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The COVID-19 pandemic has emphasized the need for novel drug discovery process. However, 
the journey from conceptualizing a drug to its eventual implementation in clinical settings is 
a long, complex, and expensive process, with many potential points of failure. Over the past 
decade, a vast growth in medical information has coincided with advances in computational 
hardware (cloud computing, GPUs, and TPUs) and the rise of deep learning. Medical data 
generated from large molecular screening profiles, personal health or pathology records, and 
public health organizations could benefit from analysis by Artificial Intelligence (AI) approaches 
to speed up and prevent failures in the drug discovery pipeline. We present applications of AI 
at various stages of drug discovery pipelines, including the inherently computational approaches 
of de novo design and prediction of a drug’s likely properties. Open-source databases and AI-
based software tools that facilitate drug design are discussed along with their associated problems 
of molecule representation, data collection, complexity, labeling, and disparities among labels. 
How contemporary AI methods, such as graph neural networks, reinforcement learning, and 
generated models, along with structure-based methods, (i.e., molecular dynamics simulations and 
molecular docking) can contribute to drug discovery applications and analysis of drug responses 
is also explored. Finally, recent developments and investments in AI-based start-up companies for 
biotechnology, drug design and their current progress, hopes and promotions are discussed in this 
article.
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1. Introduction

Six to seven% of global gross domestic product (8.5 to 9 trillion US$) is spent on healthcare annually [1] and bringing a new 
medicine to market costs well over $1 billion and can take up to 14 years [2]. Success in drug development (defined as phase I 
clinical trials to drug approval) is very low across all therapeutic categories worldwide [3] with, for example, 97% of the cancer 
drugs failing during clinical trials [4]. This makes investments risky and inflates the price of approved drugs to compensate for all 
the failures [5].

With the digitization of medical records; clinical trials, precision medicine, drug discovery, and health policy will be able to 
benefit from data-driven methods. Drug discovery has been radically transformed over the last decade by such novel analytical 
methods and computational advances [6] [7] [8] [9] [10]. Due to recent progress, there is a great interest in the application of 
artificial intelligence (AI) methods to improve various stages of drug discovery pipeline, including de novo molecular design and 
optimization, structure-based drug design, and pre-clinical and clinical development [11]. Biomedical datasets, such as genomic 
profiles, imaging data, and chemical and drug databases, can be coupled with analytical methods, especially deep learning models, 
to coordinate the tools needed to discover useful drugs and their clinical applications [12].

Motivation for this survey: Multiple reviews are available on the application of AI in drug discovery. For example, the role 
of GPU computing and deep learning models for drug discovery is presented in [13], deep learning for precision medicine in [14], 
generative models for calculating the electronic properties of materials in [15], the advancements due to the completion of human 
genome project in [8]. The role of machine learning and its implications in drug discovery for understanding biological interactions 
is presented in [16]. Methods using 3D structure-based drug discovery and dynamics simulation are covered in [17], and applications 
of machine learning at various stages of drug design are discussed in [12]. The role of graphs in formulating therapeutic problems 
as machine learning tasks is presented in [18], the applications of AI in drug discovery and challenges are highlighted in [19–21]. 
In [22], the progress of traditional machine learning algorithms for protein-ligand docking scoring functions, and in [23] machine 
learning-based scoring function for structure-based virtual screening are presented.

In this review, we discuss the challenges involved in data representation and prediction, which are key problems in drug design, 
and where AI can excel. Many drug discovery tasks are difficult to formulate as machine learning problems, due to a lack of AI-ready 
benchmark datasets and standardized knowledge representations. For example, drugs can be represented in a number of different 
formats; such as SMILES strings, extended connectivity fingerprint (ECFP), and graphs. Similarly, protein can be represented as 
1D amino acid representation, protein sequence representation, and 3D-structure. Another problem is the low resource labels and 
disparity among labels to formulate meaningful learning tasks. We also discuss the potential use of machine learning libraries, 
different molecular representations, and the role of graph neural networks at different stages of the drug discovery pipeline, as well 
as problems in data collection, labeling, disparity among labels, small sample size, noisy labels and approaches to deal with them. The 
last two years have seen great progress in utilizing deep-learning methods for drug discovery. Many open-source tools [24], AI-ready 
benchmark datasets [25] and deep learning platforms [26], tailored for drug design have been developed. We present updated and 
in-depth insights on these topics.

A drug discovery pipeline will usually consist of several stages as shown in Fig. 1. In target-based discovery, the first step 
is to identify novel targets, with evidence of association to disease, from a large space of proteins (an organism’s proteome) [12]. 
Potentially interacting molecules are identified by high throughput screening of compound libraries against these targets. Compounds 
will be optimized for favorable drug properties, tested in pre-clinical and clinical trials, and given FDA approval in the ideal case. 
All stages of the drug discovery pipeline could benefit from AI [11], for example, generative models for the design of new synthetic 
molecules [30], reinforcement learning (RL) to optimize properties of molecules in a particular direction [31], GNNs to predict 
drug-disease associations, drug-repurposing, and the response to a drug [32]. Natural language processing (NLP) could be used to 
find drugs by mining the scientific literature and to automate FDA approval steps [33,34]. These applications of data science to drug 
discovery are discussed in (Section 2).

Predicting the three-dimensional structures of potential target proteins, solely from their amino acid sequence, is often necessary 
for drug discovery, and AI systems had a major recent success in this, with AlphaFold2 [35] winning the Critical Assessment of Struc-
ture Prediction CASP14 [36]. Existing deep learning-based libraries, such as DeepChem and DeepAffinity, and databases, including 
PubChem, PDB, and ChEMBL, that could help drug discovery are discussed, along with AlphaFold2, in Section 3.

As drug discovery applications focus on the three-dimensional structures of molecules (proteins, DNA, RNA, and drugs/medicines) 
and their interactions, the atom is the fundamental unit of these structures and can be considered as a “machine learning datatype”. 
Molecular systems contain poorly described higher-level patterns, which could be learned from their data. Interrelations among 
biomedical data are attributes that could be represented in the form of graphs in the design of data-driven systems. Graph ma-
chine learning allows modeling of unstructured multimodal datasets [37] and so could model more complex relationships between 
drugs and disease, protein-protein interactions, side effects of drugs, prediction of responses to a drug and drug re-purposing [18]. 
When coupled with an attention mechanism, graph machine learning may identify drug binding sites [38], highly communicating 
residues/atoms, and provide more interpretable models [39]. A detailed discussion of molecular representation, GNNs, and their 
application in the context of drug discovery processes is presented in Section 4.

Experimental high-throughput screening, combinatorial chemistry, and other technical methods have been the main choices to 
create new chemical entities with specific desired features [40] but AI applications now have the potential to be better than a human 
expert [41]. The application of GNN, generative models and RL for de novo molecule generation and optimization is presented in 
2

Section 5.
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Fig. 1. Applications of AI-based methods at different stages of a drug discovery pipeline. There are about 2700 known potential drug target proteins in the human 
body and about 9600 FDA-approved small molecule drugs [27–29]. Machine learning can be used to identify the targeted protein, GNNs can be used for predicting 
drug-target interactions and binding affinity, and reinforcement learning can be used to optimize the properties of a molecule. Computer vision can determine the 
spatial state of the tumor microenvironment. Generative models can be employed to design new molecules, simulation-based studies can suggest properties of protein-
drug complexes, such as stability and dynamics, and NLP can be used to mine the existing scientific literature for drug re-purposing, FDA review, and post-market 
analysis.

Simulation of bio-molecular structures by detailed, physics-based atomic methods, such as molecular dynamics (MD), [17] is 
central to drug discovery and biotechnology. The 3D structures of proteins and drugs from the Protein Data Bank (PDB) and DrugBank 
(or structures predicted by AlphaFold2) can be docked for MD simulations, to investigate the stability, dynamics, geometry, and 
binding efficacy of a protein-drug complex, giving a time-trajectory of atomic movements. Deep learning or advanced data analysis 
methods can be applied to analyze these trajectories of biological systems [42], hopefully leading to new hypotheses about the 
structural changes and interactions in complex biological systems, that may answer questions about diseases, pathways, and drug-
response / resistance mechanisms. Structure-based drug design, with the application of MD simulations, for the analysis of drug 
response and resistance, is discussed in Section 6.

The interests of big pharmaceutical and start-up companies in using AI for drug development, are highlighted in Section 7. Current 
challenges, and what can be expected in the near future are presented in (Section 8), with conclusions in Section 9. Nano-medicine, 
medical robotics, medical imaging, and multi-omics data analysis are beyond the scope of this review. The terms small molecule and 
drug are used interchangeably throughout the manuscript.

2. Application of data science in the drug discovery process

The emergence of epidemics and pandemics, such as influenza and COVID-19 [43], and the prevalence of severe diseases, such as 
cancer and heart disease, demonstrate the ongoing need to discover new drugs. A multi-stage process (Fig. 1), requiring target identi-
fication, validation, high throughput screening, animal studies, safety and efficacy protocols, clinical trials, and regulatory approval, 
is usually followed [12]. Development of a new drug takes approximately 14.6 years and costs about US$ 2.6 billion [2] on average. 
AI-based methods could be utilized at several stages in this process: identifying novel targets [44], evaluating drug-target interac-
tions [45,46], examining disease mechanisms [12], and improving small molecule compound design and optimization [47]. These 
methods can also be used to identify and develop prognostic bio-markers, and study drug efficacy, response, and resistance [132].

2.1. Target identification in drug discovery

Target identification during drug discovery aims to identify molecules, usually proteins, that could alter a disease state if their 
3

activity was modulated. Machine learning algorithms can analyze various types of data, including gene expression profiles, protein-
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protein interaction networks, and genomic and proteomic data, to identify potential targets that are likely to be involved in disease 
pathways [48]. Of the approximately 20,000 proteins in the human proteome, only about 3,000 have been identified as potential 
therapeutic targets [49]. Future knowledge might expand our understanding of which proteins could become drug targets.

The first step in identifying a target is to establish a causal relationship between the target and the disease [50]. Causal relation-
ships between genes and diseases can be identified using graphs, GNNs, or tree-based methods. A decision tree-based meta-classifier 
trained on a network topology involving protein-protein, metabolic, and transcriptions interactions, and tissue expression and sub-
cellular localization of proteins was proposed in [51] to predict morbidity-associated genes that are also druggable. Regulation by 
multiple transcription factors (TFs), centrality in metabolic pathways, and extracellular location were identified as key parameters 
from the decision tree. Machine learning-based methods classified proteins as drug targets or non-targets for specific diseases, such 
as lung, pancreatic, and ovarian cancer, based on features such as protein-protein interaction, gene expression, DNA copy number, 
and occurrence of mutations [44].

The primary source of information on target association with disease is the literature. Text mining and Natural Language Pro-
cessing (NLP) approaches can also be used to identify relevant target-disease pairs from literature and develop databases for target 
identification [52]. BeFree [53], PKDE4J [54] and other deep learning-based tools [55] can be used to mine articles to identify 
drug–disease, gene–disease, and target–drug associations.

Drug–target interactions may also be inferred, based on descriptor similarity to reference ligands, in the same cell without 
explicitly addressing the target identity of those reference ligands. A software tool (SPiDER) [56] discretizes the input feature 
similarity vector onto a so-called feature map using a neural network-inspired approach.

2.2. Virtual screening and optimization of compounds

AI can be used to virtually screen and optimize compounds, estimate their bio-activities, and predict protein-drug interac-
tions [57]. One way AI can help in virtual screening is through the development of predictive models, that can identify compounds 
with a high probability of binding to a target protein. These models can be trained using various types of data, such as known 
protein-ligand complexes, structural information, and molecular descriptors. Physico-chemical properties of the drug, such as solu-
bility, partition coefficient (logP), degree of ionization, and intrinsic permeability, may have an indirect effect on a drug’s interaction 
with a target receptor family and must be considered when designing a new drug [58]. AI can also be used to plan efficient routes 
for chemical synthesis and develop insights into the reaction mechanisms of drugs to identify potentially unwanted interactions with 
other molecules.

Candidate structures of drugs are refined and modified to improve target specificity and selectivity, and their pharmacodynamics, 
pharmacokinetics, and toxicological properties. A virtual chemical space with structure and ligand information may provide profile 
analysis, faster elimination of non-lead structures, and speed up the drug discovery process by avoiding costly time-consuming 
laboratory work. Multi-objective optimization methods can tune molecules in a desired direction [47]. MD simulation and docking 
methods can be used to model the orientation, stability, and dynamics of the compounds.

2.3. Pre-clinical and clinical development

Predicting possible responses to a drug is a critical step in a drug design pipeline. Similarity or feature-based machine learning 
methods can be used to predict the response of a drug on individual cells and the efficacy of a drug-target interaction by binding 
affinity or free energy of binding. Similarity methods assume that similar drugs act on similar targets [59], while feature-based 
methods find individual features of drugs and targets and feed the drug-target feature vector to the classifier. Deep learning-based 
methods, such as DeepConv-DTI [45] and DeepAffinity [38] are examples methods, where the embedding of drugs and targets are 
learned using convolution and attention mechanism.

AI-based techniques can assist in selecting potential patients for pre-clinical trials by identifying relevant human-disease bio-
markers and anticipating potential toxic or unnecessary side effects [60] and by filtering a high dimensional set of clinical variables 
to select a cohort of patients. AI can also help in predicting the outcome of clinical trials well ahead of the actual trial minimizing 
the chance of any harmful effect on patients [61].

2.4. FDA approval and post-market analysis

Natural Language Processing (NLP) can be used to mine scientific literature to report adverse effects, such as toxicity, of a drug or 
resistance to it and prepare automated evaluations for regulatory (FDA) approval or a patent application [62]. NLP-based sentiment 
analysis methods can be used to recommend drugs [63]. Prediction of likely sales of a product by machine learning-based systems 
could help pharmaceutical companies optimize their business resources [64].

3. Existing databases and tools for drug development

3.1. Chemical and biological databases

Experimental bio-assay and computationally produced drug-target interactions (DTI) data need to be collated in publicly available 
4

databases. Compound and bio-activity databases are listed in Table 1 and target and chemical databases are given in Table 2.
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Table 1

List of Compound and Bio-activity databases.

Reference Description Link

PubChem [27] Largest collection of freely accessible chemical and bio-activity information https://pubchem .ncbi .nlm .nih .gov/
ChEMBL [65] A large-scale bioactivity database for drug discovery https://www .ebi .ac .uk /chembl/
DrugBank [66] A knowledge-base of drugs, drug actions, and drug targets https://go .drugbank .com/
ZINC [67] An open resource for virtual screening of compounds https://zinc .docking .org/
BindingDB [68] A database of measuring binding affinity between target and the drug https://www .bindingdb .org /bind /index .jsp
ADME [69] An online database for pharmacokinetic information https://www .fujitsu .com /global /solutions /

business -technology /tc /sol /admedatabase/
STITCH [70] An integrated database of chemical-protein interactions http://stitch .embl .de/
SIDER [71] Marketed medicines and their recorded adverse drug reactions http://sideeffects .embl .de/
GDSC [72] Drug response data and genomic biomarkers https://www .cancerrxgene .org/
PDBBind [73] A comprehensive collection of binding affinities for the protein–ligand com-

plexes in the Protein Data Bank (PDB)
http://www .pdbbind .org .cn/

canSar [74] Cancer translational research and drug discovery knowledgebase https://cansarblack .icr .ac .uk/

Table 2

List of Target and Chemical databases.

Reference Description Link

PDB [75] Protein data bank archive provides information about 3D structure of pro-
tein, nucleic acids and complex assemblies

https://www.rcsb.org/

UniProt [28] An open resource of protein sequences and functional information https://www.uniprot.org/
Atom3D [76] A benchmark of existing datasets of 3D molecules, spanning on several types https://github.com/drorlab/atom3d
TTD [77] A therapeutic target database http://db.idrblab.net/ttd/
MoleculeNet [78] A benchmark of datasets for molecular machine learning https://moleculenet.org/

3.1.1. PubChem

PubChem [27] is the largest free database of chemical information, with about 111 Million compounds, 279 Million substances, 
295 Million bio-activities, and 34 Million articles, organized into three inter-linked web data pages; substance, compound, and bio-
assay [79]. The descriptions of, and test results from, bio-assays are stored in the bio-assay database. Data mining methods can be 
used to identify compounds for a particular target or protein.

3.1.2. ChEMBL

ChEMBL [65] is an open-access drug discovery database, developed by the European Molecular Biology Laboratory (EMBL). Data 
on authorized and candidate medications, such as the mechanism of action and therapeutic indications, are gathered from full-text 
papers in high-impact publications and combined with data on small, compounds and their biological activity. The bio-activity data 
is exchanged with another database; such as BindingDB [68] and PubChem Bioassay. The ChEMBL database has been used to identify 
chemical tools for a target of interest, to predict drug-target interactions, to re-purpose a drug, to determine target tractability, and 
to integrate with existing drug discovery tools [29].

3.1.3. DrugBank

DrugBank provides molecular-level data, clinical information, drug interactions, side effects, and drug re-purposing. It is widely 
used for in silico drug design, re-purposing, and drug discovery using machine learning.

3.1.4. UniProt database

UniProt [28] is a public database of protein sequences annotated with taxonomic data and information on biological functions. 
There are four components; UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), UniProt Archive (UniParc), 
and UniProt Metagenomic and Environmental Sequences (UniMES). Uniprot contains more than 189 million records; more than half 
were curated by human experts.

3.1.5. Protein data bank

The Protein Data Bank (PDB) is the largest database of the 3D-structures of proteins, ribosomes, and nucleic acids that were 
determined primarily by X-ray crystallography or nuclear magnetic resonance spectroscopy [75].

3.2. AI-based software tools for drug development process

AI tools have the potential to transform drug discovery by enabling researchers to rapidly analyze large-scale data sets, design 
new molecules, and predict the efficacy of potential drug candidates. Here, we review some of the popular AI tools for drug discovery 
5

applications.

https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://zinc.docking.org/
https://www.bindingdb.org/bind/index.jsp
https://www.fujitsu.com/global/solutions/business-technology/tc/sol/admedatabase/
https://www.fujitsu.com/global/solutions/business-technology/tc/sol/admedatabase/
http://stitch.embl.de/
http://sideeffects.embl.de/
https://www.cancerrxgene.org/
http://www.pdbbind.org.cn/
https://cansarblack.icr.ac.uk/
https://www.rcsb.org/
https://www.uniprot.org/
https://github.com/drorlab/atom3d
http://db.idrblab.net/ttd/
https://moleculenet.org/


Heliyon 9 (2023) e17575R. Qureshi, M. Irfan, T.M. Gondal et al.

Table 3

List of AI-based software for drug discovery, development, and analysis.

Reference Description Source code

AlphaFold2 [35] Deep learning based model for 3D structure prediction of proteins from 
amino acid sequences

https://github .com /deepmind /alphafold/

DeepChem [80] A deep learning library for drug discovery and computational chemistry https://github .com /deepchem /deepchem
DeepBind [81] A computational tool to analyze binding between the protein and DNA/RNA https://github .com /MedChaabane /DeepBind -

with -PyTorch
DeepBar [82] A method for accurate and fast prediction of binding free energy https://fastmbar .readthedocs .io /en /latest/
Deep-Screening [83] Web-server based in deep learning for virtual screening of compounds http://deepscreening .xielab .net/
DeepScreen [84] High performance drug target interaction https://github .com /cansyl /DEEPScreen
DeepConv-DTI [45] A convolutional neural network based model for predicting drug-target in-

teractions
https://github .com /GIST -CSBL /DeepConv -DTI

DeepPurpose [24] A Deep learning library for drug-target interaction, drug-drug interaction, 
protein-protein interaction and protein function prediction

https://github .com /kexinhuang12345 /
DeepPurpose

DeepTox [85] A deep learning model for toxicity prediction of chemical compounds http://www .bioinf .jku .at /research /DeepTox/
AtomNet [86] A deep convolutional neural network for bioactivity prediction github
PathDSP [87] A deep learning method for predicting drug sensitivity using cancer cell 

lines
https://github .com /TangYiChing /PathDSP

Graph level representa-
tion [88]

Learning graph representation for drug discovery https://github .com /ZJULearning /graph _level _
drug _discovery

Chemical VAE [89] An auto-encoder based framework to generate new molecules https://github .com /aspuru -guzik -group /
chemical _vae/

DeepGraphMol [87] A computational method for molecule generation with desired properties 
using graph neural networks and reinforcement learning

https://github .com /dbkgroup /prop _gen

TorchDrug [26] A pytorch based flexible framework for drug discovery models https://torchdrug .ai/

3.2.1. AlphaFold2

Predicting the 3D structures of proteins from their amino acid sequence is a very complex and challenging problem. AlphaFold2, 
developed by DeepMind, has achieved a breakthrough level of accuracy [35]) and is openly available via Google Colab.

3.2.2. DeepChem

The DeepChem [80] library is a Tensorflow wrapper that understands and streamlines the analysis of chemical datasets. It has been 
used for algorithmic research into one-shot deep-learning algorithms for drug discovery and application projects such as modeling 
inhibitors for BACE-1) [80,90]. DeepChem can be used to analyze protein structures, predict the solubility of small molecule drugs 
and their binding affinity to targets, and count the number of cells in a microscopic image. MoleculeNet [78], which contains the 
properties of 700,000 compounds has been integrated into the DeepChem package.

3.2.3. DeeperBind

DeeperBind [81] is a long short-term recurrent convolutional network that predicts protein binding specificity in relation to 
DNA probes, which can model the interaction between transcription factors (TF) and their corresponding (DNA/RNA) binding sites. 
DeeperBind can effectively predict the dynamics of probe sequences. It can also be trained and tested on datasets with sequences of 
variable lengths.

3.2.4. DeepAffnity

DeepAffinity [38] is a semi-supervised model that unifies recurrent and convolutional neural networks to predict the binding 
affinity between a drug and target sequences. The model uses both labeled and unlabeled data to jointly encode molecular represen-
tations under unique structurally annotated protein sequence representations. DeepAffinity outperformed random forest, ensemble 
methods, and RNN-CNN models. A list of AI-based software for drug discovery is given in Table 3.

4. Data representation and graph neural networks for drug discovery applications

Machine-readable representations of molecules allow rapid computing, querying, and storage of molecules in machine learning 
algorithms for drug discovery [91]. Their quality can affect the utilization of the variation in the data [92].

Most machine learning algorithms assume both training and testing data are independent and identically distributed [93], How-
ever, this assumption does not hold valid for drug discovery applications. Small molecule optimization and design necessitate the 
exploration of structural variations drawn from purposely unique chemical space. A model must generalize to out-of-distribution 
situations in order to be useful. Despite the distribution shift, chemo-informatics and medicinal chemistry will benefit from learned 
features [91]. Here, we discuss some key advancements in molecular representation learning.

4.1. Molecule representations

Fixed molecular descriptors can be classified based on their dimension [94]. Molecules have 0D attributes, such as molecular 
6

weight (MW), atom number, and atom-type count. For functional groups, descriptors involving more structural information are 

https://github.com/deepmind/alphafold/
https://github.com/deepchem/deepchem
https://github.com/MedChaabane/DeepBind-with-PyTorch
https://github.com/MedChaabane/DeepBind-with-PyTorch
https://fastmbar.readthedocs.io/en/latest/
http://deepscreening.xielab.net/
https://github.com/cansyl/DEEPScreen
https://github.com/GIST-CSBL/DeepConv-DTI
https://github.com/kexinhuang12345/DeepPurpose
https://github.com/kexinhuang12345/DeepPurpose
http://www.bioinf.jku.at/research/DeepTox/
https://github.com/TangYiChing/PathDSP
https://github.com/ZJULearning/graph_level_drug_discovery
https://github.com/ZJULearning/graph_level_drug_discovery
https://github.com/aspuru-guzik-group/chemical_vae/
https://github.com/aspuru-guzik-group/chemical_vae/
https://github.com/dbkgroup/prop_gen
https://torchdrug.ai/
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Fig. 2. Illustration of different formats of Small Molecule Representations. Molecules can be represented as Kekule diagrams with bonds and atoms, SMILES strings 
(which can be converted into a one-hot encoding), and as molecular graphs, where adjacency, node, and feature matrices can be constructed.

needed, such as fingerprints (two-dimensional binary vectors) [95]. More complex representations, such as SMILES [96], molecular 
graphs, and fingerprints [97], were developed for machine learning algorithms (Fig. 2).

Molecular descriptors used in machine learning models [58] are fixed and not learnable. String-based representations, such as 
SMILES [96] that are widely used for storage in chemical databases [27] compactly encode molecular structure. SMILES is a line 
notation that uses short ASCII strings to describe the structure of chemical species and can be converted into a one-hot encoding or 
word embedding for machine learning and NLP methods. A review of different representations for bio-molecules is presented in [98]. 
The paper presents [98] atom-based, residue-based, and graph-based representations, and also highlight the importance of choosing 
an appropriate representation for the specific problem at hand, and notes that combining different types of representations can lead 
to more accurate and effective models.

For deep learning, compounds, and target can be represented in different encodings; for example, we can use Transformer 
encoders to learn SMILES representations and Recurrent Neural Networks (RNN) for protein representations. Molecules can also be 
embedded directly into the continuous latent space, without feature engineering, by a molecular graph (G = (V, E)) [97] where 
atoms or residues are mapped to nodes (V) and bonds or connections between nodes are assigned to edges (E). The attributes of each 
atom can be represented by a node matrix X and those of bonds are represented by an edge matrix E, while an adjacency matrix A

can keep a record of the pairwise connections. An adjacency tensor is usually formed by combining the edge feature matrix with the 
adjacency matrix. The graph representations allow more structural information to represent a molecule.

4.2. Topological data analysis

Topological data analysis (TDA) [99] can be used to examine complex data sets, such as the representation of biomolecules. 
TDA is based on Algebraic topology. a branch of mathematics that examines the characteristics of spaces that are preserved through 
continuous transformations, serves as the foundation for TDA [100]. In [101] proposed algebraic topology, specifically persistent 
homology, to extract topological features from molecular structures in order to overcome this limitation. Their analysis reveals that 
the machine learning model performs better when persistent homology features are added to predict binding affinity and identify 
active compounds in virtual screening.

A novel representation of bio-molecules based on their underlying topology, which captures the shape and connectivity of atoms 
in a molecule is proposed in [102]. Deep convolutional neural networks (CNNs) are trained to learn a hierarchical representation of 
the molecule’s topology, to predict various properties of the molecule. The multi-task learning framework is used, to predict several 
molecular properties at once. This method can increase the accuracy of predictions for specific properties because it makes use of 
shared representations across various tasks.

4.2.1. Topological data analysis for protein-ligand binding affinity prediction

One typical method to predict the protein-ligand binding affinities of a compound is to visualize the protein-ligand complex as 
a persistent diagram, which is a geometric object. The complex’s topology, including the number of connected components and 
the existence of holes and voids, is depicted in the persistence diagram. In [103], authors proposed persistent homology to extract 
features from the complex geometries of protein-ligand complexes. These features are then used as inputs to a machine learning 
algorithm, trained to predict the binding affinity of new protein-ligand complexes. The approach is called PerSpect ML, which stands 
for “Persistent spectral-based machine learning.” The authors demonstrate that PerSpect ML outperforms existing state-of-the-art 
methods for protein-ligand binding affinity prediction on several benchmark datasets.

Wee et al. [104] proposed a combination of persistent homology and machine learning for binding affinity prediction. The 
approach is based on Forman’s Ricci curvature, a geometric quantity that characterizes the local geometry of space and is a useful 
7

tool in mathematics. The Forman persistent Ricci curvature (FPRC), is a variation of Forman’s Ricci curvature, used to extract 
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Fig. 3. Graph Neural Networks in Prediction Mode. Molecules can be represented as linear data structures, such as adjacency, node, or feature matrices. These matrices 
can be fed to graph neural networks to learn an embedding, which can be used to predict molecular properties.

topological features from the intricate geometries of protein-ligand complexes. The findings demonstrate the efficacy of the proposed 
approach for drug development.

The use of hypergraph, persistent homology, and machine learning to predict the binding affinity is presented in [105]. In order 
to capture the topological and geometric characteristics of the complex, the authors used persistent homology to extract features from 
the hypergraph and fed it to a machine learning model. The proposed “PSH-ML” outperforms current state-of-the-art approaches for 
predicting protein-ligand binding affinity on several benchmark datasets.

4.3. Graph neural network

Most biomedical data, such as protein-protein interactions, protein-drug interactions, drug-disease interactions, and drug-
repurposing used in drug discovery is interconnected and so suitable to be represented by a graph. Small molecule drugs can 
also be represented as graphs, with atoms as nodes and chemical bonds as edges. Knowledge graphs can be used to present complex 
relationships between drugs, adverse effects, drug re-purposing, and associated outcomes to assist in generating novel hypotheses.

An important structural attribute of a graph is that nodes are usually not required to be presented in any particular order, and 
functions acting on graphs should be permutation invariant (order-independent) so that the output of those functions should be the 
same for any two isomorphic graphs. This property makes a graph a suitable candidate to represent molecules and drugs. Molecular 
graphs and subgraphs can be readily mapped to a chemical (sub-)structure, making them interpretable.

Graph neural networks (GNNs) are a type of machine learning algorithm that can be applied to drug discovery. GNNs are designed 
to work with graph data, which represents relationships between entities, such as chemical compounds and proteins [106]. They 
encode pairwise connectivity instead of points in a non-Euclidean space, capturing a structured representation of atomistic data. A 
typical GNN consists of one or more layers that learn a permutation invariant aggregation of nodes from node feature vectors and 
across the neighboring nodes [107] through recursive message passing, leading to a readout operation (Fig. 3). The concept is that a 
node in a graph constantly exchanges information/messages with its neighbors until it reaches a stable equilibrium.

A feature vector can be constructed by combining different properties of the atoms, such as mass, electron number, and charge. 
To predict a certain property of a molecule/drug, the spatial structure and feature vectors can be used to learn a meaningful 
representation. The node feature vectors can be stacked into a matrix X which is multiplied by the adjacency matrix A to capture the 
underlying structure of the molecules. Increasing the power of the adjacency matrix A to A𝑛 results in the propagation of features 
to nodes at an n-hop distance, an effect similar to increasing the receptive fields in images. The learned embedding can be used to 
predict molecular properties.

GNNs are widely used in drug discovery applications [18]. Directed message-passing GNNs operating on molecular structures 
were used to offer possibilities to re-purpose drugs as antibiotics [108] and in vivo validation gave viable candidates that were 
structurally unique to existing antibiotics. Other examples are: AlphaFold2 [35] which uses information about proteins to construct 
a graph of residues; MolCLR, a self-supervised method to learn molecular representations from a large unlabelled dataset (10 million 
examples) [109] via GNN encoders that extract useful representations from molecular graphs using graph convolutional (GCN) and 
graph isomorphism networks (GIN) [110]. The model was fine-tuned using MoleculeNet [78] benchmarks and had an efficient 
performance on both classification and regression tasks.

4.3.1. Graph convolutional neural networks

Modern graph convolutional networks (GCNs) use customized convolutions and readout functions to learn the common local and 
global structural patterns of graphs. Each graph’s node representations are collapsed into a graph representation via a readout layer. 
Convolutional graph neural networks (ConvGNNs) [111] generalize the grid-to-graph data convolution technique. Since graph data 
lies in a non-Euclidean space and there is no fixed input size, the node representation is transformed into a spectral domain using 
the graph Fourier transform, and the convolution operation is replaced with a simple multiplication.

The idea is to produce a node v’s representation by combining its own x𝑣 and neighbors’ x𝑢 characteristics, where u 𝜖 N is the 
neighbors of N(v). ConvGNNs stack many graph convolutional layers to extract high-level node representations. More complicated 
GNN models rely on ConvGNNs for their construction; such as spectral-based, spatially based message passing neural networks, graph 
8

attention network, and graph isomorphism network (GIN) [112,113].
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Fig. 4. Graph Neural Networks in Generation Mode. Initialization is performed to add the first atom to the empty graph G0 . A graph transition (append, connect, or 
terminate) is sampled and performed on the intermediate molecule structure at each step [20].

Fig. 5. The variational auto-encoder (VAE) for de novo design of molecules with desired properties [89]. The neural network converts the discrete input molecule into 
a Gaussian distribution. The latent variables are reparametrized against the mean and variance. The decoder generates a new molecule from the sampled latent space.

4.3.2. Attention-based graph convolution neural networks

Attention networks have become a gold standard when dealing with time series or sequential data. Attention mechanisms allow 
the network to cope with variable-sized inputs by focusing on the most relevant elements of the information to make decisions. 
Self-attention [114] or intra-attention is the term used when an attention mechanism is utilized to calculate a representation of 
a single sequence or a node. In graph attention networks (GAT) [113], the GAT layer extends the GCN layer’s basic aggregation 
function by using attention coefficients to assign varying importance to each edge. In this way, the costly matrix inversion operations 
are avoided allowing deeper training of the neural networks. GAT mechanisms can be used to identify drug binding sites in a 
protein-drug complex, highly communicating atoms in a large protein system, and atoms (nodes) involved in predictions of binding 
affinity [38].

5. Deep learning models for molecule generation

Graph neural networks (GNNs) can also be used for molecule generation in drug discovery. GNN-based models can generate new 
molecules with desirable properties by learning the relationships between the atoms and molecular fragments in a given dataset. In 
MolMP [32], graph creation is modeled as a Markov Decision Process [115] problem, where the action to develop the graph, append, 
connect or terminate, is only dependent on its current state, with a neural network controlling the sampling process, as shown in 
Fig. 4. MolMP outperformed SMILES-based molecule creation on a number of different evaluation indicators.

5.1. Generative models

Deep molecular generative models allow rapid exploration of a large chemical space [116] including novel structures generated 
by merging parts of existing compounds. By utilizing genetic algorithms or particle swarm optimization. Generative Adversarial 
Networks (GAN) [117] can generate synthetic compounds, or molecules, with a desired property and learn the probability distri-
bution of the training data and generate new chemical structures by sampling from the learned probability distribution. Chemical 
fingerprints, SMILES, molecular graphs, three-dimensional structures, and other molecular representations can be used in generative 
models. However, assessing the uniqueness, and eventually, the relevance, of the molecules produced by generative models remains 
an open issue. An Editorial provides guidelines [118] about the assessment of the molecules produced by generative models.

5.2. Variational auto-encoder

Variational Auto-Encoders (VAEs) were used in [119] to generate novel chemical structures, that were mapped by unsupervised 
9

learning into the ZINC database [67] (Fig. 5). The model consists of an encoder, a decoder, and a predictor. VAE converts a discrete 
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molecular structure into a real-valued continuous vector and the decoder converts it back to a discrete structure. The generation 
of new chemical structures with desired properties can be realized by searching the continuous latent space by any optimization 
method. The property value is applied to VAE’s latent space, which can be used to sample molecules in the direction of the desired 
property value.

5.3. Reinforcement learning

It is difficult to control the properties of generated molecules using continuous data-driven representation [89]. For example, 
in generative adversarial networks, generating a molecule with the desired set of physio-chemical properties from a large physio-
chemical search space is challenging and time-consuming [120]. Reinforcement learning (RL) is a type of machine learning algorithm 
that has been applied to molecule generation in drug discovery. RL, a machine learning paradigm, which is used to make dynamic 
decisions, can be used to design chemical compounds with optimal values such as solubility, pharmacokinetic properties, or bioac-
tivity [121]. It entails analyzing potential actions and estimating the statistical relationship between those actions and their potential 
consequences, then determining a policy that aims to get the best feasible result. Deep reinforcement learning attempts to find the 
optimal set of actions from the theoretically infinite action space. This property of the algorithm can be exploited for exploring the 
infinite chemical search space, by avoiding brute-force computing to examine every possible solution. ReLeaSE [122], an RL model 
for structural evolution, integrates two deep neural networks—generative and predictive. Both networks are trained individually but 
used together to produce innovative targeted chemical libraries, based on deep RL techniques.

6. Structure-based drug design

The completion of the human genome project [14] resulted in the explosion of genomic, proteomic, and structural data. Excellent 
drug targets are being identified at a faster rate and low cost due to advances in bioinformatics and data analytics methods [123]. 
Computational structure-based drug design takes advantage of the accumulation of biological data, such as structures of proteins 
(Protein Data Bank) and drug databanks (DrugBank). The knowledge about the potential drug target’s structure is extremely 
valuable, not only for lead discovery and optimization but also in the later stages of drug development, when issues like toxicity, 
drug resistance, or bio-availability may arise. If experimental structures are not available for a bio-molecule or complex, molecular 
modeling softwares [124] can be used to predict the structures and their quality can be assessed using computational tools [125]. 
In this Section, we discuss various methods for structure-based drug design; such as Molecular Dynamics (MD) simulation of the 
drug-target pair, molecular docking for predicting the orientation, and computational geometry of the drug binding site.

6.1. Computational modeling

Although Protein Data Bank (PDB) [75] and DrugBank [66] provide high-quality resources for a large number of protein struc-
tures and drug complexes, structural information for a particular drug-target complex may not be available, especially for mutant 
structures and drug-mutant complexes. In such cases, computational modeling can be used to predict the mutant structures. Rosetta-
Commons [124] models protein structures and macromolecular complexes. Other computational and statistical methods ([126,127]) 
are available to further assess the quality of the predicted models.

6.2. Molecular docking

Molecular docking [128] is used to predict the relative orientations of molecules when they form a complex and allows the 
estimation of their binding affinity. Several open-source molecular docking software packages, such as Auto-Dock, Flex-Aid, and 
rDock, are available [129].

Proteins are mobile objects and their ability to make conformational changes influences the protein-drug interactions that molec-
ular docking aims to capture. Molecular dynamics simulations can be used to predict the time-dependent behavior (motion) of 
protein-drug complexes.

6.3. Molecular dynamics simulation

Molecular Dynamics (MD) [130] simulates the movement of molecules such as DNA, proteins, and drug-target complexes. It can 
be used to identify the free energy landscape and physiological conformations of proteins and complexes, which may even not be 
accessible through experimental techniques, and so provide insights into the bio-activity of structures and protein-drug complexes. 
In an MD simulation, the trajectories of all atoms, based on their positions, velocities, and accelerations are obtained using Newton’s 
second law of motion. MD simulations are computationally expensive and require effective computational resources, such as parallel 
computing.

MD simulation packages, such as Amber, Gromacs, and Charmm [131], provide functions to analyze, visualize and predict the 
properties of proteins, drugs, and complexes. Table 4 provides a list of computational tools for MD simulation packages.

Fig. 6 shows a pipeline for performing MD simulations. Starting from the template structure, the structure is solvated by a water 
box, and a molecular force field is selected. The system is neutralized, energy minimized, heated, and equilibrated before a production 
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run is performed, usually over several nanoseconds.

https://www.rcsb.org/
https://go.drugbank.com/
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Table 4

List of software for MD simulation, Modeling, Docking, Visualization and analysis of Molecules.

Reference Description Pros Cons Source code

AMBER [144] A package for MD simulation High Performance MD, Com-
prehensive trajectory analy-
sis tools

License required for parallel 
CPU or GPU computation

https://ambermd .org/

ACEMD [145] An accelerated platform for 
faster and longer biomolecular 
simulations

Super computer level perfor-
mance

License required for ful func-
tionality

https://www .acellera .com/

AutoDock 
Vina [146]

A program for molecular dock-
ing and screening

Receptor flexibility, blind 
docking

Difficult to dock small pep-
tides

https://vina .scripps .edu/

DeePMD [147] A deep learning package for MD 
simulation and energy represen-
tation

Optimized code, interfaced 
with Tensorflow

Model compression issues https://github .com /
deepmodeling /deepmd -kit/

RBio3D [148] R package for the analysis of MD 
trajectories

Tools for protein-networks, 
conformations

- http://thegrantlab .org /bio3d/

Pymol [149] An interactive platform for visu-
alization of molecules

Homology Modeling, Dock-
ing, Virtual Screening

License required for full fea-
tures

https://pymol .org /2/

Rosetta
Commons [124]

A tool for predicting the mutant 
structure

Protein modeling and folding Preference for aromatics, Pref-
erence for hydrogen bonding

https://www .rosettacommons .org/

Fig. 6. A pipeline for a molecular dynamics simulation. The MD simulation pipeline can be divided into three steps, (i) System preparation, including solvation and 
topology and coordinate file generation (ii) System simulation for the desired time scale (iii) System or trajectory analysis using analytical methods.

Root mean square deviation is commonly used to analyze the fluctuation between different ‘snapshots’ or time points in the 
MD trajectory [132]. Binding free energy can be used to estimate the strength of binding between a drug and target over time 
and principal component analysis can be used to analyze the dominant motions [133]. Network theory can be applied to extract 
different conformational communities [134]. The stability of a structure can be analyzed using correlation [135] and hydrogen bond 
analysis [136]. The impact of mutations on drug binding affinity can be estimated using time series or geometrical properties of the 
complex [137]. Machine learning-based models can be used to predict the drug response based on features extracted from the MD 
simulation [138].

6.3.1. Machine learning-based MD simulation models for drug discovery applications

Molecular dynamics simulation calculations can be sped up using machine learning techniques. To accelerate the simulation 
towards more energetically advantageous states, for instance, machine learning models can be trained to predict the potential energy 
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of a given configuration of atoms. This strategy is referred to as “machine learning force field” or “machine learning potential [139]”.

https://ambermd.org/
https://www.acellera.com/
https://vina.scripps.edu/
https://github.com/deepmodeling/deepmd-kit/
https://github.com/deepmodeling/deepmd-kit/
http://thegrantlab.org/bio3d/
https://pymol.org/2/
https://www.rosettacommons.org/
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Fig. 7. Molecular docking and molecular dynamics simulations can investigate the efficacy of a protein-ligand system, using binding free energy and geometrical 
properties.

As mentioned above, machine learning is currently taking on a more and more crucial role in Structure-based drug discovery. 
Researchers can now understand the binding mode, affinity, and evolution of atomic systems by using appropriate models and 
algorithms that allow the chosen model to “learn” the patterns present in the input data. This is especially true of advances made in 
the use of DL-based MD computational methods [140].

6.4. Modeling the binding pocket of a protein-drug complex

The energy released due to bond formation and protein-ligand interactions is known as the free energy of binding and it can be 
used to estimate the binding affinity and predict responses to a drug. The MD trajectory and the (MMGBSA) [141] tool in Amber can 
be used to calculate the free energy of binding. The energetic contribution of individual residues is used to infer the binding mode of 
a ligand and protein.

Geometrical features such as the drug binding site position, the number of interacting atoms at the interface of a protein and a 
drug, and the shape of interacting atoms can be used to evaluate the efficacy of a drug. A drug binding site on a protein will often be 
a cavity or pocket and so have a concave shape and a greater potential contact surface area and so have a higher molecule affinity 
than surface protrusions that have a convex shape. The geometry of the complex can be modeled by the Alpha shape [142], which is 
a linear approximation method that uses geometrical data to reconstruct a target object’s surface properties. Alpha shape modeling 
and Delaunay triangulation methods are used to predict protein-ligand and protein-protein interactions and protein structure [143]. 
A list of software for molecular dynamics simulation, molecular docking and visualization is given in Table 4.

A framework for structure-based docking and drug response analysis is shown in Fig. 7. A target structure from the PDB or other 
drug databanks or modeling can be used to perform docking followed by MD simulation to investigate the conformations, stability, 
and binding free energy. Modern geometrical deep learning methods [150] can be used to learn geometry for protein-drug complexes. 
Drug or drug-dose response curves show the response of an organism or system as a function of exposure to a drug over time, the 
commonly used parameter is IC50 which measures the potency of a substance to inhibit a specific biological or biochemical function. 
The IC50 values are determined by expensive biological experiments and are prone to errors [151]. Deep learning-based methods can 
be used for the prediction of IC50 values [151].

6.5. Limitations in current structure-based drug design and a way forward

Time-limitations, inaccuracies in force-fields, quantum effects [17], model interpretation, data collection, and privacy issues [11]
affect the ability of MD simulations and molecular docking to provide meaningful information. Biological properties such as protein 
folding, ligand binding, and release may occur over larger time scales than can be simulated. Selecting (and designing) a correct 
12

force field remains a significant challenge and the ability of the force field to mimic reality affects the accuracy of an MD simulation.
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Fig. 8. Statistics of AI start-ups for drug discovery.

Classical MD simulations are incapable of simulating the chemical reaction of a drug substrate as well as the binding of covalently 
bonded ligands. Electronic polarization and the quantum effect are difficult to define in MD simulations.

To model the chemical reactions of a drug substrate, reactive force fields are being developed. Electronic polarization can be 
modeled by quantum mechanic MD (QM-MD), which is computationally expensive and limited to a small number of atoms. The high 
arithmetic and inherent parallelism of graphical processing units (GPUs) can be used to run longer MD simulations.

Overall, the use of machine learning in molecular dynamics simulations has the potential to significantly speed up the discovery 
of new substances and molecules with desirable properties, such as enhanced catalytic activity or improved drug binding.

7. AI-based pharmaceutical start-up companies

According to Emersion Insights research, AI start-ups in drug development raised about 2.1 billion USD in the first half of 2021 
[152]. AI is already been used by big biopharmaceutical companies at various stages of drug discovery. For example, Pfizer is 
using IBM Watson, a machine learning-based system to search for immuno-oncology drugs. Roche Gentech is using GNS healthcare 
from Cambridge, Novartis is using Microsoft for research on cell and image segmentation, and Astrazenecca is associated with 
BenovalentAI to develop and commercialize Jenssen’s novel clinical stage candidates [153].

Companies like Google, DeepMind, Insilico Medicine, Deep Genomics, Healx etc., are also making huge investments in AI-based 
drug discovery applications. In this Section, we discuss recent developments and prominent AI-based companies for drug develop-
ment.

USA is the pioneer and the dominant participant in AI implementation and hosting more than half of the world’s AI companies 
for drug discovery businesses. A huge increase in the number of investors in the USA and the European Union has been observed 
in recent years. As a result, these areas, along with the United Kingdom, are the leaders in terms of the number of investors in 
AI-based drug discovery applications. Novartis is a major player in the pharmaceutical AI race in the United Kingdom and the 
European Union. BenevolentAI and AstraZeneca, two UK-based companies, are working together on a novel AI-generated chronic 
kidney disease target. Recently, China is also focusing on investment in AI for drug discovery and it has vowed to invest US $5 billion 
in AI. Tianjin, one of China’s largest cities, will invest US $16 billion in its AI business, while Beijing will create a $2.12 billion AI 
development project. By 2030, China envisions becoming the leader in AI-based drug discovery start-ups.

As shown in Fig. 8, the USA is the leading country with 55.10% companies, followed by Europe and the UK with 19.90% 
and 9.95% proportion in the adoption of AI-based solutions for drug discovery. Meanwhile, Asia currently has the fourth-lowest 
proportion in the adoption of AI-empowered drug discovery start-ups [154].

USA also leads the AI race in terms of Contract Research Organizations (CRO), with 50% of CROs situated in the United States 
followed by Europe which has 25% CROs. Meanwhile, Asia also has 10% CRO interested in AI-oriented drug discovery. According to 
the number of IT companies using AI in healthcare and drug research, the United States leads all the countries. However, in terms of 
the number of chemical corporations, Asia has the second highest number, with the EU in third place. This makes sense in light of the 
EU’s recent growth in the chemical sector, which now outnumbers the US and Asian markets for chemical compounds and related 
goods. Table 5 provides an overview of some major start-up companies using AI to solve industrial problems in pharmaceutical 
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research.
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Table 5

Overview of top AI-oriented pharmaceutical and biotechnology Start-ups across the globe with major applications in the drug discovery pipeline.

Sr. No. Company Country Year Major Applications Revenue/Year Link

1 Atomwise USA 2012 Machine learning based discovery of 
small molecule oriented medicines

17.1M USD https://www.atomwise.com/

2 Verge Ge-
nomics

USA 2015 Drug design for neurodegenrative disease 2.78M USD https://www.vergegenomics.com/

3 Biovista USA 1996 Drug re-positioning and de-risking, per-
sonalized medicine

4M USD https://www.biovista.com/

4 Aria Pharma-
ceuticals

USA 2015 Small molecule design 5M USD https://ariapharmaceuticals.com/

5 PathAI USA 2016 Digital pathology analysis for drug devel-
opment

255M USD https://www.pathai.com/

6 Recursion 
Pharmaceuti-
cals

USA 2013 Clinical stage drug development 2.5M USD https://www.recursion.com/

7 Valohealth USA 2007 An integrated system for end-to-end drug 
development

19.4M USD https://www.valohealth.com//

8 Catalia Health USA 2014 AI-based platform for remote heath care 
management

5.9M USD http://www.cataliahealth.com/

9 Verantos USA A real world evidence (RWE) company 
for clinical, regulatory and reimburse-
ment claims.

https://verantos.com/

10 Insitro USA 2018 Predictive models for drug development 20.6M USD https://insitro.com/
11 Trials.ai USA 2016 Intelligent AI clinical design 1.2M USD https://www.trials.ai/about-us/
12 ReviveMed USA 2016 AI-driven drug design for metabolomic 

diseases
0.26M USD https://www.revivemed.io/

13 OneThree 
Biotech

USA 2018 AI-driven drug discovery platform with 
multiple clinical validations

3.5M USD https://onethree.bio/

14 BERG Health USA 2009 Clinical-stage AI-driven biotechnology 
company

17.9M USD https://www.berghealth.com/

15 BenevolentAI UK 2013 Explore inter-connected disease network 
using data to design effective treatment 
strategies and drug development.

45.4M USD https://www.benevolent.com/

16 Nuleome Ther-
apeutics

UK 2019 Decoding dark matter of human genome 
for new ways of disease treatment

6.3M USD https://nucleome.com/

17 BioSymetrics Canada 2015 Phenomics-driven approach for drug dis-
covery

2.6M USD https://www.biosymetrics.com/

18 Deep Ge-
nomics

Canada 2014 AI-based platform for complexities in 
RNA biology for drug development

9.5M USD https://www.deepgenomics.com/

19 Insilico 
Medicine

Hong Kong 2014 AI-assisted identification of drugs 10.9M USD https://insilico.com/

20 iCarbonX China 2015 Multi-omics technologies for innovative 
biomarkers discovery

5M USD https://www.icarbonx.com/en/

8. Challenges, hype, hope, and reality for AI in drug discovery

In the drug-development arena, we have witnessed the rapid change from single molecule design to high-throughput chemical 
library screening within years; now AI-assisted drug development is on the horizon. In this Section, we discuss the progress of AI on 
drug discovery applications, challenges in data representation and learning, and discuss the current hype, hope, and reality.

8.1. Challenges

Many challenges exist for AI in the drug discovery domain, such as data representation, data labeling, disparity among labels, 
small sample size, data privacy, ethical concerns, learning paradigms, and model interpretations. For example, a molecule can be 
represented in a number of ways, such as SMILES, molecular fingerprints, and molecular graphs. For example, the toxicity of a 
compound depends upon the dose and the biological system, and in clinics, it depends upon the clinical information, such as; age, 
sex, race, and medical history. In other words, the labels are not entirely captured by the structure or any other representation, 
and the disparity in data labels also exists among the practitioners. The behavior of proteins and compounds can rapidly change in 
patients, cell lines, and tissues, which may cause a distribution shift. Therefore devising a system, learning the true representation, 
and labeling the data are major challenges for the success of AI in the drug discovery domain. Many deep learning systems also suffer 
from repeatability crisis [155] due to stochastic initialization and optimization of parameters, which can be sensitive to the initial 
settings.

The type of learning paradigms and evaluation metrics are also important since biological datasets are imbalanced, complex, 
partially labeled, and not fully understood. Unsupervised or semi-supervised learning can be used to address these challenges and 
to generate hypotheses for understanding complex diseases and signaling pathways patterns [156]. We also hypothesize that over-
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fitted machine learning models may generate a novel data-driven hypothesis, which can be validated with experimental Biologists. 
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Fig. 9. A typical learning pyramid with critical questions that must be kept in mind while developing AI applications for drug discovery.

Reinforcement Learning (RL) can be applied to navigate through the chemical space, which chooses a set of actions to maximize 
the reward function. RL learning paradigm can be used to generate molecules with desired properties and design optimal treatment 
strategies. To deal with the imbalanced datasets, we need to obtain data balancing methods, as well as appropriate evaluation 
metrics. In Fig. 9, we show a pyramid-based learning approach for designing useful AI applications in the drug discovery domain.

AI is very successful in computer vision (CV) and Natural Language Processing (NLP). The problems in CV and NLP are well 
defined, and the solution is verifiable; such as in face recognition systems, we have the true label to train the system. However, 
problems related to healthcare are neither well-defined nor verifiable, involving safety and security risks, and leading to privacy con-
cerns. In CV or NLP, a large amount of high-quality labeled datasets are available, and the data can be comprehensively represented 
in the spatial or temporal domains, relatively easier for a computer program to extract the patterns from the datasets. Whereas, 
data representation and data labels remain a big challenge in computational chemistry and computational biology. For example; in 
the chemical domain, there are about 3000 known preset descriptors [157], therefore it is very difficult to say which one captures 
the most significant data, and how to represent the data for a particular descriptor. Some molecular properties are captured by 
local features; such as hydrogen bonds or charges, whereas others depend upon external context; ligand binding which is spatially 
defined.

Another challenge is the black-box nature of deep learning models. We can not fully trust the predictions, without knowing 
the underlying biological and chemical reasons. We need interpretable and transparent deep learning models and must have a clear 
grasp of the accuracy of the model, the dynamics of biology, and the precision of our measurements in order to accurately exploit our 
data [158]. Drug discovery problems have been addressed by black-box optimization methods, such as Bayesian optimization, which 
find the global optimum (minima or maxima) of a function, to find small molecules that might optimize a specific property [159], 
or design sequences from initial gene sequences to maximize transcription or translation rates.

8.2. Hype

Despite all this progress and investment, only a few AI-based drugs are actually in human clinics [160]. Moreover, the cost of 
developing a drug is still increasing and there is less adoption of AI tools for clinics at the moment. The pharmaceutical industries 
are one of the riskiest industry in the world, due to high failure rates and a long timeline. Many traditional drug design scientists 
still think that all AI-enabled drug development is incremental and hype. The de novo design, drug response analysis, molecule 
optimization, and screening all are stages but most of the drug candidates fail in the clinical trials, making all of the developments 
incremental. We have a very complex biological space, complex chemical space, and complex clinical space, and optimizing all of 
them at once is a big challenge.

8.3. Hope

MIT Technology Review named the discovery of promising drug-like molecules using AI as one of the top ten technology break-
throughs of 2020 [161]. AI tools have been around for a long time and have shown reasonable success. For example, Wellcome 
Pharmaceuticals used computational chemistry and modeling to develop the drug Zomig, which is now an approved treatment for 
migraines [162]. Deep learning was recently used to discover new antibiotics from a pool of 100 million molecules [153]. Insilico 
Medicine developed Generative Tensorial Reinforcement Learning (GENTRL) AI, a system that can discover and successfully test new 
compounds in 46 days, making the whole process 15 times faster [163]. The Alliance for AI in Healthcare (AAIH) was founded in 
September 2018 by several AI companies. In November 2018, AI researchers at Insilico Medicine, led by the AAIH co-founders [164], 
joined forces to create the ImageNet of generative drug discovery, establishing a set of standards for generative models in healthcare. 
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The success of AlphFold2 is another encouraging example.
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In the recent COVID-19 pandemic, AI was used to re-purpose Baricitinib for COVID-19 patients in the United Kingdom (Clinical 
trial: NCT04421027), which was later validated by the World Health Organization (WHO) [165]. AI also helped in optimizing 
COVID-19 vaccines [26]. The above precedents of the successful application of AI in the drug discovery process are encouraging and 
we hope that it will accelerate the role of AI in the drug discovery process.

8.4. Reality

AI is most successful in de novo molecule design, which is the first stage of the drug discovery pipeline. The next logical step is to 
check, whether it binds to a target, and check its binding affinity and other properties. Molecular docking, MD simulation, or deep 
learning can be used for such predictions. These are the chemical stages, where we have a good amount of labeled data for in silico 
approaches [166]. However, the computer-generated compounds will need to be manually manufactured, evaluated, and optimized 
at some time.

The more difficult thing is, will the compound produce the same effect in vivo? Drugs are chemical compounds, which act 
on a biological system, which are much more complex and not yet fully understood. Moreover, the clinical patient information 
further complicates the problem. We have a very large chemical space, an even more, complicated biological space, and the clinical 
information of patients, which makes it a multi-dimensional difficult learning problem, with fewer data, ground evidence, and 
unknown labels in many cases. When it comes to AI in drug discovery, what is currently needed is an integrated approach that 
incorporates both ligand–protein activity and target identification, as well as the compound’s properties in vivo (pharmacokinetics) 
with good ground evidence.

The groundbreaking AI system AlphaFold2 predicts the protein structure with high speed and accuracy. However, how to translate 
this into the in vivo situation is still an open question. AlphaFold2 is trained to predict unbound protein structures, whereas most 
medicinal chemistry applications require protein-small molecule complexes. Secondly, the sub-angstrom resolution is frequently 
required, which AlphaFold2 cannot provide. Designing protein-based treatments, such as antibodies and peptides, where ultra-high 
resolution is not required, could be a more successful route for AlphaFold2 [167].

There are also many limitations with AI-based methods in the pharmaceutical industry, such as model interpretation, repro-
ducibility, data access, data labeling, privacy, data quality, and computational infrastructure. Data availability and access are two 
key components for the success of data science in healthcare. There are also many challenges in statistical learning models. More 
good-quality datasets with appropriate labels for particular biological questions with suitable representations are needed. Many cur-
rent data analyses appear to produce very similar results in the end [168], thus, the future of AI in drug discovery is unlikely to lie 
in the development of the right analysis method, but rather in asking the right question (and thus modeling the right endpoint) in 
the first place.

It is commonly held in the AI community that we need to collect more and more data, and after that, the data analysis methods 
can find the activities in the cell or bring new insights, however, this may not be true. Data processing, engineering, and building 
hypothesis are the key factors in the success of any machine learning algorithm. So, data generated in a hypothesis-free manner will 
remain difficult to analyze and identify any useful biological or chemical information. Data generated by the push of technology 
rather than the pull of scientific knowledge need will remain largely useless. Therefore, we need to design algorithms that feed both 
mind and the machine to adjust their weights and hypothesis. Human physicians will continue making care decisions and treatment 
strategies, AI can only be used to assist in the decision-making process.

8.5. The way forward

The key to the success of AI in drug discovery is to generate high-quality annotated labeled datasets and learn its representation, 
which may be possible by collaborative efforts from multiple disciplines. In computer vision, state-of-the-art deep learning models 
are trained on an ImageNet dataset. We need to develop “ImageNet” for molecules and more benchmarks like MoleculeNet [78]. 
Robust methods where the human mind can teach the model to optimize so that models generate useful insights that could allow 
humans to think in new directions are desirable. We need to bring better prospects into clinics, enhance target validation, increase 
patient recruitment, and improve clinical trial design, as shown in Fig. 10.

Our current AI approach mainly focuses on the manifestations of diseases, rather than the actual causes. Understanding the causal 
pathway of diseases, through which genetic predisposition may manifest, may enable us to manipulate the disease, as well as reverse 
the course of the disease. This is a potential venue for causal machine learning. Causal inference [169] can also be used in making 
treatment decisions and the evolution of patient health.

We also need to cultivate a ‘culture’ among stakeholders, so that they are willing to use computational models and utilize 
the results. Research and collaboration between industry, academia, and other stakeholders, and the training of professionals to 
understand both medicine and computer science are needed to fully utilize the potential of data science in the healthcare industry. 
As an African proverb, “if you want to go fast go alone, and if you want to go far go together”.

More workshops on AI for drug discovery, or computational biology at top AI conferences, like NeuralIPS and ICML should 
be organized, or perhaps new degree programs for AI in drug discovery are needed in the long-term vision. In 2019, As-
traZeneca partnered with Dialog for Reverse Engineering Assessments and Methods (DREAM) to launch a drug-combination 
challenge on a dataset of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines. The 
DREAM Challenges are group competitions that focus on model repeatability and methodological transparency on significant 
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biomedical problems to the scientific community and evaluating participants’ forecasts in a statistically rigorous and objective 
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Fig. 10. Learning from various data sources can aid drug design, clinical decision support, and public health policy. The collaborative intelligence resulting from the 
merger of “mind and machine” is expected to improve decision-making in healthcare.

manner. More Competitions like DREAM challenge (http://dreamchallenges .org/) and data analysis competition (CAMDA) [170]
and networks (AI3SD) [171], and initiatives like Therapeutics Data Commons [25] are needed to connect experts from dif-
ferent disciplines. More user-friendly machine learning methods, such as AutoML, ClinicalAI and explainable AI (XAI), are 
needed to enhance the confidence of chemists and doctors for the utilization of machine learning models in daily clinic prac-
tice.

9. Conclusion

AI-based methods are being adopted in the health care industry where low-cost, intelligent, and flexible methods are affecting 
areas such as drug design, support for clinical decision making, diagnosis, prevention, and making clinical recommendations [172]. 
AI applications were previously thought to be inferior to experimental high-throughput screening, combinatorial chemistry, and other 
technical drivers. It was difficult to create new chemical entities using computer programs, with desired features from the ground up, 
potentially even better than a human expert [41]. The long and costly process of drug design can be accelerated by employing data 
science methods for target identification, De novo molecular design, drug repurposing, retrosynthesis and prediction of reactivity and 
bio-activity, FDA approval, and post-market analysis. AI has been implemented by some pharmaceutical organizations, with revenue 
from AI-based solutions in the pharmaceutical sector estimated to reach US $2.199 billion by 2022 [173].

Deep neural networks (DNNs) can be used to boost prediction power when inferring the properties of small molecules [11], 
and one-shot learning [174] can be used if a large amount of experimental data is not available. Understanding technical and 
human errors, labeling constraints, and biological variability associated with the underlying data is crucial to create useful predictive 
models. It is difficult to represent the experimental data in numerical or computer-assisted form. AI is now being utilized to create 
representations of trials that allow for data categorization and, ultimately, the development of predictive models [175].

Great things happen in minds and are never done alone, AI is delivering only a platform to execute the plans. We need to develop 
novel hypotheses for drug discovery by employing the knowledge from different domain experts. After that, we can design a data 
analysis algorithm, and then we can learn from the data to modulate the hypothesis or modify the algorithms. In short, both mind 
and machine need to work in synergy. We hope that the use of machine learning, especially deep learning, will increase in the future 
and help us understand complex biological systems, generate particles with the desired properties, and lead to semi-automated smart 
healthcare systems. We also expect that AI would be a valuable tool in understanding human biology, a catalyst in combating human 
diseases and will accelerate drug design. In terms of drug discovery, quality, and safety are more important than speed and cost, 
devising an AI system that can meet this multi-objective optimization in a multi-dimensional complex space is a huge challenge, 
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which needs collaborative efforts from multiple disciplines in academia and industry.

http://dreamchallenges.org/
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