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Abstract: Artificial intelligence (AI) applications have transformed healthcare. This study is based on
a general literature review uncovering the role of Al in healthcare and focuses on the following key
aspects: (i) medical imaging and diagnostics, (ii) virtual patient care, (iii) medical research and drug
discovery, (iv) patient engagement and compliance, (v) rehabilitation, and (vi) other administrative
applications. The impact of Al is observed in detecting clinical conditions in medical imaging and
diagnostic services, controlling the outbreak of coronavirus disease 2019 (COVID-19) with early
diagnosis, providing virtual patient care using Al-powered tools, managing electronic health records,
augmenting patient engagement and compliance with the treatment plan, reducing the administrative
workload of healthcare professionals (HCPs), discovering new drugs and vaccines, spotting medical
prescription errors, extensive data storage and analysis, and technology-assisted rehabilitation.
Nevertheless, this science pitch meets several technical, ethical, and social challenges, including
privacy, safety, the right to decide and try, costs, information and consent, access, and efficacy, while
integrating Al into healthcare. The governance of Al applications is crucial for patient safety and
accountability and for raising HCPs’ belief in enhancing acceptance and boosting significant health
consequences. Effective governance is a prerequisite to precisely address regulatory, ethical, and trust
issues while advancing the acceptance and implementation of Al Since COVID-19 hit the global
health system, the concept of Al has created a revolution in healthcare, and such an uprising could be
another step forward to meet future healthcare needs.

Keywords: artificial intelligence; ethics; governance; healthcare

1. Introduction

Health systems worldwide are at a crossroads and face exponential healthcare cost devel-
opments that have far outpaced GDP growth rates to support health system sustainability [1].
This matter was very straightforward with the emergence of the 2019 coronavirus disease
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(COVID-19) pandemic and the Ukraine war. There is a combination of tight finances,
elderly inhabitants, rising chronic diseases, and the strain on healthcare systems that previ-
ously struggled to cope with increased demand for service accessibility and availability. In
addition, the COVID-19 pandemic is leading to health system failure in some countries,
e.g., India, Brazil, and Indonesia [2].

As health systems depend on firm disease management pathways and evidence-based
care tactics to meet needs and regulate practices according to industrial healthcare delivery
services, the concept of “HRO” emphasizes a Highly Reliable Organization (HRO) by
having its services managed by either an “accountable care organization (ACO)” or a
“health maintenance organization (HMO)” [3]. However, the incidence of chronic diseases
in the United States (USA) is steadily increasing, i.e., 60% of adults have one chronic dis-
ease, and 40% have more than two chronic diseases, totaling USD 3.3 trillion in annual
healthcare costs [4]. In addition, this picture quickly changed with the emerging infectious
disease, which was first reported in Wuhan, China, in 2019 and designated as COVID-19
by the World Health Organization on 11 February 2020 [5]. Since then, healthcare has
been undergoing a digital transformation that will transform many of the fundamental
building blocks of medical care [6]. This condition might be due to the massive pres-
sure exerted by COVID-19 on global healthcare and the associated infrastructure, supply
chain, and employees. The pandemic also forced healthcare stakeholders to adopt digital
technologies [7,8]. Notably, key foundational changes occurred in the healthcare sector dur-
ing the post-pandemic. For instance, current-generation customers (patients) showed active
involvement in healthcare-associated decision making due to the increased acceptance of
virtual healthcare systems and associated digital innovations [9]. However, protuberant
challenges can occur, and the strategies to overcome them would create a way for the
voyage to reach the upcoming healthcare era. Patients and their experiences and needs
motivate innovations in the healthcare sector. Their main inclinations comprise the creation
of digitally empowered physician—patient interactions, confirming the provision of patient-
centric amenities across the globe [10]. The necessity for deploying advanced digital devices
has become a requirement to offer augmented customer satisfaction, permitting tracking,
checking the health status, and better drug adherence to be achieved [11]. Such aspects
would be more beneficial during the post-hospitalization period using digital health plat-
forms. At the same time, healthcare customers are cautious about sharing their confidential
data; hence, healthcare organizations (HCOs) are in place to preserve the customer’s trust
by representing transparency, empathy, and reliability in their services [11].

The rise of biomedical science, including genomics, digital medicine, artificial intel-
ligence (Al), and its subset, namely, machine learning (ML), provides the backdrop to
healthcare transformation, with novel emerging technologies, and there is a prerequisite of
anew type of labor force and standard of practice. Genomics and other technologies, includ-
ing biometrics, tissue engineering, and the vaccine industry, can improve and transform
diagnostics, therapeutics, care delivery, regenerative treatment, and precision medicine
models [12]. Table 1 describes the definitions of terms related to Al

Table 1. Definition of terms related to Al

Term

Definition

Artificial intelligence (AI)

Al denotes the science and engineering of creating intelligent machines using algorithms
or rules, which the machine shadows to mimic human cognitive functions, namely,
learning and problem solving [13]. Al usually refers to computer technologies that
emulate mechanisms supported by human intelligence, namely, adaptation, deep
learning, reasoning, engagement, and sensory understanding [14,15]. It aims to mimic
human cognitive functions. It brings a paradigm shift in healthcare, driven by the
increasing availability of health data and the rapid growth of analytical techniques [16].
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Table 1. Cont.

Term Definition
ML is a subtype of Al technology that aims to improve the speed and accuracy of
physicians” work. It also denotes several statistical techniques that allow computers to
learn from experience without being explicitly programmed. This learning usually
Machine learning (ML) takes the form of variations in how an algorithm works [17]. It is also a tool applied in

healthcare to assist healthcare professionals in caring for patients and managing
clinical data. It is an application of Al that involves programming computers to mimic
how humans think and learn [18].

Distributed Ledger Technology (DLT)

DLT is an innovative and rapidly growing method for recording and sharing data
across different data stores (ledgers) [19]. It is secure, immutable, and readily available.
It can allow patients to take control of their own data, eventually generating trust in an
industry that matters to all of us [20]. DLT integrated with AI describes a novel and
advanced method to achieve the intelligent, resilient, and safe handling of electronic
health record data [21].

Natural language processing (NLP)

Natural language processing (NLP) denotes the field of study that emphasizes the
interactions between human language and computers [22]. NLP techniques can
capture unstructured healthcare information, analyze its grammatical structure,
determine the meaning of information, and translate information; therefore, it can be
easily understood by electronic healthcare systems. These techniques also reduce costs
and improve the quality of healthcare [23].

Metaverse

The metaverse represents a 3D space based on virtual and augmented reality, where
individuals can utilize their own avatars to play, work, and synchronously
interconnect with each other [24]. It delivers an entrancing, communicative, and
pleasurable healthcare service experience tailored to achieve patients” desires. It
includes modern technologies such as Al telepresence, blockchain, virtual reality
(VR), augmented reality (AR), and digital twinning. These technologies highly
influence healthcare [25]. The metaverse application is exclusively associated with
healthcare, establishing a “niche theme” for academics, such as education, research,
training, and disease prevention and management. It has become a vibrant technology
for strengthening medical students” competence. Furthermore, patients” health
illnesses can be directly monitored at their homes, and real life can also be connected
with the virtual one using digital twins, a diverse technology [26,27].

Chat Generative Pretrained Transformer
(ChatGPT)

ChatGPT is an Al-based conversational agent that utilizes natural language processing
(NLP) and machine learning algorithms to simulate human-like conversations [28]. Its
critical applications in healthcare, including practice, education, and research, could
be auspicious if the accompanying valid concerns are proactively inspected and
tackled. It functions as a chatbot, a program that can comprehend and create
responses using a text-grounded interface [29]. Xu et al. [30] described the application
of chatbots in healthcare, comprising patient support; monitoring and administration;
and tumor diagnostics, screening, and management.

Transformer

Transformer is a critical deep learning model and is broadly used in various areas,
namely, computer vision (CV), natural language processing (NLP), and speech
processing [31]. The applications of transformers are observed in electronic health
records, medical imaging, and COVID-19 detection [32-36].

Moreover, digital health technologies (DHTs) comprise mobile health (mHealth),
health information technology (HIT), wearable devices, telehealth, telemedicine, mobile
Internet devices (MIDs), and personalized medicine [37], and recently, innovative tech-
nological advancements that are influencing smart health are Al, metaverse, and data
sciences [38]. These technologies lead to better prevention; the early detection of fatal
diseases; and the remote management of chronic diseases peripherally to the customary
care locations, such as wirelessly observed therapy (WOT), following a novel method of
monitoring adherence to therapy [39]. The most promising new way is to offer and deliver
health services anywhere and at anytime in the age of disruptive and minimally invasive
medicine. MIDs allow the recipient to access important resources, including associated
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applications and social media (SM). The available applications of MIDs are numerous and
provide access to scientific databases such as Medscape, Web of Science, and Scopus to
professionals. While SM networks, namely, YouTube, Facebook, WhatsApp, Wikipedia,
and other instant messaging applications (IMAs), can be available for both professional and
non-professionals. Such digital health modalities using Al in healthcare are accelerating in
the post-COVID-19 era [40].

Al ML, and DHT have fueled a revolution in healthcare, especially since COVID-19
crippled the global healthcare system. In particular, Al is presently integrating new tech-
nologies, such as the Internet of Things (IoT), into the DHTs used by consumers. As Al and
ML are widely implemented in healthcare systems, the IoT is expected to transform into the
intelligence of things [1]; how the collected data are utilized to alter processes would swing
behavior and values [41]. In addition, intelligent medical technology, i.e., powered Al, has
been met with some enthusiasm among ordinary people, because it makes the 4P model of
medicine, namely, predictive, preventive, personalized, and participatory, and thus patient
autonomy, possible [42]. Integrating Al into healthcare has already been shown to lead to
better, faster, and lower-cost healthcare [12].

Medical

Imaging &
Diagnostics

Medical
Research &

Drug Delivery

Rehabilitation

Virtual Patient
Care

Patient
Engagement &
Compliance

Administrative

Applications

Figure 1. Application of Al in various aspects of healthcare.

Digital health tools offer healthcare providers a more holistic view of patient health by
allowing providers to access patient data. They also allow patients to be provided with more
statistics about their health by their physicians. These offer real opportunities to improve
therapeutic outcomes and efficacy, although there are concerns that such modalities may
have greater psychological impact, particularly with the widespread use of SM and IMAs
by patients, the public, and professionals [43]. Additionally, accumulated data from
multiple sources, such as health information systems (HISs), wearable devices, telemedicine,
mHealth, telehealth, MIDs, and other Al-powered medical technology [44], create big
data that accelerate the utilization of ML and Al in health systems using the learning
process from the data these sources obtain, including data from research information,
user experience, and the investigation of big datasets [45]. Further, electronic health
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records (EHRs) encompass various healthcare data of patients. Such health datasets can
be connected using novel Al technologies to gain accurate insights into patient care. Al
has also emerged as a choice for big data applications in healthcare [46]. Moreover, big
data analytics enables healthcare providers to improve their clinical services by improving
EHRs using analytical algorithms [47]. Such analytics also uses the advancement of Al to
filter big data on various grounds for better data analysis [48]. As Al is widely used in
various areas of healthcare to improve patient health outcomes and provide healthcare at
lower cost, this review aims to reveal its role in healthcare, focusing on the following key
aspects (Figure 1): (i) medical imaging and diagnostics, (ii) virtual patient care, (iii) medical
research and drug discovery, (iv) patient engagement and compliance, (v) rehabilitation,
and (vi) other administrative applications. In addition, the authors address some challenges
to using Al in healthcare. These results complement the existing literature to take the
benefits of Al tools one step further in healthcare.

2. Role of Al in Healthcare
2.1. Medical Imaging and Diagnostic Services

Al is a powerful tool for image analysis that is increasingly being used by radiology
professionals for the early diagnosis of different diseases and for reducing diagnostic errors
in the context of prevention. Likewise, Al is a smart and potential tool for analyzing ECG
and echocardiography charts that cardiologists use to support their decision making. The
Ultromics platform, which was reported in a hospital in Oxford, utilizes Al to analyze
echocardiography scans that sense heartbeat patterns and detect ischemic heart disease [49].
Al has presented encouraging results in the early detection of diseases such as breast and
skin cancer, eye disease, and pneumonia using body imaging modalities [50-52]. Al tools
analyze speech patterns to forecast psychotic occurrences, and recognize and screen the fea-
tures of neurological diseases such as Parkinson’s disease [53,54]. A recent study predicted
the onset of diabetes using ML models. The results showed that a two-class augmented deci-
sion tree was the best model to predict the different variables of diabetes [55]. Furthermore,
Gudigar et al. [56] stated that several medical imaging tools, including X-ray, computed
tomography (CT), and ultrasound (US), applying Al techniques have significantly con-
tributed to combating COVID-19 by aiding in early diagnosis. Their results reported that all
handcrafted feature learning (HCFL), deep neural networks (DNN), and hybrid methods
were able to predict COVID-19 cases. A recent review also explained in detail the use
of CT scan, X-rays, MRI, and ultrasound in diagnosing COVID-19. It stated that Al has
been instrumental in helping the public fight against the dreaded virus [57]. Moreover,
a deep learning model named transformer is used in medical imaging analysis and in-
cludes registration, detection, classification, image-to-image translation, segmentation, and
video-based applications [34]. Previous studies explained the application of transformers in
differentiating COVID-19 from pneumonia using X-ray and CT images to meet the severe
prerequisite to quickly and efficiently manage COVID-19 cases [58,59]. Another study
applied the ImageNet-pretrained vision transformer (ViT)-B/32 network to detect COVID-
19 using inputs such as patches of chest X-ray images [60]. A study by Wang et al. [61]
proposed a new hybrid chest CT-built method to automatically detect COVID-19. It is a
computer vision-based diagnosis technique based on wavelet Renyi entropy (WRE) and
a proposed three-segment biogeography-grounded optimization (3SBBO) algorithm. It
comprises WRE, a feedforward neural network (FNN), and the 3SBBO algorithm. WRE
extracts image features; 3SBBO optimizes the biases and weights of the network; and the
FNN classifies the images. This method showed better performance than kernel-based
extreme learning machine, extreme learning machine with bat algorithm, and radial basis
function neural network in detecting COVID-19. Additionally, Gheflati et al. [62] reported
that the ViT is used to sort normal, malignant, and benign breast tissues based on ultra-
sound (US) images. It showed better efficacy in the classification of US breast images than
convolutional neural networks (CNNs).
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Furthermore, Al comprises the application of artificial neural networks, i.e., deep
learning techniques named Generative Adversarial Networks (GANSs), that impact the
field of radiology. GANSs contain two artificial neural networks, i.e., (i) a generator that
synthesizes images similar to real images, and (ii) a discriminator that reveals the difference
between synthetic and real images. Concerning radiology, the generative model can
duplicate the images consistent with training and synthesize new images with the features
of the images in the training dataset. The discriminant model is trained to classify the
images, for example, whether a radiograph displays or not pneumonia. It was concluded
that the generator model trained together with the discriminator model can result in
progresses in radiological activities such as abnormal detection, image synthesis, and cross-
domain image synthesis [63]. Skilled radiologists found it hard to distinguish between lung
cancer nodules images generated by GANs and real images [64]. In addition, GANSs offer
an excellent opportunity to improve medical education and research. They swiftly develop
training material and simulations for student learning. For instance, when students find
it hard to differentiate “lower lobe collapse” and “consolidation,” samples of each type
could be developed and displayed to them. Thus, synthetic data can support student
learning by presenting edge-case learning resources. Furthermore, synthetic control arms
have been developed by modeling placebo groups grounded on historical information, and
those arms reduce the requirement of a real-life placebo group, thereby reducing costs and
expanding the count of treatment arms in clinical trials [65]. Additionally, ChatGPT is a
deep learning-based large language model used by the public for medical advice; thereby,
it has turned into a basis for concern. Substituting professional medical advice, the public
could be tempted to use such a model to determine possible diagnoses based on clinical
features or gain treatment suggestions [66]. A previous US-based study found that about
one-third of adults required Internet-based medical advice for self-diagnoses. Subsequently,
about half of them consulted a doctor about the Internet-based outcomes [67].

Apart from this, Al-based medical practice, mainly medical imaging-guided diagnosis
and therapy, is facilitated by a metaverse of “medical technology and AI” (MeTAI). The
critical applications of MeTAI include “virtual comparative scanning”, “raw data sharing”,
“augmented regulatory science”, and “metaversed medical intervention”. A model execu-
tion of the MeTAI ecosystem is described as follows: The patient’s scans are first simulated
using virtual machines to reveal the best imaging outcome before he/she undertakes an
actual CT scan. Based on this knowledge, a real scan is made. Subsequently, the meta-
verse images are shared with the patient’s physicians’ squad after obtaining the patient’s
approval. Following security procedures, the tomographic raw data and images are shared
with the medical researchers. The collection of real and simulated images, data, and other
medical evidence can be combined in the metaverse and applied in augmented clinical
trials. Lastly, the patient is exposed to a metaverse-assisted remote robotic operation and
followed up in the metaverse for rehabilitation if it is therapeutically advised. However,
MeTAI experiences challenges such as security, disparity, investment, and privacy [68].

Additionally, medical scans are systematically gathered and saved for some time and
are freely obtainable to train Al systems [69]. Those Al systems could reduce the time and
cost of examining medical scans and potentially allow more scans to be taken for superior
targeted management [70]. Al is also impacting clinical decision making and disease diag-
nosis. It can process, analyze, and report a large number of data across different modalities
for disease diagnosis and clinical decision making. It can support physicians to make better
clinical decisions or even replace human decisions in therapeutic zones [71]. Furthermore,
investigations leveraging computer-aided diagnostics have presented outstanding sensitiv-
ity, accuracy, and specificity in uncovering minor radiographic deviations, with the capacity
to advance public health. Nonetheless, outcome assessment in Al imaging studies is usually
described as lesion detection, ignoring the biological severity and nature/type of a lesion,
which could give a skewed picture of Al output. In addition, applying non-patient-related
radiological and pathological endpoints could increase the expected sensitivity at the cost
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of increasing false positives and possibly overdiagnosing by detecting minor abnormalities
that might mimic subclinical disease [72].

2.2. Virtual Patient Care

Baig et al. [73] noted that the advancement of wearable technology and the potential
of using ML and Al in healthcare is an idea that has already been explored. Thus, patient
monitoring and management via virtual care with active and sensible wearable technology
solutions have become a reality and part of the standards of care. In addition, Al plays a
role in controlling chronic diseases such as diabetes mellitus, hypertension, sleep apnea,
and chronic bronchial asthma using wearable, non-invasive sensors. [74]. A previous study
recommended a smart sensor system based on a combined sensor network to observe a per-
son’s home and environment and obtain data on a person’s health status and behavior. The
recommended platform includes sensors that are unobtrusive, biomedical, and wearable.
These sensors monitor physiological variables such as respiratory rate, pulse rate, breathing
waveform, blood pressure, and ECG. A smart device (such as a tablet) has been proposed
to act as an interface between the person and the sensors. In addition, the collected data are
sent to the cloud for storage and data analysis for elderly care [75]. A case report by Patel
and Tarakji [76] also discussed a patient in whom atrial fibrillation was positively detected
as the probable cause of her stroke following a broad negative examination. The patient
was warned to record ECG signals using a wearable digital device. Her electrophysiologist
later confirmed those recorded signals. Thus, consumer wearable digital devices support
reaching the precise diagnosis. Regarding mental health disorders, Sukei et al. [77] demon-
strated the possibility of building ML models for predicting emotional states using mobile
sensor data that can handle diverse data with large amounts of missing information. Such
models could provide valuable tools for physicians to assess patients’ mood states. Further
research is recommended to find a solution for sparse and lost tagged data so that future
focus can be placed on developing more innovative models.

Since the prevalence of SARS-CoV-2 has caused the COVID-19 pandemic worldwide,
progress has been observed in wearable devices that measure physiological changes in
biometrics or even transmit online active patient monitoring [78]. Bogu and Snyder [79]
suggested that wearable sensor data could be used as indicators for the early prediction of
COVID-19, and with real-time wearable research on COVID-19 cases, the clinical features
glossed over by users and justified by laboratory investigations will continue to improve
knowledge related to tracking and detecting COVID-19 outbreaks. Al using predictive
modules with ML and big data can help predict the progression of some diseases, such
as diabetic nephropathy, and even diagnose SARS-CoV-2 infection in solid organ trans-
plantation [80]. Yu et al. [81] emphasized the importance of integrating Al into bedside
care in COVID-19 and the coming pandemic after examining encounters in emerging
Al-enabled applications for point-of-care use in such events. In addition, the necessity of
remote healthcare services has been created due to the COVID-19 pandemic. Metaverse
applications can deliver a better experience than traditional videoconferencing-grounded
telemedicine applications [82]. A recent study stated that the growth of telemedicine with
metaverse development increased 38-fold during COVID-19 [68]. Such growth could have
been due to the decrease in face-to-face consultations and the control of the risk of spread-
ing the virus during the COVID-19 pandemic [83,84]. It also revealed the possibility of
new metaverse tools, namely, virtual comparative scanning and raw data sharing, which
would be consistent, easy to use, and inexpensive, and would work well [68]. Additionally,
metaverse systems could utilize augmented reality (AR) glasses so that the users can access
live videotapes and audio chats to interact with clinicians in real time. AR solutions would
allow users to connect directly and offer a live flow of emergency circumstances for remote
physicians to deliver on-time, faster, and on-spot management [85]. The application of
current technologies such as Al, telepresence, blockchain, virtual reality (VR), augmented
reality (AR), and digital twinning provides the experience of innovative means for offer-
ing low-cost management that improves patient outcomes. The metaverse develops a
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virtual world experience using the Internet in which human emotions and motions are
simulated. It comprises the comprehensive financial and social constructs of both real
and virtual environments [86]. Furthermore, Al could aid in reinforcing the metaverse
structure to improve the 3D immersive experience and enhance the essential services of
virtual worlds [87].

Remote patient monitoring (RPM) is a subset of telehealth, and it permits HCPs to
monitor, investigate, and report patient conditions away from the traditional location. RPM
smooths the performance of medical action using sensors and communication technologies.
It makes it easier to remotely examine health data or patient issues. It also allows patients
to engage and recognize their health condition [88]. The reliability of conventional patient-
monitoring structures hinges on HCPs” time management, which relies on their workload.
Such surveillance also includes invasive methods requiring skin contact to screen health
status. RPM in healthcare is achieved by integrating novel IoT methods: contact-based
sensors, wearable devices, and telehealth applications. It is often applied to examine vital
signs or other physiological variables such as the recognition of motion, which can support
medical judgment or therapeutic regimens for diseases such as psychological illnesses and
movement disorders [89]. Additionally, healthcare providers leveraged RPM platforms
to facilitate the continuity of patient care during the COVID pandemic. A recent study
evaluated two remote patient-monitoring platforms, the CareSimple COVID platform and
the Telecare COVID platform, for monitoring COVID-19 patients. These two platforms
were reported to have been well received by COVID-19 patients, with minimal significant
discrepancies in patients’ experiences of the two platforms. It is recommended to consider
using these platforms in a post-pandemic and post-hospitalization period [90]. Concerning
RPM applications, conventional ML and deep learning are commonly used Al technologies
to sense and forecast vital signs and classify patients’ physical movements. Al-powered
RPM designs have transformed healthcare monitoring applications to detect early patient
deterioration, absorb patient behavior patterns using reinforcement learning, and personal-
ize the monitoring of patient health variables using federated learning. However, Al can
transform RPM facilities, but it has some challenges, such as privacy, signal processing,
data volume, uncertainty, imbalanced datasets, feature extraction, and explainability [89].

Moreover, ChatGPT, an Al language model, was developed by OpenAl. It functions as
a more accurate Al-powered chatbot that can understand natural language conversations
and respond to user queries. The ChatGPT-powered chatbot delivers information about a
particular medical disease or management regime. It delivers precise and current replies to
the patient’s questions concerning their clinical features, prescription drugs, and therapeutic
procedures in various languages. It outlines patients’ medical information for HCPs and
may aid them in performing RPM to sustain patient health. Further, it reminds patients to
check their vital signs so that they can alarm HCPs if any abnormal changes occur. It allows
patients to fix their appointments with physicians [91]. ChatGPT might also offer responses
for a computer program that helps patients handle their treatment, similar to a virtual
assistant who alerts them to follow their medical prescription and provide information
about their health status. The growth of virtual assistants for patients is an example of
how ChatGPT is applied in medicine. A virtual assistant may counsel in treating a chronic
disease such as diabetes or prescribe over-the-counter drugs or home medicines to flu or
cold patients. Digital platforms such as mobile applications, voice assistants, and websites
may be applied to access these virtual assistants. However, ChatGPT in healthcare has
limitations, namely, issues related to medical ethics, data interpretation, privacy, security,
consent, and liability [91].

On the other hand, data connectivity is a disadvantage of installed Wearable Patient-
Monitoring (WPM) systems, where patients are secured inside fixed spaces with low-Bluetooth-
range monitoring devices. In addition, end-user acceptance is a crucial aspect of WPM systems.
It relies on user awareness, and patient and physician acceptance. Cost issues can arise when
using mobile data for communication over time and different data collections [73].
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2.3. Medical Research and Drug Discovery

Alisideally suited to analyze the large and complex datasets used in medical research [92].
In addition, it can be applied to hunt scientific research works, integrates various types of data,
and supports drug innovation [93]. Pharmaceutical agencies are focusing on Al to streamline
drug development. Scientists can utilize predictive analytics to recognize appropriate aspi-
rants for clinical trials and develop exact models of biological processes [92]. ML contributes
to clinical trials in the pre-trial phase, choosing the cohort, organizing of participants, and col-
lecting and analyzing data. It can augment the patient-oriented view, generalizability, efficacy,
and achievement of clinical trials. However, ML needs more emphasis on its functional and
philosophical obstacles in clinical trials. In addition to ML, natural language processing (NLP)
has exposed potential across various actions enhancing participant management in clinical
trials; however, these tools’ effects on clinical trial quality and participant experience are uncer-
tain. Further research can be conducted comparing different methods to improve participant
management [94]. In clinical research, generative Al may be used to create synthetic data to
enhance datasets and increase diversity [65]. Additionally, researchers can perform trials in an
immersive and controlled setting using metaverse applications. The benefit of applying the
metaverse is aiding research collaboration among the researchers who are physically distant.
The metaverse permits them to research together in a virtual space similar to researchers
that are in the same chamber [95]. Another Al-based tool, ChatGPT, may be used in clinical
trials to support data collection and provide information about clinical trials [91]. It can aid in
condensing pertinent publications and recognizing significant results, supporting medical
researchers to competently navigate massive Internet-based evidence [96]. In addition, a
chatbot employing ChatGPT aids in translating the medical language for medical researchers.
Nevertheless, more ethical issues may arise when using chatbots in medical research [91].

Moreover, Al technologies in drug discovery have developed from ML, bioinfor-
matics, and cheminformatics models [97]. These technologies can dramatically decrease
the high cost and time needed for new-drug discovery [98]. An earlier study stated that
an Al-based robot scientist (Eve) performed the drug development process rapidly and
economically [99]. Concerning drug discovery, Al is mainly used to search for candidate
molecules, but it is probable that it could be dynamically used in drug discovery in the
future [98]. Many drug discovery successes supported by Al indicate the capability of
Al-built-in firms of rapidly exploring drug candidates. For instance, Toronto-based deep
genomics utilized an AI workbench platform to create a new genetic target and the respec-
tive oligonucleotide drug candidate DG12P1 for managing an unusual, inherited form of
Wilsons’ disease [97]. Furthermore, recognizing new drug targets is crucial while conduct-
ing drug discovery research for finding new first-in-class clinical drugs [97]. Al can detect
hit and lead compounds and offer the rapid authentication of the drug target and the better
scheming of drug structure design [100,101]. The capability of Al of forecasting the inter-
action between drug and target was also utilized to aid the repurposing of current drugs
and to evade polypharmacology. Repurposing a current drug passes it toward subsequent
phases of clinical trials [100]. Previous studies stated that ChatGPT might be applied to
assess a large body of scientific evidence, comprising patents and research publications;
thereby, new drug targets and creating innovative ideas are determined. In the case of drug
development, it helps train the model on a massive volume of scientific evidence before
the model is used to deliver assumptions or suggestions for further research [102,103].
Apart from this, Al is used for drug screening [104]. Previous studies stated that various
algorithms, namely, extreme learning machines, DNNs, random forest (RF), support vector
machines (SVMs), and nearest-neighbor classifiers, are applied for virtual screening (VS)
grounded on synthesis viability and for forecasting in vivo toxicity and activity [105,106].

Notably, reviewing the proteins constituting a virus (spike protein) is the function of
Al in vaccine development. The categorization of numerous components in a complicated
structure can be feasible using an Al system to determine the one that most probably elicits
a robust immunological response [107]. Further, the evolution of Al systems in healthcare
supports the innovation of the genomic series of the COVID-19 virus and its variants. It
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also aids in developing vaccines and drugs (comprising drug repurposing) to obtain active
preventive and healing agents for restraining the COVID-19 pandemic [108].

2.4. Patient Engagement and Compliance

Patient engagement and compliance is healthcare’s ‘last stretch’ issue and the end
blockade between better and poor health outcomes. Non-compliance means when a patient
fails to shadow a treatment course or take the recommended medications. If patients are
highly engaged in healthcare, their health outcomes are probably better, i.e., healthcare
utilization, cost, and patient experience [109]. A healthcare leaders and executives survey
reported that less than 50% of their patients were highly involved in treatment plans [110].
Healthcare providers use their clinical experts to develop treatment plans to improve
patients” acute or chronic health. Nevertheless, mostly, it does not matter when a patient
misses the required behavioral changes, such as controlling weight, scheduling a follow-up
visit, and obeying a treatment plan [109]. Such conditions raised the implementation of Al
to successfully enhance patient engagement. ML and workflow engines are progressively
being applied to driving composite interventions and the care spectrum [111]. Messaging
alarms and appropriate custom-made material that encourage behavior at moments is the
auspicious pitch of research [109].

Moreover, a study reveals that leveraging apps and online portals facilitating patient
communication with HCPs can improve engagement rates by up to 60% and above. Health-
care apps collect, save, and distribute patient data on the cloud. These apps also permit
users to access data wherever and whenever they want and possess the capacity to enhance
a patient’s health outcomes. These are Al-based apps for medical consultation that let
patients obtain info (non-emergency). Certain apps have also been given the ability to
follow up with the patient and give alarms for drug intake [112]. Furthermore, ChatGPT
is being utilized in various healthcare apps, including in automating long tasks such as
summary, note writing, and report production, thereby making those tasks time-saving
and more efficient. It assists patients in checking symptoms, fixing appointments, and
managing drugs, aiding patient compliance and education, and the self-management of
chronic diseases [91].

2.5. Rehabilitation

Al has innovative applications in the field of rehabilitation. It is an idea that includes
physical (robotics) and virtual (informatics) branches. Additionally, a subset of Al known as
ML refers to precise methods for building algorithms that naturally improve with practice. In
rehabilitation, ML is used for perioperative medicine, brain-computer interface technology,
myoelectric control, symbiotic neuroprosthetics, etc. ML methods have also been applied in
the field of the musculoskeletal system, e.g., in the evaluation of patient data, clinical decision
support, and diagnostic imaging. In therapy, an artificial cognitive application was used to
judge rehabilitation exercises based on the signals from the machine [113].

As a result of technological advancement, Al and robotics are transforming approaches
and competencies in rehabilitation research and practice. For example, smart homes can
assist residents with daily activities and alert caregivers when assistance is needed. In
addition, smart mobile and wearable devices are available to collect data and provide users
with information to assess health improvement and review progress toward personalized
rehabilitation goals [114]. Additionally, inertial sensors in wearable technology can be
recognized to check whether individuals are properly performing and adhering to exercise
regimens [115]. Such exercise adherence was assessed in normal individuals following a
rotator-cuff exercise regimen while wearing an Apple iWatch. Several supervised learning
methods were applied to accurately categorize exercise accuracy across all algorithms [116].
A neural network achieved 99.4 percent detection accuracy, demonstrating the potential
utility of wearable devices and ML in exercise tracking. However, assessing performance
using wearable devices alone could possibly be insufficient to enhance adherence because
of the variable snags to adherence connected with exercise efficacy [117,118]. Addition-
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ally, physically and socially supportive robots can be used to help individuals recover
from injury or illness. These robots also support bridging gaps resulting from cognitive,
motor, or sensory losses. These technologies play an important role in helping people
increase their functional ability, independence, and healthy well-being [114]. Patients
with musculoskeletal dysfunction were treated with simple mobilization using dextrous
or soft robotic hands. However, the long-term efficacy of such treatment has yet to be
demonstrated [119]. A recent study suggests that Al-enabled robotics could monitor the
patient for perfection of movement and help the patient efficiently perform movements
in the future [120]. Frackiewicz [121] stated that HCPs could match the gap between the
need for rehabilitation services and the obtainability of trained therapists by adding an
Al-driven tool, ChatGPT, to the rehabilitation sessions. Those can provide patients with
an Al-driven method that complements conventional therapy. Using ChatGPT, the pa-
tients are provided with tailored and collaborative assistance; therefore, patients remain
engaged and interested during their recovery process. ChatGPT can be programmed to
deliver exercise recommendations and screen progress and offer feedback to individuals
recovering from physical injuries. Further, it can also assist stroke or head injury patients
in practicing their speech and language skills by involving them in conversation. This tool
can be easily accessible using digital devices at home or outside. A recent study stated
that a language model such as ChatGPT was trained to redraft text in a highly empathic
way. It provides easy communication in a peer-to-peer mental health assistance system and
improves non-expert conversational skills. It emphasizes the possibility of using human—Al
partnerships to improve various community-based tasks relying on self- or peer-managed
therapy, such as cognitive behavioral therapy [122].

Additionally, metaverse neurorehabilitation encompasses an Al-based gross motor func-
tion classification system (GMFCS), rehabilitation materials as a reward through rehabilita-
tion, virtual character movement using weight shift, and deep learning-based movement
assessment. It is planned to enhance interest and entertainment, deliver remedial exercises
with Al, and limit the risk of COVID-19 transmission [123,124]. A recent study observed
that metaverse physiotherapy (MPT) reduced perceived COVID-19 infection and enhanced
cardiopulmonary and gross motor function compared with conventional physiotherapy in
treating CP children [125]. In addition, Al has been used in gait analysis, where ML-driven
video analysis demonstrated the ability of computers to automate the detection of gait abnor-
malities and related pathologies in patients with osteoarthritis and Parkinson’s disease [126].
Physiotherapy at home can be successfully delivered with counselling/advice, real-time
observation, and remote tracking by digital therapists [120]. Lambercy et al. [127] envisioned
an approach to delivering remote neurorehabilitation using digital interventions such as
minimally supervised assisted therapy, which could help stroke victims continue care from
the hospital and to their homes. However, Al-embedded technologies for remote neurore-
habilitation should meet the technical needs, namely, utility, safety, and robustness, as the
patients are trained with the devices at home, and their needs are met. These technologies
should be scalable, and their application in neurorehabilitation requires a clinically motivated
and transparent approach to patients and their families as well as HCPs. This condition could
increase confidence in technology-enhanced rehabilitation in a home model. Additionally,
all of these characteristics are critical to ensuring that patients with neurological disorders
consent to technology-enhanced rehabilitation and actively engage in therapy [128]. Such
technology-assisted rehabilitation at home notably impacted neurorehabilitation during and
after the COVID-19 pandemic by providing widespread access to high-quality, sustained, and
high-dose therapy that enhanced long-term functional outcomes and promoted independence
and quality of life in stroke patients [127].

Concerning sports medicine, a recent review found that Al is a promising avenue
for integration into wearable technologies. Al techniques processing data from sensors
could monitor patterns in physiological measurements, as well as positional and kinematic
data, to indicate how athletes can improve their performance. Al can improve how injury
prediction models work, increase the diagnostic precision of risk stratification systems,
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provide a reliable technique for continuously monitoring patient health data, and improve
the quality of patient experience. Although Al has beneficial applications in sports medicine,
several challenges may hamper its adoption in wearable devices [129]. These challenges
include missing data, socioeconomic bias, data security, outliers, signal noise, and the
difficulty in obtaining high-quality data with wearable technology [129,130]. For example,
sensors that monitor heart rate detect artifacts due to arm movements during physical tasks:
Such a situation could be handled by highly complex sensors that could collect and transmit
clean data [129]. Another critical challenge to their adoption is patient acceptance. Previous
studies stated that half of consumers with a wearable device had stopped using it, and this
condition had occurred within six months in one-third of them [131,132]. A previous study
reported that half of patients felt that the use of Al in wearable technology was a significant
opening, while 11% felt that it was harmful. Patients feared that the technology could
exploit and misuse their data and affect the human aspect of healthcare. Therefore, patient
education on how Al supports clinicians, and their abilities and limitations is needed to
improve their acceptability and adoptability of AI [133].

2.6. Administrative Applications

Al can reduce administrative burdens by automatically populating structured data
areas from therapeutic notes, retrieving key data from past medical records, and collecting
documented patient encounters [134]. For example, the average nurse in the United States
spends a quarter of his/her working hours on regulatory and administrative duties [135].
Physicians” and nurses’ time could be saved using voice text writing [134]. Although rule-
based systems integrated with electronic health record (EHR) systems are extensively used,
they lack the accuracy of additional algorithmic systems based on ML [110]. Wang et al. [68]
stated that Amazon is working on an innovative ML solution to extract valuable informa-
tion from unstructured EHR data and scientific notes. Furthermore, Li et al. [32] introduced
bidirectional encoder representations from a transformer for EHR (BEHRT), a deep neural
sequence transduction model for EHRs. The BEHRT showed the ability of using various
embeddings, such as age, position, visit, and event, to characterize the patient’s clinical
history. It can concurrently forecast the probability of 301 conditions in an individual’s fu-
ture visits. It significantly improves the average precision scores in various tasks compared
with present deep EHR models. It can integrate various heterogeneous concepts, such as
assessment, diagnosis, and drugs, due to its stretchy construction, thereby enhancing the
accuracy of its predictions. A recent study proposed a hierarchical BEHRT (Hi-BEHRT)
model, a hierarchical transformer-based model, for risk prediction. The study observed a
significant performance of Hi-BEHRT compared with existing deep-learning models in risk
prediction tasks for patients with a long clinical history of diabetes, heart failure, stroke,
and chronic kidney disease [35].

Interestingly, Robotic Process Automation (RPA) can be used for various healthcare
functions. These functions include clinical records, revenue cycle administration, claim
handling, and medical record management [136]. Additionally, chatbots have been used by
healthcare organizations (HCOs) for telehealth, mental health, and patient interfaces. These
NLP-based tools can be helpful for simple transactions such as booking appointments or
refilling prescriptions [137]. Regarding payment administration and claims, another Al
technology, ML, can be applied to match data across different websites [134]. Insurance
agencies are responsible for verifying the accuracy of many claims. Inappropriate claims
slipping through the cracks demonstrate significant monetary potential waiting to be
resolved using data reconciliation and claim scrutiny [109].

In addition, Corny et al. [138] concluded that a hybrid ML-based decision support
system (ML rule-based expert system) was remarkably more accurate in detecting prescrib-
ing errors in a clinical setting. A recent review examined the development of Al tools for
clinical pharmaceutical services and found that ML techniques and subsets, namely, NLP
and deep learning, were widely used. It concluded that the growth of Al-based applications
and tools for clinical pharmacy services is just beginning. Significant action needs to be
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taken in conjunction with data professionals to better assess whether these Al tools have
value for clinical pharmacy services in real-world settings. Pharmacists need to recognize
these gains in order to properly employ them while maintaining their social relationships
with patients and healthcare teams [139].

3. Challenges Faced by Al Utilization in Healthcare
3.1. Ethical and Social Challenges

Several ethical and social disputes raised by Al overlap with those raised by high
reliance on technology; automation; data usage and issues arising from the usefulness of
‘telehealth” and assistive technologies, as the effectiveness of Al increases ethical concerns,
including the issue of accountability when Al is used in decision making; the ability of
Al to make erroneous judgments; Al yield authentication issues; the confirmation of the
protection of sensitive data; intrinsic biases in the data used in Al system tests; maintaining
public confidence in the growth and benefits of Al systems; influencing the sense of
dignity and social isolation of the public in care settings; implications for HCPs’ roles and
skill requirements; and the ability of Al to be used for malicious activity. Furthermore,
safety and reliability problems may occur while using Al to deliver treatment, make
decisions, and control healthcare equipment. Al could cause errors, and those might
be challenging to detect or might induce adverse effects, which could lead to severe
consequences [69]. For instance, the Al app predicting pneumonia-related complications
mistakenly advised physicians to discharge patients with asthma because it failed to
consider related information [140]. Concerning transparency and accountability, queries
arise about the accountability of Al-made decisions and compensation for individuals
affected by Al use. Issues related to Al output authentication and error or data bias
recognition arise, especially with ML technologies, which could be mainly non-transparent
due to the method whereby they constantly review their own limits and guidelines as
they learn [69]. Additionally, explainability denotes a main obstacle facing Al regarding
its practical implications in various domains. It is crucial and tackled by “Explainable
artificial intelligence (XAI),” a branch of Al research, to overcome the poor understanding
of Al-based applications and improve the acceptance of those applications concerning the
decision-critical domain [141]. Furthermore, the internal mechanisms of Al are commonly
non-transparent and complex for humans to comprehend. This condition can result in poor
trust and comprehension concerning Al-made decisions. To overcome such issues, XAI
is used to make the internal mechanisms of Al transparent and explainable to humans to
create trust in and comprehension of Al-made decisions [142]. It is a pool of techniques
that understand and trust the outcomes of ML algorithms [143]. In healthcare, doctors and
patients can realize the reasons behind diagnosis using XAl, since it can explain diagnostic
decisions made by AI [142]. A recent study found that XAI establishes trust in Al by
giving visual feedback to the user regarding significant metrics that are used to obtain
the model prediction [144]. Another study observed that XAI methods are required to
improve radiologists’ trust in classification predictions of CT images with the acquisition of
numerous visual insights into the automatic workflow [145].

Furthermore, AI might poorly function with data scarcity or difficulties in digital data
collection. This state could impact the individuals understated in clinical trials or those with
rare medical diseases [69]. While training Al applications using data, these applications
can replicate and strengthen data biases even though those can decrease human error and
bias [146]. Such data for training Al could poorly represent the broader populace and
result in unfair decisions replicating more comprehensive biases in societies [70]. Those
applications in healthcare also face data privacy and security challenges, because they
utilize sensitive and private data bound by legal panels. Although Al can be applied for
detecting cyber attacks and protecting healthcare desktops, there is the possibility for Al
systems to be hacked to access sensitive data or spammed with biased or false data in such a
way that might not be simply traceable [69]. Sunarti et al. [147] also listed the ethical issues
faced by clinical Al applications: privacy, safety, security, the right to choose and try, cost,
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information and consent, access, and efficacy. Therefore, critical medical-ethical principles,
such as beneficence, autonomy, equity, and non-maleficence, should be emphasized before
integrating Al into healthcare systems [148].

3.2. Governance Challenges

As the implementation of Al technologies in healthcare increases, there is a serious re-
quirement for proper governance to overcome regulatory, ethical, and trust issues [149,150].
Active governance at the hospital level offers an opportunity to accurately address these
issues in the implementation and use of Al [151]. Additionally, a recent study found that
governing Al technologies at the healthcare system level is critical to patient safety and
healthcare system accountability. Such governance also increases clinician confidence,
improves acceptance, and makes significant health consequences possible. The governance
structure should be comprehensive to address the challenges related to clinical, operational,
and leadership domains while deploying Al-powered applications [152].

Additionally, Al has applications in areas that need regulation, including healthcare,
research, and privacy. Nonetheless, Alis developing rapidly and commercially, which could
challenge the known outlines [70]. National and international regulations are, therefore,
required to introduce Al-controlled applications in healthcare as part of the principles
of medical ethics. As such, the European Union (EU) developed general data protection
regulation (GDPR), a data protection regulation in 2018, to control AI. GDPR shields the
personal data dealt with by a data processor or controller recognized inside the EU. It is
a base for essential reforms in the United States and Canada [153]. Recently, the revealed
artificial intelligence act (AIA) was developed by the European Commission to address
various risks related to the social adoption of AL It is a set of regulations encouraging
the acceptance of Al and intends to avoid or alleviate harms connected to specific usages
of technology. According to the proposed act, high-risk Al systems must undergo pre-
deployment conformity appraisals and post-market observational analysis to confirm that
they meet all the necessities of AIA [154].

3.3. Technical Challenges

Technically, Al models must be simple in their properties and functions in order for
HCPs to efficiently operate them [155]. On the other hand, there are a few hurdles to
adopting Al in healthcare, including the lack of capacity of developing and maintaining IT
infrastructure to support the Al process, the increased costs associated with storing and
backing up data for research purposes, and the high cost of augmenting data validity [156].
In addition, Al algorithms can suffer from a variety of shortcomings, including inapplicabil-
ity outside of the training domain, bias, and brittleness (tendency to be easily fooled) [157].
Important factors to consider include dataset shifts, randomly matching confounders in-
stead of true signals, the prevalence of unintended biases in clinical practice, providing
interpretability for algorithms, developing reliable measures of confidence in the model,
and challenging the generalization to different populations [158]. Therefore, healthcare
providers should develop and implement an effective strategic plan for implementing Al
in healthcare to address the issues related to cost, technological infrastructure, and the use
of Al systems for HCPs.

Additionally, HCPs often mistrust or poorly understand Al-grounded clinical decision
support systems because of unidentified risks, a vital blockade to extensive adoption. In
such circumstances, XAl solutions are emphasized to enhance end-user trust and overcome
low Al adoption [144]. Additionally, Choudhury and Asan [159] found that factors such as
risks and trustworthiness of Al, workload, and willingness to receive Al training influenced
clinicians’ perceptions of the use of Al in healthcare. The lack of Al accountability has also
been identified as an inhibiting element in using Al It is recommended that Al training be
included in medical and nursing curricula to enable Al to be safely used in the future.

Similar to our brains, Al systems receive inputs and provide outputs. However,
HCPs have no idea about what is being measured and how an Al system arrives at a
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result; all they know is the final output. This challenge in Al systems is called black-
box problem [160]. Therefore, blaming healthcare practitioners for Al errors could be an
obstacle to Al adoption, and it is recommended to develop policies and measures to protect
doctors and Al in healthcare. This also emphasizes improving healthcare professionals’
risk perception and performance expectations of AL It is crucial to ensure a user-friendly
Al interface in which the information presented must have clinical relevance. There is a
need to engage all stakeholders (providers, payers, and patients) and understand clinical
needs before developing and promoting Al in healthcare.

4. Disadvantages of Al in Healthcare

Huge datasets are mandatory for machine learning and deep learning models to
appropriately categorize or forecast various tasks. Nevertheless, the healthcare industry
possesses a composite problem with data accessibility, since patient records are confidential
and given the usual hesitancy among HCOs to exchange health data. In addition, data
are not readily available once an algorithm is initially executed using them. Notably, ML-
based systems can continually progress as additional data are provided to their training
set; however, it is hard to attain this scenario due to internal corporate resistance [161].
Moreover, Al-based applications raise data security- and privacy-related issues. Hackers
usually focus on health records during data breaches, since those records are significant
and vulnerable. Hence, it is vital to uphold the confidentiality of health records [162].

Additionally, the overfitting issue occurs when the algorithm absorbs the connections
between patient characteristics and results. This problem occurs due to numerous variables
affecting the outcomes, which makes the algorithm make inaccurate predictions. Data
leakage is another concern that describes Al’s ability to predict incidences beyond the di-
minished training dataset when the algorithm attains greater prediction accuracy [163-165].
Further, deep learning algorithms are less capable of giving substantial explanations for
their predictions. An algorithm experiences difficulty in protecting itself legally when
recommendations go wrong. It makes it difficult for experts to comprehend how the data
are associated with their forecasts. The black-box issue in Al systems may lead the public
to lose faith in healthcare systems [166].

The healthcare workforce may fear Al in healthcare, which might reduce their occupa-
tions and replace them. At the same time, they are in need to be re-engineered. Another
issue with Al is the price tag covering the time and resources invested in training HCPs to
successfully use Al [161]. In healthcare, insufficient experimental data authenticating the
efficacy of Al-based drugs in planned clinical trials is a critical hindrance to the positive em-
ployment of AL Al research has been mainly performed in non-clinical environments. Hence,
the generalization of findings might be difficult. Similarly, the institutions are uncertain and
reluctant to execute Al-based solutions because of the lack of empirical data and the rutted
quality of research [167]. Other disadvantages of Al, in general, include the high costs of
creating Al-based applications, making humans lazy, creating unemployment due to replacing
repetitive tasks with Al, and a lack of emotions and creativity in machines [168].

5. Conclusions

Al technologies are being used for a range of healthcare applications. These tech-
nologies have been developed to support medical imaging and diagnostic services, fight
the pandemic, provide virtual patient care, increase patient engagement and adherence to
treatment plans, reduce the administrative burden on healthcare professionals, drive drug
and vaccine innovation, monitor the compliance of patients with exercises, and carry out
gait analyses used in technology-assisted rehabilitation. However, Al also faces various
technical, ethical, and governance challenges as it moves forward in healthcare. It raises
data security- and privacy-related issues because it utilizes sensitive and confidential data
bound by legal panels. The use of Al in addressing challenges could be limited by the
quality of existing health data and Al’s failure to reflect certain human characteristics,
such as compassion. Al is more beneficial while functioning efficiently; however, it cannot
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replace the human connections that form teams. Human functions such as teamwork and
team management are not possible-to-achieve goals, since machines cannot form a bond
with humans. A key challenge to be solved for the future governance of Al technologies
will be to confirm that Al can be developed and implemented in a way that aligns with
people’s interests and takes into account technical, ethical, and social aspects. This study
adds to the existing literature compiling the application of Al in medical imaging and
diagnostics, virtual patient care, medical research and drug discovery, patient engagement
and adherence, rehabilitation, and other administrative applications. Additionally, this is
the latest update in the literature to address the ethical, social, governance, and technical
challenges that HCPs face in adopting Al in healthcare.

Future Directions

Since this study is based on a general literature review, future research could focus on
conducting a more comprehensive systematic literature review that can provide a deeper
insight into this research topic. In addition, future research should focus on a cross-sectional
survey of HCPs to collect primary data on all the key issues addressed in this study.
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