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Abstract: The design of a metasurface array consisting of different unit cells with the objective
of minimizing its radar cross-section is a popular research topic. Currently, this is achieved by
conventional optimisation algorithms such as genetic algorithm (GA) and particle swarm optimisation
(PSO). One major concern of such algorithms is the extreme time complexity, which makes them
computationally forbidden, particularly at large metasurface array size. Here, we apply a machine
learning optimisation technique called active learning to significantly speed up the optimisation
process while producing very similar results compared to GA. For a metasurface array of size 10 × 10
at a population size of 106, active learning took 65 min to find the optimal design compared to genetic
algorithm, which took 13,260 min to return an almost similar optimal result. The active learning
optimisation strategy produced an optimal design for a 60 × 60 metasurface array 24× faster than
the approximately similar result generated by GA technique. Thus, this study concludes that active
learning drastically reduces computational time for optimisation compared to genetic algorithm,
particularly for a larger metasurface array. Active learning using an accurately trained surrogate
model also contributes to further lowering of the computational time of the optimisation procedure.

Keywords: active learning; optimisation; metasurface design

1. Introduction

Metamaterials are three-dimensional man-made substances that can achieve electromag-
netic properties, such as negative index of refraction, which cannot be found in naturally
occurring materials [1]. The uniqueness of metamaterials derives from their internal microstruc-
tures and nanostructures, rather than the chemical composition found in natural materials. The
multiple stacks of material layers in metamaterials lead to significant losses and challenges in
nano fabrication. Metasurfaces are the two-dimensional equivalent of metamaterials and have
been developed to overcome the obstacles that metamaterials are confronted with. Metasur-
faces are planar patterned surfaces composed of sub-wavelength periodic arrays of unit cells
capable of manipulating the behaviour of light [2]. The principle of operation of metasurfaces
is based on the phenomenon of diffraction. There is a vast area of application for metasurfaces,
including absorption [3], holographic imaging [4], and wavefront manipulation [5]. The radar
cross-section is the electromagnetic signature of an object. When the radar cross-section is
large, the object will be easily detectable by radar. A stealth aircraft designed to have low
radar detectability—whether it be from land-based installations, guided weapons, or other
vehicles—would require a surface with a low radar cross-section. A low radar cross-section
improves a platform’s overall survivability through the improved effectiveness of its radar
counter-measures. A metasurface structure can effectively decrease radar cross-section scatter-
ing due to its distinctive phase manipulation capabilities [6,7]. Decreasing radar cross-section
using metasurface has been a widely discussed topic for the last few years. The two main
classes of metasurface optimisation are gradient-based and gradient-free methodologies [8–11].
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Gradient-based methods, such as topology optimisation, rely strongly on the initial design [12].
Gradient-free methods, such as genetic algorithm [13] and particle swarm optimisation [14],
have a high computational cost, especially when dealing with large parameter spaces. Single-
objective approaches either evolve from an initial guess to a final result through evolutionary
methods [15] or depend on exhaustive design parameter sweeps using a brute-force EM
solver (e.g., based on the finite element method [16]). While the former highly depends on
the initial guess and in most cases converges to a local optimum, the latter requires extensive
computation. The above-mentioned single-objective approaches fail when the input-output
relation is complex or when the number of desired features for a nanostructure grows and the
features are computationally demanding. Although multi-objective methods [17,18] are more
computationally efficient, obtaining an optimal solution is not guaranteed. Overall, the current
optimisation methods for the design of metasurfaces, especially at larger scales, are computa-
tionally intensive operations. Alternatively, the rapid development of machine learning (ML)
techniques in recent years has successfully been applied for metasurface design [19,20]. As
a data-driven approach, ML algorithms are capable of learning the relationship between a
metasurface structure and its corresponding electromagnetic properties. Instead of employing
numerical algorithms, the trained ML model can solve the electromagnetic problems in a short
period of time.

A multilayer perceptron (MLP) artificial neural network (ANN) is used to predict
the power coupling efficiency of photonic couplers and is integrated with evolutionary
strategy (ES) for optimizing the photonic coupler design [21]. When MLP is combined with
ES, the computational time of the optimisation processes is significantly reduced compared
to full-wave solvers. The machine learning technique does not require the operations of
an evolutionary algorithm, such as reproduction, mutation, recombination, selection, and
survival of the fittest. In the work [22], a three-dimensional finite-difference time-domain
(FDTD) method is integrated with a machine learning algorithm to design an efficient
compact photonic structure. The generation of datasets is a time-consuming offline process,
although it is required only one time. In the work [23], rigorous coupled-wave analysis
(RCWA) is used to generate 25,000 training examples to train a deep learning model with
input features as the structure composed of two silicon nanobars with scalable characteris-
tics including the spectral position, line width, and amplitude of the transmission, and the
target is the transmission spectra of the metasurface from the wavelength 1400 nm to 1600
nm. The optimisation of the frequency-selective surface using periodic elements with a
repetition period larger than one wavelength is performed for the first time in the work [24]
with the help of genetic algorithm to achieve wideband scattering diffusion. A period
of several days has been reported as the timespan for global optimisation computation.
The coding metasurface designed in the work [25] using genetic algorithm optimisation
reports a 6 dB RCS reduction in the frequency band 6.28–9.16 GHz and 6.33–9.41 GHz,
respectively, for transverse electric and transverse magnetic polarised normal incident
waves. A probabilistic technique known as simulated annealing is used for approximating
the global minimum of the function as given in Equation (1) [26].

RCS reduction = 10× log[
A1 × ejP1 + A2 × ejP2

2
] (1)

where A1 and A2 are the reflection coefficient magnitudes of two artificial magnetic conduc-
tor structures, and P1 and P2 are their reflection phases. The radar cross-section reduction
of the proposed coding metasurface in this work is designed from 7 GHz to 20 GHz, but
the radar cross-section reduction achieved from 8.7 GHz to 11.3 GHz is not much. Al-
though incorporating the ML algorithm into the evolutionary algorithm accelerates the
optimisation process to some extent, it still requires significant computational resources
to prepare datasets for model training, especially when the dimension of the metasurface
grows large. In this paper, a novel approach is proposed to accelerate the optimisation
procedure by employing the active learning algorithm. It is important to note that, to the
best of the author’s knowledge, this is the first time that a machine learning approach
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has been utilised to design a metasurface array of size 60 × 60 with optimal RCS. Mutual
coupling between the unit cells is taken into consideration in this work of metasurface
array design. The optimisation objective is accomplished in a reasonable time using the
active learning methodology. We have also aimed at evaluating the effects of substituting
the CST Microwave Studio simulation step in active learning with a prediction made by the
accurately trained machine learning model. The well-fitted modelling results demonstrate
that this method can be extended to metasurface array structures of arbitrary scale.

2. Methods

The objective of this study is to find the optimal design of a metasurface array consist-
ing of two different unit cells, in such a way that the resultant array has the minimum radar
cross-section reduction. Genetic algorithm provides an optimal design and works well
when using a smaller population size. When considering a larger metasurface array, the
population size to be considered also increases. Genetic algorithm is too computationally
expensive when entering the realm of larger population size.

2.1. Active Learning

An active learning procedure was also used to perform the optimisation process as
genetic algorithm is a computationally expensive operation. Active learning is a way to
select the relevant representative data in any region of the solution space when considering
a large solution space for the optimisation. Active learning is very effective in settings
where there is a lot of unlabelled data available, but the annotation task is expensive or
time-consuming. Active learning is a mature technique, and due to its versatility, it has
been applied in a diverse number of settings. The working procedure of active learning, as
shown in Figure 1, involves, first, training of a machine learning model using the available
labelled dataset, then iteratively retraining the model after querying the subset of unlabelled
data points; after finding its target value, the most suitable data point, depending on the
problem, is added to the training set. The iteration procedure at first consists of querying
the subset of the solution space. The second step is adding the relevant data instances, after
suitably labelling them, to the training dataset. The third step is to retrain the model. All of
the above three steps can be performed for the required number of times, known as the
budget, depending on the available computational resources.

Figure 1. Flowchart of active learning. This figure gives an overview of steps involved in the active
learning methodology, which are as follows: generate the dataset to train the machine learning model,
query the sample space using the relevant acquisition function, select the suitable data point as per the
objective function, perform CST Microwave Studio simulation, add the data with its result to the training
set, and retrain the machine learning model. The possibility of substitution of CST simulation with a
surrogate trained model is demonstrated by the grey shaded box in the left side of the flowchart.
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Active learning is a popular algorithm in the material science discipline for the discov-
ery of new materials with desired properties. Active learning is described as an adaptive
learning strategy [27,28]. The Bayesian and decision theoretic approach are used in active
learning. There are two steps in the process of Bayesian global optimisation, as follows:

• Step 1—A model that can predict the value of the objective function f (x) at unseen
data points based on available data (xi, yi) with i = 1, ....., n.

• Step 2—Choosing an acquisition function such that it provides a good decision-making
step to direct the future sampling space in the voluminous solution space of the
objective function.

The acquisition functions chosen can be any of the following [27]:

• Expected improvement acquisition function—Expected improvement of the objective
function f (x) is given by E[I(x)] = E[ f (x)− f (x+)], and the data point x+ for the
following iteration is chosen as the one that results in the maximum expected improve-
ment. Since f (x) is normally distributed with mean µ and standard deviation σ, the
expected improvement can be written as in Equation (2).

E[I(x)] =
∫ in f

f (x+)
(z− f (x+))φ(z)dz

= (µ(x)− f (x+))[φ(
µ(x)− f (x+)

σ(x)
) + σ(x)Φ(

µ(x)− f (x+)
σ(x)

)]

(2)

Note that φ and Φ are the standard normal density and cumulative distribution functions.
• Knowledge gradient—In the presence of noise where f (x) values are not exactly

known, µ(x) is considered, thus making the new data point x+ the one that results
in the maximum improvement of µ(x) in the next step (i.e., where the knowledge
gradient as shown in Equation (3) is largest).

KG(x) = σ[φ(
µ(x)− f (x+)

σ(x)
)] + Φ(

µ(x)− f (x+)
σ(x)

) (3)

• Mean objective cost of uncertainty—The mean objective cost of uncertainty (MOCU)
is given as in Equation (4) for each parameter value θ. The data point x+ for the next
iteration is chosen based on the one that reduces the MOCU the most.

MOCU = Eθ [ fθ(x+)− fθ(xrobust)]

where xrobust = argmaxxEθ f (x)
(4)

xrobust maximises the expected value of f (x) over the unknown parameters, θ, assum-
ing we have a prior distribution for θ to allow us to evaluate the expected value. The
new data point x∗ is given by Equation (5).

x∗ = argminxEy|x(Eθ|x[ fθ|x(x+)− fθ|x(xrobust)]) (5)

In the field of machine learning, active learning dedicated to optimal experiment
design has existed in science since the 18th century, when Laplace used it to guide his
discovery of celestial mechanics [29]. The trade-off between exploration of the solution
space of the optimisation problem and exploitation, which is the final aim to find the
optimal result, is the key consideration in active learning. Active learning is applied in the
field of material discovery [30]. The drawback of automating medical image interpretation
come from the fact that the cost, effort, and time taken to acquire correctly annotated
training datasets are significant, in turn resulting in difficulty in training an accurate
machine learning model. Application of the active learning strategy for medical image
analysis has been discussed in [31], which overcomes the annotation bottleneck and reduces
the costs associated with developing deep-learning-enabled systems from unannotated
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data. In the work of [32], an active learning methodology is applied for the classification
of cancer pathology reports. In [33], active learning is used for predicting heart disease.
In the work [34], reliability analysis reveals how an active learning framework can be used
to enhance accuracy while alleviating the computational cost. Active learning is used as a
basis of recommender systems in [35].

The ingenuous approach of exploitation in active learning is where the algorithm
always chooses the data point resulting in the maximum or minimum of the objective func-
tion, depending on the optimisation problem. In more polished approaches, the algorithm
uses policies such as maximum likelihood of improvement, minimum uncertainty, and
maximum expected improvement to select the data point. Choosing optimal datapoints
using the aforementioned policies requires the machine learning model to return a predic-
tion and also the uncertainty of prediction. In our work, we have used maximum expected
improvement to select the data point to be queried and included in the training set.

2.2. Developing the Machine Learning Model
2.2.1. Data Generation

The initial dataset used to train the machine learning model is obtained by performing
a CST Microwave Studio simulation of a 10 × 10 metasurface array consisting of two unit
cells. The overall layout of the metasurface array is as shown in the Figure 2. The two meta
atoms, code 0 acting as 0th element and code 1 acting as 1st element, chosen in this study
are as shown in Figure 3a,b, respectively. The unit cell consists of two copper layers with
thickness h1 = h3 = 0.02 mm, and a substrate layer is inserted between the two copper
layers with thickness h2 = 3 mm with permittivity εr = 2.65 and loss tangent tan(δ) = 0.003.
In addition, the side length of each lattice is set to L = 6.5 mm, and the parameters of unit 0
and 1 are defined as l1 = 2.05 mm, w1 = 0.08 mm, l3 = 0.15 mm, l2 = 4.90 mm, w2 = 0.20 mm,
and l4 = 0.30 mm, respectively. Here, the 0s and 1s are based on wave structure interaction
(i.e., 0 and π phase responses, respectively). These elements are chosen because they have
a reflection phase difference of 180◦ for a wide range of frequency from 10 GHz to 12 GHz,
as shown in Figure 4; hence, the radar cross-section reduction can be achieved over a wider
band of frequencies.

Figure 2. Metasurface array structure: the layout of the metasurface array considered in this study.
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(a) (b)

Figure 3. Unit cells structure: dimensions, side view, and top view of unit cells used for this study.

Figure 4. Reflection phase of two unit cells in the frequency range 5–25 GHz. This plot shows the
reflection phase of the two unit cells considered over the frequency range 5–25 GHz and their phase
difference in the same range of frequency.
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The dataset is composed of 450 data points, with the input features as a sequence of
100 unit cells (10 × 10 array) comprised of a combination of 0 and 1 and the target values
as their corresponding radar cross-section from 5 GHz to 25 GHz. The training set consists
of 80% of the total number of elements, and the remaining 20% is used as the test set.

2.2.2. Machine Learning Model Design

The work [36] illustrates the mathematical foundation, on which the four pillars of machine
learning techniques (regression, dimensionality reduction, density estimation, and classification)
are based. In traditional computer programming, a program is coded to produce a desired
output. Executing the program with user inputs produces the corresponding outputs. Machine
learning techniques are where the computer starts to learn the function that maps the inputs
to outputs, to be able to predict the output for unseen input data. In supervised learning, the
machine is provided with an input dataset consisting of labelled data (i.e., for every input feature
the respective output values will be available). Depending on the type of output value, whether
it is continuous numeric value or categories, supervised learning techniques are classified as a
regression task or a classification task, respectively. In unsupervised learning, the machine is
provided with an unlabelled input dataset.

The machine learning technique selected in this study is the Gaussian process regres-
sor. Different regressor models such as support vector regressor, decision tree regressor,
random forest regressor, and gradient boosting regressor were also tested to evaluate the
performance, as shown in Table 1. Gaussian process regressor was trained and could make
highly accurate predictions. Another reason for choosing Gaussian process regressor is
because the active learning strategy needs the machine learning models to make predictions
as well as give the uncertainity of predictions.

Table 1. Comparison of performance metrics of different regressor models for 10× 10 metasurface array.

Performance Metrics Regressors

Support Vector
Regressor

Decision
Tree

Random
Forest

Gradient
Boosting

Gaussian
Process

Mean Absolute Error 0.6322 1.3728 0.8159 0.7813 0.5871
Mean Squared Error 0.9216 3.8664 1.3917 1.3830 0.8190

R2 Score * 0.9111 0.5321 0.8261 0.8269 0.9216

* In regression, the R2 score, which is the coefficient of determination, is a statistical measure of how well the
regression predictions approximate the real data points.

In Figure 5, the steps involved in the active learning methodology are illustrated. Four
different examples of how the machine learning model improves its prediction accuracy af-
ter the first and last iteration of active learning have been demonstrated. The blue-coloured
line represents the model prediction. The purple line represents how the prediction im-
proves after the final iteration of active learning. The model performs much better after the
final iteration by making predictions much closer to ground truth values.
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Figure 5. Steps involved in the process of Bayesian optimisation. The figures illustrate four different
examples of how the prediction of the model improves after the final iteration of active learning.
Ground truth is the RCS reduction obtained for the respective 10 × 10 metasurface array, as shown in
the inset with the help of CST simulation.

2.3. Active Learning Using Surrogate Model

Active learning is tested to significantly lower the computation time taken by the
genetic algorithm, especially at a larger population size. An additional method to gain
computational time in active learning is by replacing the mode of labelling the data instance
obtained after querying the subset of the solution space using an actual CST Microwave
Studio simulation, with prediction made by the accurately trained machine learning model.
The aforementioned aspect is illustrated in Algorithm 1.
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Algorithm 1 Active learning using surrogate model as the oracle

Input: Define the parameter space. N×N metasurface array with various combinations
of elements 0 and 1 .

Perform: CST simulation to calculate the RCS values over desired frequency range for
considered metasurface array.

Collect: Collect training dataset.

Construct: Build the appropriate Gaussian process regression model.

while budget 6= 0 do
Find: The metasurface array combination with minimum RCSpredictions in the

frequency range in the test set.
Compute: Train Gaussian process regressor’s prediction to calculate the RCS value

of the metasurface array from the above step.
Inclusion: Include the above combination of the metasurface array and its corre-

sponding RCS values in the training dataset.
Retrain: Train the model again using the above informative sample and its respective

output.
budget← budget− 1

end while

Optimal design: Select the candidate metasurface array contributing to minimum RCS
in the desired frequency range.

2.4. Genetic Algorithm and Its Set-Up in This Work

Genetic algorithm [37,38] begins with the initialisation step in the first generation.
Initialising the population with the required format, consisting of the desired number
of chromosomes. Then, for every pair of parents, a crossover operation is performed,
resulting in a pair of offspring. Next, mutation of the offspring is performed before merging
them with the parents. From the merged set of offspring and the main population, the
desired number of the fittest individuals are selected to play the role of parents for the next
generation. These steps are repeated either for a required number of generations or until a
termination criterion is met. Operating on (potentially large) populations and the repetitive
nature of genetic algorithms make it computationally intensive, as well as time consuming,
to arrive at the optimal result.

The first step of parent selection can be done in different ways, such as random
selection, tournament selection, and roulette wheel selection. In this work, we have used
tournament selection as the method. The crossover operation can be performed as single-
point crossover, double-point crossover, or uniform crossover. We have used double-point
crossover. Then comes the mutation step. The mutation operator helps to periodically
and randomly restore the population by introducing new patterns into the chromosomes,
enabling search in uncharted areas of the solution space. We have used flip bit mutation.
When flip bit mutation is applied to a binary chromosome, one gene is randomly selected,
and its value is complemented. The mutation rate we have used is 5%. The optimisation
function used is the accurately trained machine learning model, which takes into account
mutual coupling between the two unit cells in the metasurface array.

3. Results and Discussion

We found that by using active learning, there is significant reduction in computational
time for optimisation, especially for a larger metasurface array. In this work, up to a
60 × 60 metasurface array design has been successfully optimised at significantly lower
computational time compared to genetic algorithm. The optimal result obtained with the
active learning strategy is approximately close to that obtained with the genetic algorithm.
A novel strategy of active learning using an accurately trained surrogate model is attempted
and validated. The above approach further contributes to lowering computational time.
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The population sizes considered in our work is in orders of 10, varying as 103, 104,
105, and 106. These population sizes are considered because, for genetic algorithm, the rule
of thumb is that the population size should be at least 10 times the dimensionality of the
problem under consideration. For a 10 × 10 metasurface array, the number of features is
100. Genetic algorithm needs a minimum population size of 10 × 100, which is 103. Thus,
the population size begins with 103, varying every order of 10 up to 106. The better optimal
result is obtained when the population size is large, especially for metasurface arrays with
larger dimensions.

In the work [39], an optimised coding metasurface was reported. The analytical
formula to plot the far field radiation pattern of the digital coding metasurface (with
elements 0 and 1 representing reflection phase 0 and π radian, respectively) under normal
incidence of plane wave is given in Equation (6) [39]:

f (θ, φ) = fe(θ, φ)
N

∑
m=1

N

∑
n=1

exp(−j(ϕ(m, n) + kD sin(θ)((m− 1
2
) cos(φ) + (n− 1

2
) sin(φ)))) (6)

where θ and φ are the elevation and azimuth angles of an arbitrary direction, respectively;
fe(θ, φ) is the pattern function of a lattice, a general square metasurface that contains N × N
equally sized lattices with dimension D in which each lattice is occupied by a sub-array of ‘0’
or ‘1’ elements; m is the row number of the array; n is the column number of the array; and k
is the wave number.

Dir(θ, φ) =
4π| f (θ, φ)2|∫ 2π

0

∫ π/2
0 | f (θ, φ)2| sin(θ)dθdφ

(7)

Dir(θ, φ) is the directivity. The radar cross-section reduction (RCS Reduction) is given
by the following Equation (8):

RCS Reduction =
λ2

4πN2D2 Maxθ,φ(Dir(θ, φ)) (8)

The optimisation objective is to reduce the radar cross-section reduction. They have
used the analytical formula as given in Equation (8) as the objective function. This method
of optimisation uses the analytical formula, which ignores the mutual coupling between
the unit cells’ constituents in the metasurface array. Hence, the optimal result does not
include mutual coupling between various elements.

In the work [40], the chessboard and their optimally designed coding diffusion meta-
surface at 15.4 GHz are simulated, and their findings show that for the optimal design,
there are eight scatter lobes in the radiation pattern, while the chessboard has only four
main lobes. In this work, we tried to compare the result of the optimal design using genetic
algorithm and active learning at a population size of 106 with chessboard design at 10 GHz.
Our result as shown in Table 2 states that there are multiple side lobes for the radiation pat-
tern for the optimal designs obtained from genetic algorithm and active learning, but there
are only two main lobes for the chessboard pattern.

The bandwidth that implies the frequency range where RCS reduction is more is higher
for the active learning and genetic algorithm optimally designed metasurface compared to
the chessboard metasurface configuration. Monostatic RCS reduction is measured when the
field source (e.g., radar beam) and the observation point are at the same location. Bistatic
RCS reduction is measured when the field source (e.g., radar beam) and the observation
point are at different locations.The bistatic RCS for the chessboard and the optimal design
using genetic algorithm and active learning are shown in Figure 6.
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Figure 6. Bistatic RCS of optimal metasurface design using genetic algorithm and active learning,
including CST simulation result and chessboard configuration versus theta.

In this work, we have shown that active learning plays an important role in significantly
reducing the computation time in the optimisation process, by an especially large factor at high
population size compared to genetic algorithm. This is illustrated in Table 3. The substitution
of one of the steps in active learning—that is, performing CST Microwave Studio simula-
tion for the selected data instance after querying the subset of the solution space, with an
accurately trained surrogate model to make an equivalent prediction—contributes to saving
computational time. The optimisation procedure is performed after taking into consideration
the mutual coupling between unit cells.

Table 2. Comparison of active learning using CST Microwave Studio simulation, genetic algorithm
and chess board configuration characteristics.

Technique Bandwidth Scattering Field
Lobes

Monostatic RCS
Reduction (dBm2)

Bistatic RCS
Reduction at
j = 0◦ & 150◦

(dBm2)

Operating
Bandwidth

Active learning
designed

metasurface
95% Multiple lobes −11.2100 −11.9500 &

−48.0300 5–20 GHz

Genetic algorithm
designed

metasurface
92% Multiple lobes −12.0800 −9.8340 &

−37.5600 5–20 GHz

Chessboard
configuration 26.67% Two Lobes −5.5138 −5.5140 &

−43.3500 5–9 GHz

Table 3. Comparison of active learning and genetic algorithm.

Population Size
Computational Time (Minutes)

Active Learning Genetic Algorithm

103 23.29 0.09
104 30.78 1.21
105 32.23 89
106 65 13260

The work can be extended by considering more than two different unit cells. This
is because the digital bits represent the wave structure interaction, which offers multiple
degrees of freedom [41]. For example, instead of elements ‘0’ and ‘1’, there can be more
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elements: ‘0’, ‘1’, ‘2’, and ‘3’. An equivalent initial dataset with a combination of elements
and corresponding radar cross-section over the desired range of frequency has to be
prepared. Different geometry unit cells can also be considered for study. We have extended
the method up to 40 × 40 and 60 × 60 metasurface arrays. In order to perform optimisation
of 40 × 40 and 60 × 60 metasurface arrays, we have created a dataset that is available with
similar dimensions, simulated using CST Microwave Studio to train the machine learning
model that will be used in the active learning strategy. Research can be conducted on
figuring out ways to extend it further for larger scales of metasurface array.

4. Fabrication and Measurement

To verify the optimisation results, a prototype of the proposed metasurface for a
60 × 60 metasurface array is illustrated in Figure 7 and has been experimentally studied.
The diffuse metasurface sample was fabricated using an optical lithographic process on a
3 mm thick F4B substrate with εr = 2.65 and loss tangent tan(δ) = 0.003.

(a)

(b)

Figure 7. Fabricated samples of optimal design: (a) using genetic algorithm; (b) using active learning.

In this experiment, two broadband horn antennas operating from 10 GHz to 20 GHz
connected to a vector network analyser (VNA) are used as transmitter and receiver antennas,
respectively. The fabricated sample is kept in the centre of the arch. The transmitter antenna
is fixed to the top of the sample to generate a quasi-plane wave, and the receiver antenna
can move along the arch to obtain reflective signals of the sample on the azimuth plane.
The setup needs time gating, which only allows a narrow measurement bandwidth. Hence,
measurement is repeated multiple times to cover the required frequency range.

Figure 8a,b shows the measured and simulated result of RCS reduction versus fre-
quency curves. The active learning methodology does not contribute to any of the mismatch
between the measurement and simulation results. The difference between the measure-
ment and simulation results is attributed to the mutual coupling occurring between the
transmitter and receiver antenna. In future work, in order to minimise the difference, the
mutual coupling between transmitter and receiver antenna needs to be incorporated while
performing the simulation. From the results, the bandwidth of the RCS reduction greater
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than 10 dB is 16–20 GHz, which is in agreement with the simulated result. Figure 8c,d
illustrates the normalised RCS versus angle, measured at frequency 14 GHz. Neglecting
fabrication and measurement errors, the measured results verify the low scattering of this
novel design.

(a) (b)

(c) (d)

Figure 8. Optimal design fabricated sample simulation and measurement results: (a) using genetic al-
gorithm: RCS reduction versus frequency; (b) using active learning: RCS reduction versus frequency;
(c) using genetic algorithm: normalised RCS versus angle; (d) using active learning: normalised RCS
versus angle.

5. Conclusions

Active learning plays an important role in lowering the computational time required
to perform metasurface array design with the optimisation objective of minimizing the
radar cross-section by giving optimal results approximately similar to the genetic algo-
rithm. As an example, a 10 × 10 metasurface array is considered. Genetic algorithm and
active learning using a surrogate model and active learning using CST Microwave Studio
simulation obtain similar results. Better optimal results are obtained when the population
size is larger, as shown in Figure 9a, and at a huge population size, active learning sig-
nificantly overtakes genetic algorithm in computational time. The optimal design using
genetic algorithm, active learning using a surrogate model, and active learning using CST
Microwave Studio simulation are as shown in Figure 9b. The computational time gained
when using active learning compared to genetic algorithm at a large population size of 106

is shown in Table 3.
In active learning, when the predictions made by an accurately trained surrogate

machine learning model are used in the place of CST Microwave Studio simulation results,
there is further scope for lowering the magnitude of computational time. Using surrogate
model predictions, the active learning method of metasurface array design can be extended
to larger scales of metasurface array design. In this work, we have verified this at the scale
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of 60 × 60. The mutual coupling between unit cells is also considered while designing the
optimal metasurface array.

(a)

(b)

Figure 9. Optimal RCS versus frequency and corresponding optimal design using methods of
optimisation considered in this study at a population size of 106. (a) Comparison of radar cross-
section versus frequency for the optimal design obtained from genetic algorithm and active learning
with and without the surrogate model at a population size of 106. (b) Optimal design obtained
from genetic algorithm and active learning with and without the surrogate model, respectively, at a
population size of 106.
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