
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Obermayer et al. BMC Bioinformatics          (2023) 24:266  
https://doi.org/10.1186/s12859-023-05393-y

BMC Bioinformatics

PATH‑SURVEYOR: pathway level survival 
enquiry for immuno‑oncology and drug 
repurposing
Alyssa N. Obermayer1, Darwin Chang2, Gabrielle Nobles3, Mingxiang Teng1, Aik‑Choon Tan1,4, Xuefeng Wang1, 
Y. Ann Chen1, Steven Eschrich1, Paulo C. Rodriguez2, G. Daniel Grass5, Soheil Meshinchi6,7, Ahmad Tarhini8, 
Dung‑tsa Chen1 and Timothy I. Shaw1* 

Abstract 

Pathway-level survival analysis offers the opportunity to examine molecular pathways 
and immune signatures that influence patient outcomes. However, available sur‑
vival analysis algorithms are limited in pathway-level function and lack a streamlined 
analytical process. Here we present a comprehensive pathway-level survival analysis 
suite, PATH-SURVEYOR, which includes a Shiny user interface with extensive features 
for systematic exploration of pathways and covariates in a Cox proportional-hazard 
model. Moreover, our framework offers an integrative strategy for performing Hazard 
Ratio ranked Gene Set Enrichment Analysis and pathway clustering. As an example, we 
applied our tool in a combined cohort of melanoma patients treated with checkpoint 
inhibition (ICI) and identified several immune populations and biomarkers predictive of 
ICI efficacy. We also analyzed gene expression data of pediatric acute myeloid leukemia 
(AML) and performed an inverse association of drug targets with the patient’s clinical 
endpoint. Our analysis derived several drug targets in high-risk KMT2A-fusion-positive 
patients, which were then validated in AML cell lines in the Genomics of Drug Sen‑
sitivity database. Altogether, the tool offers a comprehensive suite for pathway-level 
survival analysis and a user interface for exploring drug targets, molecular features, and 
immune populations at different resolutions.

Keywords:  Pathway-level survival analysis, R Shiny app, Hazard ratio GSEA, Pathway 
clustering

Background
Organizing biological knowledge into pathways facilitates the integrative analysis of 
gene expression data derived from RNA sequencing and proteomics profiling. Common 
pathway-level analysis tools, such as ENRICHR [1] and GSEA [2], are able to perform 
pathway enrichment analysis based on gene set databases (e.g., KEGG [3], REACTOME 
[4], MSIGDB [5], LINCS1000 [6], and the Cell Marker database [7]). While these path-
way analysis tools tend to focus on differentially expressed genes between two groups of 
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samples, an alternative approach is to infer a pathway activity score in a single sample by 
transforming the expression of a set of genes into a single value using gene summary sta-
tistics, such as maxmean statistics [8], PLAGE [9], GSVA [10], and ssGSEA [2, 11]. These 
summary scores can capture pathway and gene regulatory activities in a sample, which is 
often challenging to infer by a single-gene expression. Furthermore, scores derived from 
custom gene sets or from network analyses [12–14] can then be used to dichotomize 
the patient population for survival analysis. For example, PERK-associated gene activity 
was found to be associated with a higher risk in melanoma patients [15], RAS depend-
ency index was developed in pancreatic adenocarcinoma [16], LCK network activity was 
associated with T-cell acute lymphoblastic leukemia patient survival [17], and an epithe-
lial-mesenchymal transition score was found to be associated with poorer disease-free 
survival in ovarian and colorectal patients [18]. Moreover, single scores derived from 
immune markers can be used as an estimate of immune components (e.g., Xcell [19], 
TIMER 2.0 [20], and geometric mean estimation of tumor infiltrative leukocytes [21]). 
These immune scores can then be applied in cancer patient classification [22], as a bio-
marker of checkpoint immunotherapy response [23], or as a prognosis marker that’s pre-
dictive of clinical outcome [24].

With several drug screening databases now available with perturbed gene sets after 
drug treatment in cancer cell lines, survival analysis can also be utilized to perform drug 
screening by identifying drugs that can reverse expression associated with highly refrac-
tory diseases [25]. For example, the Phase III AAML1031 clinical trial in pediatric acute 
myeloid leukemia (AML) has failed to show the benefit of experimental agents [26]. 
While preclinical studies have supported bortezomib as a therapeutic target in myeloid 
leukemias[27], bortezomib with standard chemotherapy did not improve treatment out-
comes in children [26], which highlights a critical need for new therapeutic strategies 
in these pediatric AML patients. Thus, by leveraging pathway-level survival analysis, 
we can systematically screen for drug-induced targets that can reverse gene expression 
associated with high-risk cancer types, such as pediatric AML. Overall, these integrative 
summary scores represent a useful approach in highlighting signaling pathways, drug-
induced targets, and immune populations that correlate with the clinical outcome. But 
existing survival analysis tools either lack a user-friendly interface or have limited func-
tionality for systematic screening of large pathway databases. They are often restricted in 
available patient cohorts or limited to a small subset of pathways [28–30] and are often 
incapable of accepting external user input data [28–31] or clinically relevant covariates 
[29, 32, 33]. Thus, to facilitate the public mining of retrospective clinical studies, we 
introduce PATH-SURVEYOR, a comprehensive plug-and-play suite for pathway-level 
survival analysis of signature databases. Our tool is presented with the following unique 
features:

1.	 A one-stop tool for expression-based survival analyses.
2.	 The ability to include multiple covariates inside the Cox-proportion hazard pathway 

model.
3.	 The ability to summarize prioritized gene signatures into relevant clusters and path-

way modules.
4.	 The ability to perform hazard ratio ranked gene set enrichment analysis.
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Altogether, survival analysis is a critical branch of statistics for analyzing the time-to-
event, and our tool facilitates a comprehensive survival analysis of pathway-level scores.

Implementation
Overview of the entire pipeline

PATH-SURVEYOR is implemented in the R environment, and packages can be auto-
matically installed during runtime. There are four major components of the PATH-
SURVEYOR (Fig.  1), which include: (1) The Interactive (UI) Mode (Fig.  1A). This 
feature allows for a point-and-click pathway survival analysis. The program can 
dichotomize the patient population based on gene expression (or pathway activ-
ity) into high and low levels by either median or a user-specified cutoff. The survival 
curve is estimated between patient populations using the Kaplan–Meier method, and 
differences in survival times are tested using Cox’s proportional hazard. The inter-
active mode offers the ability to perform select immune deconvolution in real time 
and perform univariate or complex multivariate analyses of clinical features. (2) The 
Pipeline (Advanced) Mode (Fig. 1C). This feature performs a complete survival anal-
ysis of pathway databases and gene features. Covariates can be included as part of 
the systematic screening, and the P-values are corrected by Benjamini-Hochberg. (3) 

Fig. 1  Schematic workflow of PATH-SURVEYOR: Pathway level survival enquiry for immune-oncology and 
drug repurposing. A In the On-The-Fly Shiny interface, users can provide a gene expression matrix matched 
with patient outcome meta information and a custom gene-set pathway. The shiny App will calculate a 
score for the selected pathway using a summary statistics, such as single sample gene set enrichment 
(ssGSEA), and dichotomized based on the median, optimum cut-point, quartiles, or user-specified cut-point. 
Univariate and multivariate Cox hazard regression analysis can be performed. B Several pathway databases 
are preloaded inside our app, including MsigDB, LINCS1000, and CellMarksDB. Additional patient features 
or immune deconvoluted features (Red Star Top Right) can be incorporated into a multivariate Cox hazard 
model and explored by our interface. C In the Pipeline mode, these scores were further dichotomized 
above and below the median ssGSEA score. A Cox regression analysis can be performed on each gene set 
to generate a comprehensive table of gene sets to filter according to significant, high-risk patients (hazard 
ratio > 1, P value < 0.05). A hazard ratio ranked gene list can be analyzed by GSEA (Bottom Right), and 
prioritized pathways can be visualized by pathway connectivity quantified by the Jaccard Index (Middle 
Right). Output of the analysis can be either a list of top pathways or gene list ranked based on hazard ratio. D 
Prioritized pathways can be visualized by pathway connectivity quantified by the Jaccard Index. E A hazard 
ratio ranked gene list can be analyzed by GSEA
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Pathway Connectivity. This feature allows the user to evaluate the similarity between 
pathways and group pathways that are predictive of the clinical outcome (Fig. 1D). (4) 
Hazard Ratio Ranked Gene Set Enrichment Analysis (GSEA) (Fig. 1E). This user inter-
face performs a GSEA analysis based on the gene-level hazard ratio ranking derived 
from the Pipeline Mode. This feature facilitates the identification of clinically relevant 
pathways and, in turn, identifies regulators that can drive the underlying gene expres-
sion. Additional installation and usage instructions is available in the Additional file 9: 
Methods section.

“On‑the‑fly” mode: shiny interface

PATH-SURVEYOR interactive mode provides the ability to analyze and visualize “on-
the-fly” associations of immune signatures and pathways scores with a clinical endpoint 
(Fig. 1A). The application facilitates the partitioning of patients based on pathway scores, 
estimated immune cells, and gene expression level, followed by univariate Cox-regres-
sion survival analysis and multivariate Cox-regression analysis. PATH-SURVEYOR uses 
several R packages, including survival (v3.2–11), survminer (v0.4.9), GSVA (v1.40.1) [10], 
and immunedeconv [34] (v2.1.0). Preloaded pathways include gene sets from MsigDB 
[5], CellMarker [7], and LINCS1000 [6] (Fig. 1B). Pathway score is calculated with the 
gsva() function based on ssGSEA, GSVA, plage, or zscore. The ssGSEA score is used 
as the default method because its calculation is not dependent on other samples in the 
cohort. Immune deconvolution is performed with the immunedeconv R package, which 
includes several deconvolution packages, such as CIBERSORT [35], ESTIMATE [36], 
and MCP counter [37]. Based on the derived feature, patients are divided into high and 
low levels based on this pathway activity (or individual gene expression), using either the 
median, quartiles, or a cutoff specified by the user. For multivariate analysis, a covari-
ate can be selected from the user-provided meta-information file. The multivariate sur-
vival analysis can be performed through additive and multiplicative interaction of two or 
more variables. To evaluate the association between pathways and survival over time is 
defined through a Cox-regression function [38]. Our tool allows for the pathway associa-
tion with survival after adjusting for patient meta information and evaluates associated 
interactions between the pathway and patient meta information. Our tool also allows the 
user to assess the linearity of each covariate and the proportional hazard assumption.

Pipeline mode: systematic pathway‑level survival analysis

To facilitate the identification of top high-risk pathways and genes, we have devel-
oped a pipeline to systematically assess pathways associated with hazard by a Cox 
proportional hazard function (Fig.  1C). The user can provide or select individual 
genes and pathway databases to perform a systematic screening. Each expression fea-
ture is stratified based on a median cutoff. The user also has the option of performing 
a systematic screening with the inclusion of a covariate as an additive or multiplica-
tive interactive model. The P value is calculated on the likelihood ratio, wald test. An 
adjusted P value can be calculated based on Benjamini–Hochberg correction method. 
In the output table, genes and pathways are ranked by the likelihood ratio P value.
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Connectivity Mode: Pathway Gene‑set Connectivity

The Connectivity Mode offers the user the ability to analyze the similarity between path-
ways associated with survival (Fig. 1D). The hazard ratio ranked pathways from the pipe-
line mode can be used as input to the Pathway Connectivity R Shiny app to generate 
hierarchical clustering based on gene-set similarity. A Jaccard function can calculate the 
distance between pathways:

The Jaccard score function J for two pathways A and B is defined as

where, A contains n set of genes, A = [a1, a2, …, an], B contains m set of genes, B = [b1, 
b2, …, bm]

The Jaccard matrix can be visualized as a heatmap.
Next, the pathways can be clustered using the hclust function from R (v4.1.0) into 

k-groups (user-specified). Clusters can be visualized as a dendrogram. To overlap sur-
vival-associated gene expression, genes within the pathway can be displayed as a table 
with a flexible sorting feature and added annotation information.

GSEA mode: hazard ratio ranked gene set enrichment analysis

From the pipeline mode, we can derive a hazard ratio ranked gene list, which can then 
be applied as input to the Pre-Ranked-Hazard-Ratio GSEA R Shiny app (Fig. 1E). This 
application takes a two-column file of the gene symbols and hazards ratios, which is 
used as input to the GSEA function from clusterProfiler (v4.0.5). The application per-
forms GSEA, and results can be visualized as a table with additional options for visual-
izing the GSEA plots through the gseaplot2 function from enrichplot (v1.12.3). When 
screening a large number of pathways, the hazard-ratio ranked GSEA function would 
be more suitable due to its ability to perform rapid screening of gene set pathway data-
bases compared to ssGSEA survival analysis (Additional file 8: Table S1). Moreover, Pre-
Ranked-Hazard-Ratio GSEA would be more sensitive in capturing subtle differences in 
survival when analyzing pathways with a high number of genes, which is an inherent 
design of the GSEA algorithm [39]. The ssGSEA survival analysis would be more favora-
ble when analyzing pathways with a limited number of genes, such as cell-type-specific 
markers. Overall, both strategies offer complementary support for a pathway to be asso-
ciated with survival.

Results
To demonstrate the functionalities of the PATH-SURVEYOR framework, we have 
included use-case examples of biomarker discovery in a cohort of immunotherapy-
treated melanoma patients. We have also provided an example use-case strategy for 
drug repurposing in pediatric acute myeloid leukemia patients.

Identifying immune pathways associated with effective checkpoint inhibition treatment

To identify predictive biomarkers that facilitate patient selection of patients suitable for 
immune checkpoint inhibitor (ICI) treatment, we integrated 313 melanoma patients 
treated with ICI from Riaz et al. (n = 51) [40], Hugo et al. (n = 25) [41], Van Allen et al. 
(n = 25) [42] (n = 42), Liu et  al. (n = 122) [43], and Gide et  al. (n = 73) [44]. First, we 

J(A, B) = A ∩ B / A ∪ B
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performed a systematic univariate Cox-hazard analysis of individual gene expression in 
the “Pipeline Mode” and identified 100 genes associated with the better prognosis (Addi-
tional file 8: Table S2). These include PRF1 and HLA-DPA1, which have been previously 
reported as predictive biomarkers for ICI therapy [45] (Fig.  2). “On-the-fly analysis 
mode” further demonstrate PRF1 and HLA-DPA1 had significantly higher expression in 
patients who respond to ICI treatment (Additional file 1: Figure S1). We then ranked the 
genes based on hazard ratio derived from the Cox-proportion hazard model (Additional 
file 2: Figure S2A) and performed a Hazard Ratio Ranked GSEA analysis of the Hallmark 
database (Fig. 3A; Additional file 2: Figure S2B, C). Interferon Gamma was found associ-
ated with Low-risk patients (Fig. 3B). Consistently, immune signatures associated with 
LCK and Cytotoxicity were also associated with Low-risk patients (Fig. 3C, D). Signifi-
cantly, these immune signatures were also validated in 22 patients treated with neoad-
juvant ipilimumab [46] (Fig. 3B–D) and in 88 patients from a Moffitt Melanoma Cohort 
with metastatic disease [46] (Additional file  3: Figure S3). Through immune deconvo-
lution, we derived an immune score from xCell [19] and an estimated M2-like mac-
rophage population from Cibersort [35]. We found that high immune infiltration with 
low M2-like (immune suppressive) macrophages was associated with a better outcome 
(Fig. 4A, B). Next, we used the “Pipeline Mode” to perform a systematic univariate Cox-
hazard analysis of gene expression followed by a GSEA analysis of immune signatures 

Fig. 2  Overall survival curves of immunotherapy treated skin cancer patients. Overall survival curves of 
immunotherapy treated skin cancer patients dichotomized based on perforin 1 (PRF1) (A) and HLA-DPA1 
(B). User interface of the gene-level survival analysis of PRF1. Samples were filtered based on pre-treatment 
(2 and 3). PF1 was searched and selected from the Single-gene list (4, 5, 6). Kaplan meier curve is shown 
comparing a median dichotemized patient population (7)
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and identified to identify 69 immune signatures associated with a better outcome (Addi-
tional file  8: Table  S3). A systematic assessment of the immune pathway followed by 
Pathway Connectivity analysis demonstrated 13 immune modules captured a favorable 

Fig. 3  Gene-set Enrichment Analysis with Genes Ranked by Hazard Ratio. A Genes can be ranked based 
on the hazard ratio for overall survival (OS). GSEA can be applied to examine for similarity in gene features 
that are shared in high or low-risk diseases. Interferon Gamma (B), the LCK Signature (C), and the Cytotoxic 
signature (D) were found to be associated with low-risk patients based on GSEA. Kaplan Meier curves 
showing patients dichotomized based on ssGSEA immune signatures are shown on the right in skin cancer 
patients treated with ICI and validated in a separate cohort of patients treated with ipi adjuvant therapy

Fig. 4  Associating Immune Scores with Patient Survival. A Skin Cancer Patients treated with ICI dichotemized 
based on xCell derived Immune Scores as well as M2 Macrophage estimated from Cibersort. Patients with 
High Immune Score and Low M2 Macrophage were associated with better survival. B User Interface that 
access this function from the Shiny App is (1) Select Feature Condition to restrict to pretreated patients, (2) 
Multivariate Coxh Analysis, (3) Bivariate Interaction Survival Analysis, (4) Select Immune Score (on left) and M2 
Macrophage (on right). The feature can be dichotemized “on-the-fly” if it is a continuous variable (4)
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outcome in pretreated RNA samples, including CD8 cytotoxicity, antigen presentation, 
interferon, and immune checkpoint marker signatures (Fig. 5, Additional file 4: Figure 
S4). Next, we used the MsigDB hallmark pathways to compare performance between 
the hazard-ratio ranked GSEA analysis and ssGSEA analysis. We find that 72% of the 
(8/11) hallmark pathways identified by ssGSEA can be identified by the hazard-ratio 
Ranked GSEA approach. The eight overlapping pathways were consistently associated 
with an active immune response with a favorable prognosis (Additional file 5: Figure S5). 
The hazard-ratio Ranked GSEA was also able to correlate high-risk patients with nine 
pathways associated with MYC and glycolysis, which was not identified by the ssGSEA 
survival analysis (Additional file 5 Figure S5). Altogether, our tool suggests favorable out-
come is linked with immune activation while highlighting the possibility of MYC-driven 
immune suppression in high-risk melanoma patients.

Survival‑directed therapeutic discovery in acute myeloid leukemia

To leverage our framework for therapeutic discovery, we obtained the gene expres-
sion data and clinical annotation of 220 patients with the KMT2A fusion event from 
the National Cancer Institute TARGET pediatric acute myeloid leukemia (AML) 1031 
cohort (0–22 years of age). The translocation event of the gene KMT2A, also known as 
mixed lineage leukemia (MLL), is frequently identified in pediatric AML. Through its 
multiple fusion partners arises a diverse patient population with a need for advanced 
risk stratification [43]. Through the PATH-SURVEYOR suite of tools, we examined path-
ways and genes associated with poor outcomes and idenfied therapeutic targets in high-
risk patients. First, single samples gene set enrichment analysis (ssGSEA) was performed 
using the expression data in tandem with the Library of Integrated Network-based Cel-
lular Signatures (LINCS; 31,028 gene sets) LINCS1000 gene sets to calculate the path-
way scores (Additional file 6: Figure S6). Next, the patients were dichotomized through a 
median cut-point of each pathway score into an above-median or below-median group, 
followed by a Cox proportional hazards regression using the patient’s overall survival 

Fig. 5  Pathway connectivity Analysis User Interface. (1) Input list of pathway that satisfy the selection 
criterion. (2) Set the number of clusters captured by the algorithm. (3) Select the Clustering Visualization Tab
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(OS). A hazard ratio value greater than one and a P-value less than 0.05 was applied 
to identify significant pathways associated with high risk. To prioritize a putative thera-
peutic target that downregulates genes associated with high-risk AML in the KMT2A 
subgroup, we examined the enriched connectivity map (cMAP) name and Mechanism 
of Action. We found 12 enriched Cmap names and 6 enriched drug categories grouped 
by their mechanism of action (Fig.  6A). Notably, genes downregulated by the HDAC 
inhibitor, Vorinostat, and ATPase inhibitor, Thapsigargin, were associated with the 
worst prognosis based on OS and event-free survival (EFS) (Fig.  6B, E). The two pri-
oritized targets were also validated in patients after resampling 75% of the population 
(Additional file 7: Figure S7) and were further validated in a separate cohort of pediatric 
AML patients from AAML0531 (#NCT00372593) (Fig.  6C, F). The proportional haz-
ard regression models were evaluated to be suitable based on a Chi-square Goodness-
of-Fit test (Additional file 8: Table S4). Furthermore, both Vorinostat and Thapsigargin 
were highly sensitive in AML cell lines based on the genomics of drug sensitivity in can-
cer (GDSC) database (Fig. 6D, G). Taken together, we presented an integrative strategy 
utilizing PATH-SURVEYOR to prioritize pathways based on patient risk and identified 
known therapeutic targets in high-risk KMT2A fusion-positive AML patients.

Discussion
PATH-SURVEYOR is designed to visualize and perform systematic survival analy-
sis based on gene and pathway information. The application is designed for users with 
limited experience in programming as well as for advanced users to perform systematic 
high-throughput pathway screening. In the interactive mode, the Shiny application will 
ensure reproducibility and can be easily set up and applied in any cohort. In the pipeline 
mode, the user can apply univariate and multivariate analysis of pathway and patient 
covariates associated with patient survival outcomes. Our current application can also 

Fig. 6  Overall survival curves of KMT2A positive patients in TARGET AML 1031 and AML 0531. A Odds ratio of 
the top enriched Cmap names and mechanisms of action (MOAs) identified through EFS Coxph regression 
analysis. B Overall survival curves of KMT2A fusion positive patients in TARGET AML 1031 (N = 220). Patients 
are classified by the ssGSEA score derived from genes affected by the HDAC inhibitor Vorinostat. C Overall 
survival curves of KMT2A fusion positive patients in TARGET AML 0531 (N = 46) validation cohort. Patients 
are classified by the ssGSEA score derived from genes affected by the HDAC inhibitor Vorinostat. D Cell-line 
sensitivity ranking based on IC50 values of Vorinostat. E Overall survival curves of KMT2A positive patients 
in TARGET AML 1031. Patients are classified by the ssGSEA score derived from genes affected by the ATPase 
inhibitor Thapsigargin. F Overall survival curves of KMT2A positive patients in TARGET AML 0531 validation 
cohort. Patients are classified by the ssGSEA score derived from genes affected by the ATPase inhibitor 
Thapsigargin. G Cell-line sensitivity ranking based on IC50 values of Thapsigargin
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perform GSEA based on hazard ratio ranking as well as pathway clustering to examine 
shared gene and pathway features associated with survival, which is unique to PATH-
SURVEYOR when compared with other tools, including TRGAted [31], UALCAN [28], 
Path2Surv [47], METABRIC-pathway-survival [48], CASA [32], GNOSIS[49], Esurv 
[33], Kmplot [29], and Survial Genie [30] (Table 1). Moreover, our tool offers the unique 
ability to perform quality assessment of the model and covariates, such as evaluation 
of the Cox hazard model assumption and linearity of each covariate. The PATH-SUR-
VEYOR framework analyzed data from melanoma patient samples collected prior to ICI 
treatment, and we found cytolytic T cell and antigen presentation signatures were asso-
ciated with a better survival outcome. Our result highlighted the potential of leveraging 
immune biomarkers as predictors of immunotherapy response in melanoma patients. 
In our analysis of pediatric AML patient samples, our result highlighted Vorinostat and 
Thapsigargin as drugs with the potential to reverse gene expression associated with 
high-risk KMT2A-fusion-positive patients. Interestingly, AML cell lines were sensitive 
to these drugs based on results from the GDSC database, underlining epigenetic regula-
tors and endoplasmic reticulum stress as therapeutic targets in high-risk KMT2Ar AML 
cells. Altogether, we have provided two major use-case examples of utilizing our PATH-
SURVEYOR framework for identifying immune biomarkers and drug repurposing of 
targets.

Conclusion
As more RNA sequencing and proteomics data are being captured in large clinical tri-
als, generating user- interfaces will facilitate access to these data sets. Thus, we present 
PATH-SURVEYOR, a program for inferring survival through pathways, immune com-
ponents, and drug-induced targets. We anticipate PATH-SURVEYOR will enable a col-
laborative environment for exploring pathway-level, drug targets, and immune features 
that are predictive of treatment efficacy, especially for high-risk malignancies.

Availability and requirements
Project name: PATH-SURVEYOR. Project home page: https://​github.​com/​shawl​
ab-​moffi​tt/​PATH-​SURVE​YOR-​Suite. URL Links to the Input File Prep App: https://​
shawl​ab-​moffi​tt.​shiny​apps.​io/​path_​surve​yor_​filep​rep/. URL Links to the PATH-
SURVEYOR App: https://​shawl​ab-​moffi​tt.​shiny​apps.​io/​path_​surve​yor/. Preloaded 
Examples: https://​shawl​ab-​moffi​tt.​shiny​apps.​io/​path_​surve​yor_​prelo​aded_​examp​le_​
aml/. https://​shawl​ab-​moffi​tt.​shiny​apps.​io/​path_​surve​yor_​prelo​aded_​examp​le_​melan​
omaici/. URL Links to the Connectivity Analysis App: https://​shawl​ab-​moffi​tt.​shiny​
apps.​io/​pathw​ay_​conne​ctivi​ty/. Preloaded Example: https://​shawl​ab-​moffi​tt.​shiny​
apps.​io/​pathw​ay_​conne​ctivi​ty_​prelo​aded_​examp​le_​melan​omaici/. URL Links to the 
Hazard Ratio GSEA App: https://​shawl​ab-​moffi​tt.​shiny​apps.​io/​prera​nked_​hazar​dra-
tio_​gsea/. Preloaded examples: https://​shawl​ab-​moffi​tt.​shiny​apps.​io/​prera​nked_​hazar​
dratio_​gsea_​prelo​aded_​examp​le_​melan​omaici/. Data and Code to the Example Use 
Cases: http://​shawl​ab.​scien​ce/​shiny/​PATH_​SURVE​YOR_​Examp​leUse​Cases/. Github 
Repository of the Supplementary Examples: https://​github.​com/​shawl​ab-​moffi​tt/​
PATH-​SURVE​YOR_​Manus​cript_​Suppl​ement​ary. Downloadable Instructions for set-
ting up the Docker Images are available here: https://​github.​com/​shawl​ab-​moffi​tt/​
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PATH-​SURVE​YOR-​Suite/​tree/​main/7-​PATH-​SURVE​YOR-​Docker. Operating system: 
Platform independent. Programming language: R version 4.1 or higher. License: BSD 
License.
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OS	� Overall survival
CMAP	� Connectivity Map
MOA	� Mechanism of Action
TARGET	� Therapeutically Applicable Research To Generate Effective Treatments
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