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Abstract

Neuropeptides are abundant and essential signaling molecules in the nervous system involved in 

modulating neural circuits and behavior. Neuropeptides are generally released extrasynaptically 

and signal via volume transmission through G-protein coupled receptors (GPCR). Although 

substantive functional roles of neuropeptides have been discovered, many questions on 

neuropeptide transmission remain poorly understood, including the local diffusion and 

transmission properties in the brain extracellular space. To address this challenge, intensive 

efforts are required to develop advanced tools for releasing and detecting neuropeptides with high 

spatiotemporal resolution. Owing to the rapid development of biosensors and materials science, 

emerging tools are beginning to provide a better understanding of neuropeptide transmission. 

In this perspective, we summarize the fundamental advances in understanding neuropeptide 

transmission over the past decade, highlight the tools for releasing neuropeptides with high 

spatiotemporal solution in the brain, and discuss open questions and future directions in the field.
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What we know and don’t know about neuropeptide volume transmission

Neuropeptides are a diverse class of endogenous molecules that are synthesized, stored, and 

secreted by neurons in the central and peripheral nervous systems.1 They have attracted 

great interest over the years owing to their unique structure and function in a wide range of 

physiological processes.2 Neuropeptides are usually packaged into dense-core vesicles and 

can be released in non-specialized synaptic sites.3 In contrast to small molecule transmitters 

such as glutamate or GABA, neuropeptides can diffuse over a long distance to act far 

from the release site. This widespread mode of intercellular communication is referred 

to as volume transmission.1, 4 Although over 100 neuropeptides have been discovered 

and probably more would be identified from genomic data,5 many fundamental questions 

remain. For example, what is the release pattern and how far does a particular neuropeptide 

act relative to its release site? What constraints limit the spread of neuropeptides?

In a pioneering work nearly ten years ago, Banghart and Sabatini measured the spatial 

profile of enkephalinergic volume transmission in acute brain slices.6 They found that 

enkephalin (LE) could diffuse as far as 150 μm to activate the opioid receptor in rat locus 

coeruleus of acute slices. In other words, the enkephalin signal spread rapidly through 

approximately 70,000 μm2 of tissue, which is approximately 200-fold larger than the area 

of release. Recently, Xiong et al. used new optical tools and cell-based sensors to determine 

the spatiotemporal scale of somatostatin-14 (SST) volume transmission in the mouse cortex 

in vivo.7 They revealed reduced but synchronized SST transmission within 130 μm, and 

delayed, reduced transmission at longer distances. The maximal diffusion distance of SST 

to activate the receptor was approximately 220 μm. Note that similar diffusion distance 

constraints were observed for LE and SST; however, the onset (0.25-1 s for 0-150 μm) of 

the evoked currents for LE diffusion is much shorter than the time of peak response (5-20 s 

for 0-150 μm) of cell-based sensors for SST diffusion. This difference in kinetics could be 

due to the different detection methods (electrophysiology vs downstream Ca2+ imaging) and 

the different preparations (slices vs in vivo). These measurements provide new insights into 

neuropeptide volume transmission in the brain of living animals.

Unlike primary neurotransmitters that are actively recycled, neuropeptides are released and 

signal until they are degraded. What are the factors limit that the diffusion of neuropeptides 

in the brain extracellular space? First, it is well known that neuropeptides are subject to 

degradation by peptidases. However, the degradation rate of neuropeptides in the brain 

extracellular space is largely unknown. To date, based on radioimmunoassays, the half-

lives of oxytocin and vasopressin in cerebrospinal fluid is around 20 min.8 Banghart and 

Sabatini measured somatic currents evoked by uncaging LE in acute slices of rat locus 

coeruleus and found that peptidases limit the peptide signaling released in large volumes 

(>70 μm), while diffusion is dominant in limiting the spread in smaller release sites.6 

Xiong et al. compared the distance-dependent SST signaling measurements in mouse cortex 

with a theoretical point-source diffusion model and estimated the loss rate of SST due 

to peptide degradation and binding in the range of 0.023 s−1–0.048 s−1. Although some 

progress has been made, additional studies are needed to better elucidate the effect of 

peptidase degradation on neuropeptide transmission. Second, the extracellular space (ECS) 

and extracellular matrix (ECM) can hinder extrasynaptic molecular diffusion,9, 10 and play 
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an important role in neuropeptide transmission. For example, brain tissue with a chemically-

degraded extracellular matrix provides less hindrance to peptide transmission.7 However, 

there are many factors including the charge and size of the peptide that can lead to very 

different transmission profiles.

Tools for controlled release of neuropeptide in vivo

Despite its importance in brain function, very few measurements of peptide release are 

available due to the lack of tools. Rough estimates suggest that each dense core vesicle 

contains ~104 peptides, and hundreds of vesicles are released per neuron over seconds (103 

vesicles per second in hypothalamic neurons).5, 11 This suggests that a neuron releases ~106 

peptide molecules per second upon stimulus, possibly higher in the hypothalamic neurons 

(107 molecules per second).

Tools to control the timing and spatial release of neuropeptides in vivo are needed to 

investigate the transmission and function of neuropeptides. The optogenetic approach is an 

elegant method to control the neurotransmitter release, such as acetylcholine,12 serotonin,13 

and dopamine,14, 15 with millisecond precision and cell type-specific resolution. Dao 

et al. successfully induced and inhibited the SST release from SST-positive neurons in 

acute slices using optogenetics as validated by an enzyme-linked immunosorbent assay.16 

Interestingly and importantly, Al-Hasani et al. measured the endogenous opioid peptide 

release (absolute concentration in dialysate: 0.13-8.69 pM) in freely moving rodents 

with a customized optogenetic-microdialysis probe.17 They controlled cell-type selective 

opioid release in different brain regions and detected several opioids such as dynorphin 

A1-8 and LE (leu- and met-). The new approach moves the field forward; however, one 

complication to optogenetic-driven neuropeptide release is the co-release of other small 

molecule transmitters (such as dopamine, GABA and glutamate),18, 19 which requires more 

specific detection of neuropeptides in real-time to measure the diffusion.

Controlled release or uncaging of exogenously supplied neuropeptide has the advantage 

of releasing a certain amount of a specific neuropeptide. A widely used method of 

using light to release specific neurotransmitters is to ‘cage’ the neurotransmitter with 

a photo-cleavable group. Caged compounds, such as caged glutamate or GABA,20, 21 

have been used to study cell signaling or physiology under one-photon or two-photon 

stimulation. Banghart and Sabatini measured the LE transmission using the caged-LE 

(CYLE) modified with carboxynitrobenzyl (CNB) chromophore, which responds to UV 

light illumination (Figure 1A).6 The binding affinity of CYLE to the delta and mu receptors 

was decreased by 100- to 500-fold with respect to LE, while CYLE enabled rapid (onset 

of response: ~350 ms) and robust delivery of LE under photolysis. Taking advantage of 

the high spatial resolution (2 μm light spot), the photoactivatable opioid peptide provides 

a useful tool to investigate the spatiotemporal dynamics of peptidergic signaling. Later, 

the same group synthesized a new caged analog of LE (N-MNVOC-LE) to reduce the 

residual activity and demonstrated the feasibility in brain slices of rat locus coeruleus.22 

These can be extended to other caged analogs, including dynorphin,6 gastrin-releasing 

peptide, oxytocin,23 cholecystokinin, and substance P. However, caged peptides have some 

limitations. First, each caged compound requires a separate optimization process to ensure 
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biological inertness, solubility in physiological pH, resistance to aqueous hydrolysis, fast 

uncaging speed, and high uncaging efficiency.21 For example, it is difficult to control the 

position and number of protecting groups since peptides may contain multiple reactive 

groups.24 Second, caged compounds offer good spatial and temporal control but may be 

limited by one-photon uncaging of ortho-nitrobenzyl photolabile protecting groups with 

UV or blue light.25 Furthermore, caged peptides are also subject to peptidase degradation 

which can limit their in vivo application.6 Thus, other approaches to uncage or photo-release 

neuropeptides are needed to better understand their transient and localized effects in the 

nervous system.

An alternative approach to chemical caging is to encapsulate neuropeptides in the 

photosensitive nanovesicles (Au-nV, Figure 1B). These are 100~200 nanometer-sized 

structures that consist of a natural phospholipid membrane that surrounds an aqueous core. 

To control the release of neuropeptides, nanovesicles are coated with small gold particles (3–

5 nm),26 which enables near-infrared light-triggered photo-release. Ultrashort laser pulses 

(picosecond or femtosecond) can activate gold nanoparticles to generate nanoscale cavitation 

bubbles that are effective to burst the vesicle, releasing the encapsulated neuropeptides.26, 27 

Physiological concentrations of SST (~100 nM, 1.2×108) could be photoreleased from 

nanovesicles at a depth of 200 μm in the mouse cortex,7 which is close to the level of 

endogenous released peptides from ~104 dense core vesicles or 10 neurons per second (~104 

peptides per vesicle, ~103 vesicles per neuron).5 The photosensitive nanovesicles (Au-nV) 

have several features that are complementary to current methodologies for neuropeptide 

release. First, nanovesicles allow in vivo measurement by protecting peptides from rapid 

enzymatic degradation. Second, the in vivo optical stimulation provides a high spatial 

(μm, or fL volume) and temporal (sub-second) resolution to control neuropeptide release 

by the laser power and duration using a two-photon microscope. Furthermore, our recent 

work on photoswtichable nanovesicles demonstrated that it is possible to switch on and 

off the photorelease so providing the opportunity to consecutively release the molecules 

over several cycles.28 Third, photo-stimulation of nanovesicles releases a bolus of a specific 

neuropeptide instead of a mixture with co-released transmitters. Furthermore, near-infrared 

light is more accessible for in vivo studies due to the deep tissue penetration and reduced 

photo-damage29 and the photosensitive liposomes are suitable to package a wide range 

of neuropeptides.30 However, since the Au-nV are much larger than the narrow width 

of the brain extracellular space (40-60 nm),31 large Au-nV have limited penetration or 

diffusion in the brain. The development of small and brain-penetrating nanovesicles could 

allow investigation of neuropeptide transmission across a large brain region with a single 

minimally invasive injection.32

Integrating neuropeptide release with neuropeptide sensing

Integrating neuropeptide release with neuropeptide monitoring would provide a powerful 

set of tools to study neuropeptide transmission. Monitoring the neurotransmitters or 

neuropeptides by optical approaches is appealing to neuroscientists due to the high 

spatiotemporal resolution compared to analytic chemical methods such as fast scanning 

cyclic voltammetry and microdialysis.33, 34 Cell-based fluorescent sensors can detect nM 

concentrations of neuropeptides in vivo by the co-expression of specific GPCR and Ca2+ 
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indicators (Figure 2A).7, 35–38 With a new SST2 CNiFERs (cell-based neurotransmitter 

fluorescent engineered reporter) to detect SST in vivo in real-time,7 Xiong et al. integrated 

the SST-encapsulated plasmonic nanovesicles and CNiFEERs (PACE) and probed the 

neuropeptide transmission in vivo by the synchronization of NIR stimulation and two-

photon imaging. Since SST2 CNiFERs provide a proxy for G protein activation via 

increases in intracellular Ca2+, PACE provides new insights into neuropeptide extrasynaptic 

volume transmission, as it includes neuropeptide release, extracellular diffusion, GPCR 

binding, and intracellular downstream signaling. PACE is an excellent example of 

integrating neuropeptide release with neuropeptide monitoring to map neuropeptide 

transmission. The development of genetically encoded GPCR-based fluorescent sensors for 

neuropeptides provides another new tool for probing neuropeptide signaling and diffusion. 

Recently, several groups have reported new genetically encoded sensors to monitor the 

release and dynamics of dynorphin,39 orexin,40 and oxytocin41, 42 in living animals, 

respectively. Li’s group reported a toolkit of G protein-coupled receptor activation–based 

(GRAB) sensors for several neuropeptides, including SST, cholecystokinin, corticotropin-

releasing factor, neuropeptide Y, neurotensin, and vasoactive intestinal peptide.43 CNiFERs 

with FRET-based Ca2+ indicators have a high signal-to-noise ratio in vivo, but require 

multiple implantations at different distances for the diffusion measurement. Genetically 

encoded GPCR-based fluorescent sensors are simpler to implement and may have a higher 

spatial resolution for measuring neuropeptide diffusion. Since genetically encoded sensors 

are more widely used, GPCR-based sensors for neuropeptides are under rapid development 

and will likely play a more important role in future diffusion measurements. With the 

photorelease technique and brighter and more sensitive genetically encoded GPCR-based 

sensors for neuropeptides (Figure 2B), the integrated approach will allow for a better 

understanding of the neuropeptide volume transmission in the brain at a cellular resolution.

Open questions about neuropeptide transmission and future directions

There are several important unanswered questions about neuropeptide transmission. First, 

how do the diverse physicochemical properties of neuropeptides impact their transmission 

in the brain? Factors such as molecule size or weight,31, 44, 45 the strength of transient 

binding interactions,46 and charge47 can also affect diffusion in the brain extracellular space. 

As such, it is likely that neuropeptides’ physicochemical properties could affect how they 

diffuse through brain extracellular spaces. There are nearly 300 unique human neuropeptides 

recorded in the NeuroPep database that exhibit a broad range of physicochemical properties 

(Figure 3A).48 Coupled with differences in peptide structure and folding (Figure 3B), 

such differences in neuropeptide physicochemical properties could potentially contribute 

to differential diffusion and volume transmission in the brain. Currently, there are very 

limited data on the diffusion and transmission properties and thus requires future work in 

this direction. We will likely need high throughput methods to investigate these important 

questions.

Second, how different is the transmission across the brain regions? Both electron 

microscopy of chemically fixed tissue and the super-resolution imaging of living brain 

slices demonstrate that ECS is diverse and heterogeneous.55–57 The measurements from 

cation tetramethylammonium (TMA+) diffusion directly revealed that the tortuosity of 
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ECS is heterogenous in different brains.9 For example, the cerebellum exhibits significant 

heterogeneity between the molecular layer and granule cell layer, and both the tortuosity 

and volume fraction are different in the two layers.58 There is also increasing evidence 

that diffusion is anisotropic in several regions. For instance, TMA+ diffuses more readily 

along an axon bundle than across it, as observed in the myelinated corpus callosum.59 The 

anisotropic diffusion in the brain has also been confirmed by magnetic resonance imaging 

(MRI).60, 61 Furthermore, the neuropeptide GPCR expression levels are anticipated to differ 

significantly across brain regions.62, 63 Therefore, neuropeptide transmission across different 

brain regions is expected to be heterogeneous but has yet to be experimentally confirmed. 

Future work could explore this aspect of neuropeptide transmission and determine how it 

impacts the function of different brain regions.

Lastly, how is neuropeptide transmission under different brain states? It has been reported 

that sleep induces an increase of ECS volume fraction and drives metabolite clearance in 

mice and humans.64–66 MRI of healthy adult brains also provides evidence for the reduction 

in ECS volume of large parts of human white matter after wakefulness.67 Therefore, it 

is reasonable to hypothesize that the sleep/wakefulness state modulates the extracellular 

diffusion of neuropeptides and their actions in brain circuits. The diffusion properties in 

pathological brain states are also of high interest since they can serve as an indicator of 

pathological processes and perhaps offer insights into their underlying mechanisms. Several 

studies have shown that the diffusion coefficients of TMA+ vary in brain diseases such as 

ischemia, spreading depression, and Alzheimer’s disease.9 Changes in the ECM and ECS in 

these diseased states might affect neuropeptide transmission.68–70

To address these questions, we need to build a database for the parameters of neuropeptide 

transmission in the brain. First and foremost, the toolkit to control the timing and spatial 

release of neuropeptides and in vivo sensors to monitor neuropeptides in real-time needs 

to be expanded. With the rapid development of optogenetics, the photo-stimulation of 

the endogenous genetically encoded neurons is more widely used by neuroscientists to 

investigate the release and dynamics of neuropeptides. However, co-transmission has 

been inescapable until now. the caged compound or photosensitive nanovesicles focuses 

on the transient release of neuropeptides (sub-second), while endogenous neuropeptide 

release in the physiological conditions could last longer. The photoswitchable release from 

liposomes with azobenzene-containing phosphatidylcholine shows promise for controlling 

the neuropeptide release in seconds.28 We anticipate that integration of these new opto-

chemical tools with newly developed genetically encoded neuropeptide sensors (e.g., Light, 

GRAB) will significantly advance our understanding of neuropeptide signaling in the brain.
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Figure 1. 
(A) Chemical structures change of caged-peptides after UV light irradiation. 

CYLE: carboxynitrobenzyl modified [Leu5]-enkephalin; N-MNVOC-LE N-(α-methyl-6-

nitroveratryloxycarbonyl) modified [Leu5]-enkephalin. The caging groups are indicated in 

red. (B) Schematic of preparation of somatostatin-encapsulated photosensitive nanovesicles 

(Au-nV-SST) and photorelease by the near-infrared laser pulses. The illustration of Au-nV-

SST was adapted with permission from Ref [7].
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Figure 2. 
Integrating neuropeptide release and sensing to probe neuropeptide transmission. (A) 

Schematic of cell-based neurotransmitter fluorescent engineered reporter (CNiFERs) for 

neuropeptide detection. (B) Schematic of genetically encoded GPCR-based sensors for 

neuropeptide detection.
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Figure 3. 
The diverse physicochemical properties of neuropeptides. (A) Pair plot comparing the 

molecular weight (kDa), theoretical net charge at a physiologic pH of 7.4, and the 

Potential Protein Interaction Index (PPI-Index), a predictor of a polypeptide’s propensity 

to bind other proteins/receptors,49 for all 283 human neuropeptides in the NeuroPep 

database.48 The properties were estimated from the peptide sequences using the peptides.py 

package (https://github.com/althonos/peptides.py).50 Note that the diagonal edge of the pair 

plot shows the distributions of each property. (B) A selection of human neuropeptide 
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structures collected from the RCSB Protein Data Bank51 and AlphaFold Protein Structure 

Database52, 53 highlighting the diversity of neuropeptide structure and physicochemical 

properties, including the 38 amino acid variant (blue) of pituitary adenylate cyclase-

activating peptide (PACAP), Neuropeptide Y (red), glucagon (green), the 27 amino acid 

variant of PACAP (orange), Somatostatin 14 (light blue), and Dynorphin A (1-13) (yellow). 

The neuropeptide structures were rendered using the Visual Molecular Dynamics (VMD) 

software.54
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