Skip to main content
. 2023 May 29;15(6):364. doi: 10.3390/toxins15060364

Table 3.

Results of the different machine learning methods to classify responders vs. nonresponders after the fourth cycle.

Machine Learning Methods ACC (%) Sens (%) Spec (%) AUC (%) N Features
PRIMARY ENDPOINT—migraine days reduction
Random forest 100 100 100 16,67 12
SVM (linear kernel) 76.67 63.33 90 23.33 3
SVM (RBF kernel) 76.67 70 83.33 23.33 2
ANFIS (aNN) 50 100 0 20 1
MLP (aNN) 85 90 80 15 2
Fuzzy clustering (unsup. ML) 45 90 0 86.67 2
SECONDARY ENDPOINT—abortive medication intake reduction
Random forest 100 100 100 33 8
SVM (linear kernel) 83.33 76,67 90 16.67 4
SVM (RBF kernel) 83.33 83033 83.33 16.67 5
ANFIS (aNN) 50 100 0 21.67 1
MLP (aNN) 81.67 83.33 80 18.33 3
Fuzzy clustering (unsup. ML) 48.33 96.67 0 56.67 4
SECONDARY ENDPOINT—reduction in days in which an abortive medication is required
Random forest 100 100 100 12.12 12
SVM (linear kernel) 88.33 76.67 100 11.67 5
SVM (RBF kernel) 75 90 60 25 3
ANFIS (aNN) * - - - - -
MLP (aNN) 88.33 80 86.67 16.67 4
Fuzzy clustering (unsup. ML) 50 100 0 50 1
EXPLORATORY ENDPOINT—MIDAS reduction
Random forest 100 100 100 27.27 2
SVM (linear kernel) 85 80 90 15 3
SVM (RBF kernel) 67.5 55 80 32.5 1
ANFIS (aNN) * - - - - -
MLP (aNN) 85 85 85 15 2
Fuzzy clustering (unsup. ML) 47.5 95 0 57.5 1

Table: The population is composed of only those patients who completed 1 year of treatment. The comparison is performed between group 2 vs. 4 + 5. Legend: accuracy (ACC); sensibility (Sens); specificity (Spec); area under the curve (AUC); the number of features used for classification (N); suppor vector machine (SVM); RBF kernel); ANFIS (aNN); MLP (aNN); unsupervised (unsup.); * performance failure in predicting the outcome. Data are expressed as percentage (%).