of a temporary
matrix [205]. This matrix is placed around and on the scaffold, and research confirmed
that accumulated fibrinogen is the main initiator of the acute inflammatory phase. This
stage is also characterized by the recruitment of neutrophils and by the release of the
cytokines IL-4 and IL-13 from the mast cells. The range of their concentration influences
the extent and onset of the FBR [205]. Released pro-inflammatory cytokines, chemokines,
and oxide radicals recruit other neutrophils, mast cells, and monocytes/macrophages. In
addition, secreted signaling proteins also activate adaptive immune cells presented by B
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cells, CD4+ T cells, CD8+ T cells, natural killer cells, etc. Pattern recognition receptors
situated in the innate immune cell membranes recognize the temporary matrix proteins
and target the material for phagocytosis [206]. The acute inflammatory phase lasts ap-
proximately 3–7 days. Within this time, the immune system tries to degrade implanted
material and restore damaged tissue. However, as the scaffold persists in the organism,
the onset of the chronic inflammatory reaction begins [203]. This stage is predominantly
mediated by macrophages and foreign body giant cells, which are generated from the fused
macrophages. In addition, lymphocytes also participate, but their role still remains poorly
understood. Macrophages, by crosstalk with the myofibroblasts, regulate the degradation
of the implanted material and also coordinate the formation of granulation tissue, which
is the precursor for fibrous capsule development [207]. This phenomenon is dependent
on the local tissue biochemical environment, which is formed by many cells, including
T cells, and determines the range of fibrosis. According to the signal that macrophages
receive, they are capable of polarization, or so-called phenotype adaptation [208]. For tissue
regeneration, it is crucial that macrophages switch from pro-inflammatory phenotype (M1)
to pro-regenerative phenotype (M2). Important is also the switch of T helper 1 (Th1) cells to
T helper 2 (Th2) cells. Foreign body giant cells play a crucial role in phenotype adaptation.
For the proper interaction between the scaffold and the immune system, pro-regenerative
mechanisms must be in the majority [208].

3.3. Immunomodulatory Scaffolds

Immunomodulatory scaffolds should have properties that will not negatively interfere
with the host immune system and cause extensive scar formation. Conversely, they ought to
modulate immune cells together with the degree of inflammation and thus hinder fibrosis
of the tissue [209]. That is why antigen, as well as immunomodulatory specificity of the
transplanted scaffold, seem to be the key factors for functional and long-lasting tissue
repair [201].

Main scaffold properties that need to be adjusted for immunoengineering involve
shape, topography, micro-architecture presented by porosity and pore size, stiffness, hy-
drophobicity, and chemistry of the used polymers [201]. It is also crucial to control degrada-
tion kinetics, mechanical stimuli, and oxygen concentrations in the transplanted site [210].
For example, several studies demonstrated that fiber diameter and organization within
the scaffold structure influence macrophage polarization and the degree of the inflam-
matory response [211–213]. Results suggested that aligned fibers with bigger diameter
sizes were more favorable for M2 polarization. Porosity and pore size represent other
scaffold immunomodulatory features. Findings revealed that bigger pore size had a more
pro-regenerative effect [214,215]. However, multiple big pores might negatively affect the
mechanical stability of the structure, so an adequate balance needs to be found. In addition
to crucial scaffold properties, several studies demonstrated that fibrotic capsule was formed
around scaffolds with smooth surface [216].

The kinetics of biodegradation also predetermines whether the scaffold triggers an
immune response in a pro-inflammatory or pro-regenerative way [217]. Non-degradable
materials usually provoke the formation of the fibrotic capsule, which in some cases might
be beneficial (artificial joint stabilization). However, this effect is undesirable for the
regeneration of soft tissue [208]. In the context of fibrotic capsule formation, scaffolds
based on natural polymers seem to have better interaction with the host immune system
when compared to fossil-based scaffolds [218]. On the other hand, the degradation of these
matrices cannot be precisely controlled, which leads to a discrepancy between scaffold
degradation and the formation of the new tissue. Furthermore, the synthetic material’s
prolonged presence causes an inflammatory response mediated by phagocytes and foreign
body giant cells. By-effects of this phenomenon include fibrous encapsulation of the
implanted scaffold [199]. In addition, by-products that are generated in the process of
material breakdown have to be studied as well. Released acidic products, in particular, can
enhance the inflammatory response in the affected site, supporting tissue fibrosis rather
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than regeneration. The solution might present the incorporation of basic molecules with the
ability to neutralize redundant acidity and maintain pH homeostasis in this biochemical
environment [219]. Considering all the aforementioned facts, hybrid bio-based/fossil-based
scaffolds might present a good compromise for scaffold immunoengineering.

When predicting immunological response to implanted material, scaffold-independent
factors need to be considered as well. These are, for example, anatomical location, age, and
comorbidities [199]. The implantation site, as well as the procedure of scaffold implantation
itself, affect the recruitment and composition of adjacent cell populations. Studies also
pinpointed that younger organisms had higher regenerative capacity, and the inflammatory
response, as well as fibrosis, were reduced. Sufficient vascular supply is also required for
successful scaffold-driven tissue repair [220].

Material origin (fossil-based or bio-based polymers) also modulate immune
response [201]. In addition, the results of a recent study demonstrated that scaffold-driven
immune response depended on the chosen polymer-based scaffold [221]. At first, results
proved that all implanted scaffolds triggered higher immune responses when compared
to the control group (untreated animals). Surface antigen CD206, which is typical for
M2 macrophage phenotype, was highly expressed in the group with inserted biological
scaffolds. Moreover, expression of the Th-2-associated genes was also detected. These
findings indicated that biological scaffolds induced type-2 immune response (i.e., protective
immunity). On the other hand, a chronic inflammatory response characterized by large
infiltration of neutrophils and depletion of M2 macrophage antigens was observed within
the fossil-based scaffold implants. Outcomes also revealed that stiffness and material size
determined the scale of neutrophil recruitment. In conclusion, biological scaffolds seemed
to have more pro-regenerative potential.

Current modern approaches allow the modification of fossil-based scaffolds in an
anti-inflammatory manner, so they can also induce pro-regenerative mechanisms in situ.
Cell-seeding method seems to be beneficial in enhancing the biological properties of the
synthetic matrices [222]. On the other hand, a graft-versus-host reaction might develop
after implantation due to the cellular component [223]. To minimize this phenomenon,
the application of cell-free scaffolds loaded with nanosized extracellular vesicles (i.e., exo-
somes) derived from mesenchymal stem cells has also been a point of interest in various
studies [224–226]. Zhang et al. developed a 3D PLA-based exosome-loaded scaffold with a
porous design in order to achieve immune-driven osteoregeneration [227]. Results obtained
from in vitro experiments determined the anti-inflammatory effect of exosome-loaded
scaffolds reflected in decreased expression of inflammatory cytokines and production of
reactive oxygen species when co-cultured with pro-inflammatory macrophages. Moreover,
the addition of these bioactive scaffolds in the mesenchymal stem cell cultures enhanced
osteogenic differentiation. Another study investigated composite scaffolds based on PLA
and hydroxyapatite [228]. Selective laser sintering was the chosen technique for its fabrica-
tion, allowing the engineering of the patient-tailored matrices. In addition, their surface
was modified with a hybrid nanomaterial consisting of quaternized chitosan, graphene
oxide, and polydopamine. When applied in vivo to repair large bone defects (animal
model, rats), accelerated bone healing was observed. Moreover, scaffold modification with
nanohybrid components positively influenced the M2 type of macrophage polarization as
well as osteogenesis and angiogenesis.

Presented facts considering the application of both fossil-based and bio-based poly-
mers demonstrate that they hold the potential to be applied in vivo for tissue restoration.
However, more experiments need to be performed to better understand the divergence of
the immune response evoked by various materials and, therefore, facilitate reception by
host organisms.

4. Conclusions and Final Remarks

The field TE aims to regenerate damaged tissues by utilizing highly porous scaffold
biomaterials in combination with cells from the body. These scaffolds act as templates
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for tissue regeneration, guiding the growth of new tissue. The selection of materials for
scaffold manufacturing must adhere to specific criteria, including intrinsic bio-functionality
and appropriate chemistry to promote molecular biorecognition by cells, stimulating prolif-
eration, adhesion, and activation. Furthermore, the mechanical properties of the scaffolds
and the kinetics of decomposition in the chosen materials must be adjusted according to the
specific TE application to ensure essential structural functions and achieve the desired rate
of tissue formation. Geometrical features such as exposed surface area, pore distribution,
porosity, and architecture influence the rate of cell penetration within the scaffold volume
and the formation of the extracellular matrix (ECM). Nanofibers have been more favorable
as scaffold biomaterials compared to microfibers due to their nanosize, which promotes
cell morphology resembling in vivo conditions. However, fabricating an ideal scaffold
that fulfills all desired properties, including biocompatibility, biodegradability, viscoelastic-
ity, mechanical strength, structural stability, antimicrobial activity, clinical simplicity, and
cost-effectiveness, remains a challenge.

While the biomaterials discussed in this review offer advantages as scaffold materials
in TE, they also have limitations that restrict their individual applications. The combination
of multiple biomaterials to create hybrid materials with enhanced functionalities has the
potential to overcome the limitations of each material and meet clinical requirements.
Therefore, the discovery of new materials and the development of composite scaffolds
using existing biomaterials will continue to be a focal point of future research in the field of
TE. Despite significant progress in biomaterial research, the development of 3D scaffolds
holds promise for improved tissue regeneration, transitioning from animal studies to
intended clinical use. Efforts should be directed towards a clear understanding of the
interactions between biomaterials and tissues, particularly regarding mechanical strength
and fatigue limits under periodic external stress. In the context of regenerative medicine,
scaffold-based in situ TE presents a new perspective for the effective restoration of damaged
organs [229]. The traditional TE approach utilizes cell-seeded constructs, often loaded with
exogenous growth factors or cytokines, to reconstruct the damaged tissue [230]. On the
contrary, in situ TE technology relies on the application of advanced, bioactive, cell-free
scaffolds, which should trigger the endogenous healing mechanisms right at the affected
site. The main goal is to achieve the active self-repair of the impaired organ [231]. This
could be gained by choosing the correct polymer for the scaffold fabrication, as the material
influences the immune reaction. It is assumed that scaffold-driven immune response further
affects the recruitment of endogenous stem cells and regulatory molecules responsible for
the healing process [232].

Provided information allows readers to determine which material is best suited for
their specific application. However, it should be noted that many of these materials have
not been fully optimized for particular TE applications, and further work is needed to
optimize their formulations for translation into clinical practice for targeted applications.
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