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SUMMARY In this review, we consider the regulatory strategies of aquatic oligotrophs,
microbial cells that are adapted to thrive under low-nutrient concentrations in oceans,
lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use
less transcriptional regulation than copiotrophic cells, which are adapted to high nutri-
ent concentrations and are far more common subjects for laboratory investigations of
regulation. It is theorized that oligotrophs have retained alternate mechanisms of regu-
lation, such as riboswitches, that provide shorter response times and smaller amplitude
responses and require fewer cellular resources. We examine the accumulated evidence
for distinctive regulatory strategies in oligotrophs. We explore differences in the selec-
tive pressures copiotrophs and oligotrophs encounter and ask why, although evolution-
ary history gives copiotrophs and oligotrophs access to the same regulatory mecha-
nisms, they might exhibit distinctly different patterns in how these mechanisms are
used. We discuss the implications of these findings for understanding broad patterns in
the evolution of microbial regulatory networks and their relationships to environmental
niche and life history strategy. We ask whether these observations, which have emerged
from a decade of increased investigation of the cell biology of oligotrophs, might be
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relevant to recent discoveries of many microbial cell lineages in nature that share with
oligotrophs the property of reduced genome size.

KEYWORDS marine microbiology, metabolic regulation, transcriptional regulation

INTRODUCTION

icrobial cells monitor intracellular and extracellular variables and respond to

detected changes using regulation. Regulation governs intercellular interactions
(e.g., quorum sensing), exploits or protects the cell from environmental conditions
(e.g., catabolic operons and stress responses), and modulates internal processes to
achieve homeostasis across growth cycles (e.g., the control of cellular growth and divi-
sion). Regulatory mechanisms of microbial cells have been explored at length, with the
consensus that bacteria generally respond to environmental stimuli via transcriptional
regulation (expressing or repressing genes). However, there are many additional layers
of regulation in bacterial cells: regulation mediated by structural RNAs (e.g., ribos-
witches), mechanisms that modulate mRNA translation (e.g., DEAD box ATPases), cova-
lent and allosteric posttranslational modifications of proteins (e.g., acetylation of pro-
teins), and internal regulation of cellular metabolism based on the kinetic properties of
enzymes (e.g., partitioning of glucose and galactose metabolism). Most of what we
know about microbial regulation has been derived from the study of cells that can eas-
ily be cultured, although significant work has been done on regulation in extremo-
philes and the broader uncultured microbial diversity.

The study of microbial regulation is relevant beyond the study of cell physiology.
On an ecological scale, regulation in response to environmental changes and fluctua-
tions in cell physiology determines which genes are turned on and off at a given point
in time, for example impacting which organic compounds are oxidized. Thus, the mere
presence of a gene in the environment does not mean that the protein coded by that
gene is produced. By grasping how cells in the ocean regulate protein production, we
might increase our ability to predict carbon oxidation functions vital to understanding
the global carbon cycle. Understanding regulatory responses of microbes to fluctuat-
ing environments is also critical in a variety of other fields, including in plant-microbe
interactions, the study of virulent bacteria, and biotechnological settings, as summar-
ized in a recent article (1).

Prokaryotes are generally divided into two categories based on lifestyle strategy:
oligotroph or copiotroph, with a broad spectrum between the two opposites. These
two strategies are also relative measures of lifestyle based on the magnitude of nutri-
ent fluxes and concentrations in environments; for instance, even the highest concen-
trations of nutrients in the ocean are lower than concentrations regularly experienced
by gut bacteria. Oligotrophic microorganisms are adapted to thrive in environments
with very low nutrient fluxes (<0.1 mg of C/L per day) and achieve maximal growth
rates under these conditions (2); high-nutrient concentrations are known to inhibit
growth of oligotrophs (3, 4). Copiotrophs are opportunists, only experiencing maximal
growth rates at high nutrient concentrations, but are capable of surviving at low nutri-
ent conditions for long periods of time, essentially in a state of starvation (5-8). The oli-
gotroph/copiotroph dichotomy is a simplistic classification of microbes: many microor-
ganisms fall somewhere in between, with varied combinations of characteristics
associated with the two extremes (9). Because of this, various other frameworks have
been proposed, such as the competitive/stress tolerator/ruderals triangle (C-S-R)
(9-11), among others (12, 13), which provide useful insights into microbial ecosystem
functioning. Despite this, the oligotroph/copiotroph dichotomy benefits from its sim-
plicity, providing simple categories that broadly assess the niches and physiologies of
microbes and ease communication among researchers.

Overall, there are more oligotrophic bacteria in the world than copiotrophic bacte-
ria, primarily because the majority of the world is covered by oligotrophic ocean envi-
ronments (14, 15). The two most abundant clades of bacteria in the world are also its
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most well-studied oligotrophs: SAR11 and Prochlorococcus (16, 17). Prochlorococcus is a
group of very small (cell volume, ~0.14 um3) photosynthetic cyanobacteria that are
ubiquitous in the world’s oceans between 40°S and 40°N latitudes and have a minimal
genome (18-20). They are the most abundant type of phytoplankton in the world, with an
estimated 2.9 = 0.1 x 10% cells worldwide (21). There are several reviews of Prochlorococcus,
including a recent, highly relevant review of regulation in Prochlorococcus (18, 19, 22). SAR11
is a clade of heterotrophic alphaproteobacteria that are very small (cell volume, 0.01 uwm?3),
ubiquitous in the world's oceans at high densities (especially at the surface), are nonmotile,
and have one of the smallest genomes of any free-living organism (17, 23). Globally, it is esti-
mated that there are 2.4 x 10% SAR11 cells in the world (17). As with Prochlorococcus, there
are several helpful SAR11 reviews, including a 2017 general review of SAR11 and a review of
genome streamlining in SAR11 (24, 25).

The oligotroph/copiotroph life history strategies are theorized to be associated with a
variety of physiological and genomic adaptations, with oligotrophs generally thought of as
being small in cell size, free-living, nonmotile, and slow-growing and having streamlined
genomes with low numbers of rRNA gene operons and low GC content (2, 14, 15, 23, 24,
26-30). Other studies have found a lack of correlation between assigned lifestyle strategy
and proposed phenotypic traits across a range of environments (31, 32). In uncovering
broad associations between phenotypic traits and lifestyle strategy, there are two difficul-
ties: first, most cultured microbes are copiotrophs, due to the ease of isolating and cultur-
ing them (15, 27, 33, 34); second, microbes are often misclassified as oligotrophs based
solely on their presence in oligotrophic environments. For instance, Caulobacter has long
been studied as a model aquatic oligotroph (see, for example, reference 35); however, a
recent study has shown that Caulobacter microbes are primarily found in high-nutrient soils
and use aquatic systems mainly for dispersal (36), casting doubt on their reputed character
as aquatic oligotrophs.

In this review, we examine one of the most salient examples of a theorized broad
association between regulatory strategies and life history strategies. The comparative
study of microbial regulation is not a “field” in the sense that you will find symposia
devoted to the topic. Rather, we tend to see each cell type as an amalgam of regula-
tory functions that suits its needs, and we do not often consider whether cellular regu-
latory strategies can be divided into broad categories that fit modalities in lifestyle. For
each type of regulation known to operate in prokaryotic organisms (transcriptional,
posttranscriptional, posttranslational, and kinetic), we first briefly introduce its utility
to cells, describe its mode of action, review the evidence (if any) for different uses
between copiotrophs and oligotrophs, and finally provide examples of each type of
regulation in aquatic oligotrophs. We show that the evidence indicates a reduction in
transcriptional regulation in oligotrophs, resulting in constitutive expression of many
genes (Fig. 1). Many posttranscriptional levels of regulation seem to be present at simi-
lar levels in oligotrophs as in copiotrophs, but they take on added importance to the
functioning of cells in the absence of transcriptional regulation.

Finally, we ask why copiotrophs and oligotrophs might use a common set of regula-
tory mechanisms with very different preferences on how, and how frequently, they are
employed. We ask whether these differences are part of a multivariate continuum of
cell properties, such that theorizing mainly serves a heuristic role, or whether there are
trends in evolution that can lead different lineages to converge on a set of cell regula-
tory properties associated with oligotrophy that are distinctly identifiable and uniquely
different from those associated with copiotrophy. We ask how creating such categories
might help us understand the ecology and physiology of cells and whether it makes
sense to develop broad rules that could be used to define these categories.

REGULATION AT THE TRANSCRIPTIONAL LEVEL

The central dogma of molecular biology states that genes, encoded in DNA, are
transcribed into mRNA and then translated into protein. Cells can regulate the amount
of a given protein in the cell by modulating all parts of this process. Transcriptional
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FIG 1 lllustration of the primary hypothesis explored in this article. Aquatic oligotrophic microorganisms are depleted in transcriptional
regulation compared to copiotrophs. This results in constitutive expression of most of their genes, no matter the current nutrient regime
they are experiencing. This constitutive expression may further be modified by posttranscriptional, posttranslational, or kinetic/metabolic
regulation, but the result remains that a majority of proteins from oligotrophic genomes are expressed most of the time. “Metabolic activity”
here refers to all levels of regulation, from transcriptional to posttranslational.

regulation has the benefit of saving on cellular resources when a nutrient is unavail-
able, with no excess production of mRNA or protein. The downside is that it can be rel-
atively slow (on the order of minutes) to respond to a stimulus (37) and requires extra
regulatory machinery. In Escherichia coli, it has been shown that the majority of protein
expression changes are attributable to transcriptional regulation (38).

Introduction to Transcriptional Regulation

Regulation at the transcriptional level modulates the amount of a given gene being
expressed at any given time. Generally, aquatic microbes are thought to respond to
environmental changes via a sense-response system, where an environmental stimulus
initiates a transcriptional response in the cell (39). These transcriptional responses can
take multiple forms.

Suites of genes that are regulated together in response to a stimulus are called reg-
ulons; regulons are generally regulated by a combination of transcription factors (40),
proteins that either enhance or repress the binding of RNA polymerase to the pro-
moter of a gene, and sigma factors (o-factors) (41). o-Factors are transcription initia-
tion factors that are required for the binding of RNA polymerase to gene promoters. By
having different o-factors that bind to different gene promoters, cells can change
expression of large sets of genes by simply changing which o-factor is expressed (42).
o-Factors are usually used to modulate responses to large environmental changes,
such as starvation, heat stress, etc. (43). E. coli cells have seven o-factors, while some
Verrucomicrobia have more than 30 o-factors.

Transcriptional regulation can also happen in a more targeted way, through two-
component regulatory systems, which translate environmental stimuli into a targeted
regulatory response using phosphotransferase systems (44). Two-component systems
are comprised of a histidine kinase, which senses the environmental stimulus, and a
response regulator protein, which receives the signal from the kinase and activates the
transcriptional response (45). The breadth of possible transcriptional regulation in bac-
teria, such as the types of transcription factors, o-factors, and two-component systems,
is extensive and has been reviewed before (40, 44, 46-48).
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Relevance of Transcriptional Regulation to Oligotrophs

Oligotrophs have less transcriptional regulation than would be expected from their
genome sizes. This has been demonstrated both bioinformatically by mining oligo-
troph genomes for genes associated with regulation, as well as experimentally, looking
at changes in transcription in response to environmental changes.

A reduction in the number of mechanisms for transcriptional regulation is evident at
the genome level in the most-studied representative of the SAR11 clade, “Candidatus
Pelagibacter ubique” strain HTCC1062, which only has two o-factors and four two-compo-
nent regulatory systems (23). In a comparison of o-factors in bacteria to genome size, a va-
riety of oligotrophs, including SAR11, Prochlorococcus, and the abundant oligotrophic gam-
maproteobacterial clades SAR86 and SAR92, were found to have fewer o-factors than
would be expected based on genome size (24). In a survey of two-component systems in
marine bacteria, it was discovered that oligotrophy was associated with a reduced number
of two-component regulatory systems, with oligotrophs having, on average, 0.2 histidine
kinases per 100 genes, while copiotrophs had 1.4 (45). Similarly, the oligotrophic clade Il of
the globally abundant cyanobacteria Synechococcus, such as Prochlorococcus, has limited
numbers of histidine kinases and response regulators (7 and 12, respectively) compared to
the abundant freshwater, more copiotrophic Synechocystis cyanobacteria (47 and 42,
respectively) (49). Within the Dadabacteria phylum, the marine pelagic subclade that exhib-
its genome streamlining has fewer genes associated with two-component systems and
motility (50).

In an analysis of the genomic features that differentiate oligotrophs and copiotrophs, it
was discovered that, compared to copiotrophs, oligotroph genomes were depleted in
genes in all categories relating to regulation (14). These categories included o-factors, tran-
scriptional regulators (COG0583), AraC-type DNA-binding domain-containing proteins
(COG2207), DNA-binding winged-helix-turn-helix (HTH) domains (COG3710), regulators
with FOG:GGDEF domains (COG2199), and regulators with FOG:EAL domains (COG2200)
(14). Another, more recent paper found a similar result (i.e., depletion of genes in the tran-
scriptional regulation category in oligotrophs) when categorizing oligotroph/copiotroph
based on maximal growth rates as predicted by codon usage bias (27). This definition of
oligotroph/copiotroph is based on one cell property but has the advantage of being quan-
titative in nature. However, this functional analysis used genomes from the RefSeq data-
base, which spans a variety of habitats. We recently repeated this analysis using a large col-
lection of marine metagenome-assembled genomes (51) (Fig. 2). We first found that the
genomes of the oligotrophic microbes in this data set generally conform to predicted ge-
nome characteristics of oligotrophs: smaller genomes and lower GC content (Fig. 2A and
B). Next, as found in the previous analysis that used RefSeq genomes, copiotrophs were
significantly (P < 0.05, Mann-Whitney test with Benjamini-Hochberg correction) enriched
in genes for transcriptional regulators compared to oligotrophs (Fig. 2C), again confirming
that oligotrophs are depleted in transcriptional regulation at the genomic level. Finally, a
recent review compared traits of marine pelagic microbes (generally oligotrophs) to fresh-
water sedimentary microbes (generally copiotrophs) again found that the marine pelagic
microbes tended to have smaller genomes, lower GC content, fewer o-factors, and fewer
two-component systems than the freshwater sediment microbes (52).

Several experimental studies have reported a global reduction of transcriptional
regulation in oligotrophs. In a comparison of rRNA/rDNA ratios in two oligotrophic bac-
teria, SAR11 and SAR92, and two copiotrophic bacteria, Roseobacter and Flavobacteria,
Lankiewicz et al. found that the two oligotrophs did not modulate their ribosome num-
ber in response to growth rate, indicating a lack of transcriptional regulation of rRNA
in the oligotrophs compared to copiotrophs (53). In a subsequent paper, the same four
organisms were compared for their global transcriptional changes in response to tran-
sitioning from exponential to stationary growth phases (54). In the two oligotrophs,
the change in transcript abundances between exponential and stationary phases was
extraordinarily minimal, with almost all changes falling below a log,-fold change of 2
(54). In the copiotrophs, on the other hand, transcript abundances varied widely
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FIG 2 Analysis of marine copiotroph/oligotroph metagenome assembled genomes (MAGs) from Tully et al. (51), with lifestyle strategy defined
by predicted maximal growth rate based on codon usage patterns, as in Weissman et al. (27). (A and B) Comparison of genome characteristics
of the two lifestyle categories from this data set. (C) Enrichment of different COG categories in copiotrophs or oligotrophs. (For full methods for
this analysis, see reference 76.) Category T was split between COG categories having “chemotaxis” in their description and all others. Category N
was split between categories with “flagella” in their description and all others. Category K was split between categories with “transcriptional
regulator” in their description and all others. Category O was split between categories representing common posttranslational modifications

(acetylation, phosphorylation [kinases], ubiquitination, methylation, glycosylation, adenylation, and peptidases) and
adapted from reference 76.

between the two growth stages, with log,-fold changes reaching 10 (54). The low am-
plitude changes in SAR11 likely reflect the absence of the stationary-phase sigma fac-
tor o® in these cells, which results in a muted proteomic response to entering station-
ary phase (55). Instead of wholesale proteome remodeling, modest increases in the
abundance of proteins involved in maintaining cellular protein pools, such as chaper-
ones, signal transducing proteins, and amino acid synthesis enzymes (especially methi-
onine and cysteine) were reported in SAR11 cells entering stationary phase (55). Sowell
et al. argued that the muted proteomic response of “Ca. Pelagibacter ubique” allows
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them to cope with short periods of nutrient deprivation and resume growth quickly,
making a comprehensive global stationary-phase response unnecessary (55).

Studies of Prochlorococcus using cultures, metatranscriptomics, and pigment analyses
point to control of chlorophyll production by protein-level, not transcriptional, regulation
(56, 57). In a proteomic analysis of the oligotrophic alphaproteobacterium Sphingopyxis
alaskensis in glucose-limited chemostats, only 12 of over 1,000 resolved proteins were
found to be significantly different in abundance compared to nutrient-replete conditions
(58). Similarly, the oligotroph Sphingomonas sp. strain RB2256 showed consistent growth
rates across low and high nutrient conditions, which was hypothesized to be due to consti-
tutive expression of protein-synthesizing machinery (59). In a mesocosm experiment where
surface marine microbial communities were exposed to deep-see water, the highly abun-
dant oligotrophs (SAR11 and Prochlorococcus) showed little to no transcriptional response,
compared to the copiotrophic Alteromonas species detected (60).

There is additional experimental evidence indicating that oligotrophs have limited
transcriptional regulation at the global level. Much of this evidence comes from studies
that compare data from transcriptomic (total RNA from cells that is sequenced [61])
and proteomic (total proteins from cells that are analyzed via mass spectrometry [62])
studies. By simultaneously comparing changes in transcript and protein abundance for
genes, the regulatory control of that gene can be examined (63). If a gene is under
transcriptional control, one would expect changes in mRNA and protein abundance to
be correlated for that gene, while genes under posttranscriptional regulation would, in
principle, have decoupled protein and transcript abundance. However, differences in
the stability of mRNA and proteins in cells can also skew correlations (63). As an exam-
ple, in E. coli, the half-life of mMRNA molecules is only minutes long, while proteins have
an average half-life of 20 h, resulting in a lack of correlation between transcripts and
proteins on a single-cell basis (64). However, in general, when transcript and protein
abundances are averaged over a population, there is a linear correlation, with at least
40% of variation in protein abundance being explained by transcript abundance (38,
65). While these findings point to posttranscriptional regulation being widespread
across all domains of life, they also indicate that, in general, protein and transcript
abundances are correlated (66). In three papers examining transcriptional and proteo-
mic responses in SAR11 to iron, sulfur, and nitrogen limitation, there was no correlation
between transcript and protein abundances, except for a few genes, indicating a lack
of transcriptional regulation at a global level in SAR11 (Fig. 3A) (67-69). Similarly, in an
examination of diel oscillations in Prochlorococcus transcripts and proteins, transcript
abundances were found to vary much more widely than protein abundance for genes,
signifying heavy posttranscriptional regulation (56). In several of these papers, the pos-
sibility of either mRNA degradation or missed pulses of mRNA skewing transcript abun-
dances was tested, but no evidence was found to support these possibilities (56, 68).
On the environmental level, one study that paired metagenomic and metaproteomic
data from oligotrophic ocean samples found that the most abundant members of the
microbial community (SAR11, Prochlorococcus, Synechococcus, and SAR116) had strong
coupling between the presence of a gene in the genome and the corresponding pro-
tein being expressed, while the opposite was true for the rarer, copiotrophic members
of the community (70). This suggests that oligotrophs were expressing most of their
genes in the samples studied, while copiotrophs were not.

When examining a trove of published and unpublished proteomic data collected on
HTCC1062 cells over a variety of nutrient limitation conditions, it becomes clear that
these cells constitutively express the majority of their genes. Rarefaction curves of the
proteomic coverage of HTCC1062 shows almost 80% coverage due to the constitutive
expression of most genes (Fig. 4). In contrast, the nonoligotrophic cyanobacterium
Synechocystis PCC68803 proteome only shows around 50% coverage, indicating that
only about half of the genes in this organism are being expressed under a given set of
conditions (Fig. 4). This has been borne out in other oligotrophs as well, including a cul-
tured representative of the ammonia-oxidizing Thaumarchaeota phylum, Nitrosopumilus

June 2023 Volume 87 Issue 2

Microbiology and Molecular Biology Reviews

10.1128/mmbr.00124-22

7


https://www.ncbi.nlm.nih.gov/protein/PCC68803
https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00124-22

Regulation in Oligotrophs

T SAR11: Fe deplete/Fe replete SAR11: S deplete/S replete o
e
P © SAR11: N deplete/N replete
)

| % 7z - % [} L

‘ e s ° Habitat

I - £ 1001
c 57 K= Animal associated
E= -
© 34 P qg’, Freshwater
o
a 2L - 2 ©  Marine
c . ] .
q—) ° ©  Soil
2 L 0- © Soil/animal associated
< 0 - 29
) S
=]
2 . ;

- 4 -
% I - 1 \"iE'”v"[ i
2347 —"igﬁﬁ.
B ®
i -100
]
|

2 0 2 4 6
log2 fold change in mRNA

Lifestyle category

Cc Iron Nitrogen Other Phosphate Sulfur
:Zr: 301 g 2001 ° ° 0
° °
£ Y ] | e°
c 801 20+ o, 100 0] 3¢ o
[0} ° 100+ @ ) -
=) ° ®o &
c a5, °
101 ¢, 204 8 &
£ 401 0 AN 501 o 01 o8¢
5} °
z wwee | 0 esngn 2
3 |- 0 . . 22 "% | 0 -~
? S ®
S o pEElR o @, PP oo o ol wwdie | | TR T
o L ° ° °
= T T T T -100 T T T T T T
& & & & g & g & & &
Ny N Ny N I & Ny N & Ny
O S S S Y S 9 S O S
& C~§°) & o~\\°) & © & & & &
S S S S S S S S

Lifestyle category

FIG 3 (A) The prevalence of posttranscriptional regulation in SART1 cells is apparent when comparing transcript and protein
abundances (log,-fold) in SAR11 cells under a variety of nutrient limitations. The dashed line indicates a 1:1 correlation
between transcript and protein abundance, which the data clearly does not fit. Data were digitized from previous publications
(67-69) using WebPlotDigitizer v4.6 (189). (B and C) Comparison of log,-fold changes in transcript abundance in copiotrophs or
oligotrophs in response to a variety of environmental challenges. Aggregated data are shown in panel B and are broken out
by nutrient limitation state in panel C. The following species are represented for iron limitation: for copiotrophs, Pseudomonas
fluorescens (190), Listeria monocytogenes (191), Alteromonas macleodii (192), Campylobacter jejuni (193), Synechocystis (194),
Pasteurella multocida (195), and Synechococcus sp. strain PCC 7002 (196); for oligotrophs, Prochlorococcus (141) and “Ca.
Pelagibacter ubique” (67). The following species are represented for nitrogen limitation: for copiotrophs, Pseudomonas putida
(197), Synechococcus elongatus PCC7942 (198), Mycobacterium smegmatis (199), and E. coli (77); and for oligotrophs,
Dehalococcoides ethenogenes (200), Prochlorococcus (201), and “Ca. Pelagibacter ubique” (68). The following species are
represented for phosphate limitation: for copiotrophs, E. coli (78), Rhodobacter sphaeroides (202), and Synechococcus sp. strain
PCC 7002 (196); and for oligotrophs, “Ca. Pelagibacter ubique” (94). The following species are represented for sulfur limitation:
for copiotrophs, Pseudomonas aeruginosa (203), Synechococcus sp. strain PCC 7002 (196); and for oligotrophs, Emiliania huxleyi
(204), Arthrospira (205), “Ca. Pelagibacter ubique” (69). The following species are represented for other environmental
challenges: for copiotrophs, Bacillus subtilis (superoxide stress) (206), Marinobacter hydrocarbonoclasticus (hydrocarbon exposure)
(207, 208), Alcanivorax borkumensis (hydrocarbon exposure) (209), Alteromonas naphthalenivorans (contaminated seawater
exposure) (210), and Synechococcus sp. strain PCC 7002 (CO, limitation) (196); and for oligotrophs, OM43 (variety of nutrient
exposures) (86), Prochlorococcus (coculture with heterotroph [211]; CO, limitation [212]), and “Ca. Pelagibacter ubique” (DMSP
versus methionine exposure [74]). A threshold log,-fold change of 2 and —2 was used to reduce the amount of data; for “Ca.
Pelagibacter ubique” nitrogen limitation and DMSP exposure, this threshold removed all transcripts. For species with a murky
lifestyle strategy, their maximal growth rate reported in literature was used for classification as described previously (27). Not
all data from these papers was included for ease of visualization, but the largest changes in transcript abundances were
selected.

maritimus SCM1, which is ubiquitous in oligotrophic waters and has a small genome
(71). The vast majority of genes in these cells were also constitutively expressed in expo-
nentially growing cells (72).

In many studies of SART1 and other heterotrophic oligotrophs, the data have
pointed to a lack of transcriptional regulation of genes involved in carbon metabo-
lism. One of the easiest ways to test for this is to compare the uptake rates and/or
metabolic rates of carbon compounds in naive cells (i.e., cells grown in the absence
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FIG 4 Rarefaction plots for proteomic coverage for “Ca. Pelagibacter ubique” HTCC1062 (oligotroph)
compared to that of the copiotrophic Synechocystis PCC6803. For HTCC1062, protein expression data from
a range of lab experiments across a variety of conditions (nutrient depletions, stationary phase, etc.) were
uploaded to the Proteomics Identifications database (PRIDE). The coverage of the predicted cellular proteins
in HTCC1062, and the numbers of spectra measured for these peptide fragments were compared to a
copiotrophic organism (Synechocystis) that had undergone lab-based experiments from a similar set of
conditions and whose proteomics measurements had been done on a similar type of mass spectrometer,
to allow for direct comparisons. The reduction in transcriptional regulation found in HTCC1062 is correlated
with a highly conserved (and thus well-covered) proteome, with the majority of genomic proteins having a
high percentage of coverage at high peptide spectra levels.

of a compound of interest) and preconditioned cells (i.e., cells grown with the com-
pound of interest for a reasonable amount of time). If naive and preconditioned cells
have the same uptake and/or metabolic rates, then the reasonable conclusion is that
the genes required for uptake and/or metabolism of that compound are constitu-
tively expressed at the same level in the presence and absence of that compound. In
SAR11 for dimethylsulfoniopropionate (DMSP), dimethyl arsenate (DMA), and L-ala-
nine, naive and preconditions cells were found to have the same uptake and/or met-
abolic rates (73-76). Conversely, if there is a significantly larger uptake and/or meta-
bolic rate of the compound in preconditioned cells, one can conclude that the cell
has the genes required for uptake and/or metabolism under transcriptional regula-
tion. In a study comparing regulation of L-alanine metabolism in SAR11 and a marine
copiotroph, Alteromonas macleodii, the copiotroph was found to have a significantly
larger metabolic rate of L-alanine in preconditioned cells compared to naive cells
(76).

Examples of Transcriptional Regulation in Oligotrophs

Oligotrophic bacteria do use transcriptional regulation to respond to some environ-
mental stimuli, but many of these responses (as described below) are significantly
smaller in magnitude than commonly observed transcriptional responses in copio-
trophs. For instance, the maximum log,-fold change in transcripts found in nitrogen-
starved Pelagibacter cells was 1.5 compared to 15 in nitrogen-starved E. coli (77); the
maximum log,-fold change in transcripts in phosphate-limited Pelagibacter cells was
30 compared to 131 in phosphate-limited E. coli (78). This is illustrated on a broad scale
in Fig. 3B and C, which shows that, in response to the same types of nutrient limitation,
oligotrophs have a highly muted transcriptional response compared to copiotrophs.
Poindexter theorized that oligotrophs would have low-magnitude regulatory
responses, since a large regulatory response would be out of proportion to the mini-
mal nutrient concentrations they are regularly exposed to (79). A common observation
in oligotroph biology is that growth rates rarely accelerate in response to positive
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environmental changes. This factor might mute the apparent intensity of positive tran-
scriptional changes when comparisons are made to copiotrophs.

In a study of diel transcript abundances in the oligotrophic open ocean, Ottesen et
al. found significant diel changes in transcripts in a variety of oligotrophic bacteria,
including Prochlorococcus, SAR11, SAR86, and SAR116 (80). However, the number of
transcripts showing diel changes and magnitude of those changes were lower in the
heterotrophic oligotrophic groups of organisms than the copiotrophs (80). Some of
the changes in transcript levels may also be due to growth dilution, i.e., as cells grow
or shrink, all cellular components must increase or decrease to some extent with
changes in biomass, as observed in E. coli (38). Prochlorococcus, as a photoautotroph,
showed strong, diel transcriptional responses that matched light levels (80). In a similar
study of transcriptional changes in coastal and open-ocean microbes, several hetero-
trophic oligotrophs, including SAR11 and SAR86, were found to have significant tran-
scriptional changes on a diel cycle (81). In contrast, a similar examination of diel tran-
scriptomes in a coastal region did not find significant diel changes in gene expression
in the heterotrophic oligotrophic groups, including SAR11 and SAR86 (82). There were,
however, pathway-level, covariant changes in transcript abundances in these hetero-
trophic oligotrophic groups; as an example, in SAR11, ribosomal proteins and oxidative
phosphorylation had a strong positive correlation with each other and a negative cor-
relation with several transport gene transcripts (82). Interestingly, in two separate
experiments, there were found to be diel, synchronous changes in transcript abun-
dance between SAR11 and SAR86, which could either be due to the two groups
responding to similar environmental signals or could be indicative of interspecies inter-
actions (81, 82). Upon addition of dissolved organic matter (DOM) derived either from
Prochlorococcus cultures or high molecular-weight DOM from surface waters to a sur-
face microbial community, a swift (within 2 h) transcriptional response was observed in
both SAR11 and Prochlorococcus cells (83). In both oligotrophs, genes involved in
assimilating organic N compounds were upregulated, in addition to protein biosynthe-
sis genes (83). Similarly, in response to polyamine addition to surface water meso-
cosms, SAR11 transcripts for genes involved in polyamine metabolism increased in
abundance within hours of polyamine addition (84).

In cultures of oligotrophs, transcriptional responses to changing growth conditions or
nutrient limitation have been observed. In cells from the oligotrophic methylotrophic clade
OMA43, which have highly streamlined genomes (85), strong changes in transcript abun-
dance were observed when cells transitioned from exponential to stationary growth phase
and in response to addition of specific nutrients (86). Genes involved in C metabolism
showed the strongest response, including ribulose monophosphate, proteorhodopsin, and
methanol dehydrogenase (86). Nitrosopumilus maritimus SCM1 cells have been found to
downregulate genes involved in ammonia transport and metabolism (amoA, amoB, nirK,
and amtB) upon ammonia limitation, while the hsp20 gene for the molecular chaperone
protein was upregulated (72, 87). This finding has been observed in other cell types under-
going stress, including SAR11 (67-69, 72, 88). Overall, however, a large proportion of genes
are constitutively expressed by these Thaumarchaeota and the transcriptional response to
ammonia limitation is relatively muted (71, 72, 87, 89).

In SAR11 cells, the regulatory response to inorganic nitrogen limitation was found
to rely on a much simpler system for ammonium assimilation than the P, signal-trans-
ducing system that is found in most proteobacteria, with five fewer genes than other
free-living alphaproteobacteria. This system in SAR11 cells is under transcriptional con-
trol of the two-component system NtrX/NtrY; transporters for organic nitrogen com-
pounds, such as amino acids, opines, and taurine, were also upregulated in N-depleted
SAR11 cells (68). Smith et al. speculated that the absence of the P, system in SAR11
contributes to genome streamlining at the cost of making these cells vulnerable to
metabolic disruptions caused by competition for the metabolic intermediate 2-oxoglu-
tarate, which is an intermediate both in ammonium uptake and in energy metabolism
(68). All Prochlorococcus strains appear to have active versions of the P, regulatory
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system, in addition to the global nitrogen regulatory protein NtcA (22, 90). However,
these proteins show unique regulatory responses to N in Prochlorococcus: the P, sys-
tem may not be fully phosphorylated, the urease enzyme is constitutively expressed,
and the response of NtcA to N limitation is not as strong as in other cyanobacteria (91).
Methylotrophic cells from OM43 also encode the P, regulatory system; under nitrogen
limitation, these cells were found to have large transcriptional responses (log,-fold
changes above 10 in transcript levels) (86).

When SAR11 cells were iron limited, the ABC transporter for iron, SfuABC, was found
to be highly upregulated, both in transcript and protein abundance, but other tran-
scriptionally upregulated genes involved in iron metabolism were not translated (67).
The abundance of the RNA chaperone CsplL increased dramatically in the iron limited
Pelagibacter cultures, whereas the paralog CspE declined, leading Smith et al. to specu-
late that Pelagibacter utilizes RNA chaperones (also know as DEAD-box ATPases) to
control a global posttranscriptional regulatory response to iron limitation (67). RNA
chaperones are found in all cell types and have been implicated in a variety of proc-
esses involving RNA, including RNA sequestration into subcellular structures (92), a
process that can involve the recognition of RNA sequences by RNA chaperones. Smith
et al. postulated that CspL might function by inhibiting the translation of nonessential
transcripts until iron became available, although this hypothesis was not tested (67).
However, RNA chaperones recently were implicated in the regulation of iron metabo-
lism in E. coli (93).

Similar to iron limitation, when SAR11 cells experienced phosphate limitation, they
vastly upregulated (30-fold) transporters for phosphorous-containing compounds (94),
although this regulatory response was much lower than that observed in phosphate-
limited E. coli cells (maximum fold change of 130) (78). However, there were large dif-
ferences observed between the coastal (“Ca. Pelagibacter ubique” strain HTCC1062)
and open ocean (“Ca. Pelagibacter” strain HTCC7211) strains of SAR11 studied, with
the coastal strain upregulating its phosphate transporter and the open ocean strain
upregulating its phosphonate (organic phosphate) transporter (94). HTCC7211 also up-
regulated genes for a C-P lyase (phnGHIJKLM), which cleaves phosphonate compounds
into inorganic phosphate and methane (94). The transcriptional response in the coastal
strain, HTCC1062, appears to be due to the upregulation of general stress-response
genes such as recA, lexA, and umuD, but the transcriptional regulatory mechanism in
the open ocean strain, HTCC7211, is not fully understood (94). In cells from the OM43
clade, phosphate limitation resulted in a decrease in the phosphate-specific transport
system gene, but the response was relatively muted (only changes of 2- to 5-fold) (86).

In SAR11 cells exposed to light and starved for carbon, 9.7% of coding sequences
showed differential expression compared to cells in the dark, including upregulation of
genes involved in oxidative phosphorylation (95). Three of the upregulated genes were
found to be transcriptional regulators, with one being a putative ferric uptake regulator
protein (Fur), known to bind to specific sequences (Fur-boxes) upstream of regulated
genes (95). A search for relaxed fits to Fur-boxes showed potential binding sequences
upstream of several of the genes upregulated in the light, implicating this Fur protein in
the transcriptional regulatory response to light and C starvation in SAR11 (95). The pres-
ence of light-dependent proteorhodopsin pumps in SAR11, combined with the lack of
large-scale transcriptional changes in SAR11 in response to light availability, indicates that
SAR11 cells use their proteorhodopsin pumps to produce enough energy to survive until
more organic carbon nutrients are available, instead of undergoing proteome remodeling
leading to a dormant state (95, 96). SAR11 cells seem to focus on small cellular changes to
promote homeostasis and survive periods without nutrients, allowing them to quickly start
up metabolism and growth when they encounter nutrient patches (25).

REGULATION BY NONCODING RNA
Gene regulation via the use of noncoding RNA molecules mainly differs from tran-
scriptional regulation in that it generally regulates genes after transcription of the
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target gene has occurred and is carried out by an RNA molecule, not a protein (97).
RNA-based regulation provides a faster response to environmental stimuli that comes
at a lower genomic cost than protein-based regulation but usually does not result in
changes in protein abundance that are as large of a magnitude as transcriptional regu-
lation (24, 98). RNA-based regulation encompasses riboswitches, small RNA molecules,
and CRISPR RNAs, the last of which will not be discussed here, since oligotrophs rarely
have CRISPR arrays (99).

Introduction to Riboswitches and Small Noncoding RNAs

Riboswitches are structural mRNA elements, usually located in the 5" untranslated
region of the RNA, that act in a cis-requlatory way, causing the early termination of
transcription which either prevents translation of the gene it is present in (type 1) or
causes mRNA degradation (type 2) (100). There are numerous reviews on riboswitches
(100-103), but some relevant highlights are presented below. In both cases, the bind-
ing of a regulator molecule to the riboswitch changes the riboswitch conformation,
which results in the regulatory outcome (101, 104). Another method of riboswitch action
involves modulating the stability of the mRNA molecule, with ligand binding exposing an
RNase-sensitive site (105, 106). Riboswitches are comprised of two domains, an aptamer
domain and an expression platform (107). The regulatory ligand (aptamer) binds to the
aptamer domain, which is highly conserved within classes of riboswitches (107). The
expression platform is much more variable in sequence and is the portion that changes
structure in response to the binding of the molecule to the aptamer domain (107). Many
riboswitches act more as “dimmers” than on/off switches, with a gradient of responses to
physiochemical factors, such as pH and temperature, as the stability of the riboswitch do-
main changes at a given physiochemical state (108, 109). There are currently at least 40
known classes of riboswitches, with many more likely to be discovered (102, 110, 111).

Small RNA regulators (sRNAs), or antisense RNAs, play critical regulatory roles in
bacteria. For reviews of sSRNA categories, functions, strategies for detection, etc. (112-
116). The three primary categories of SRNAs are: cis-sRNAs, trans-sRNAs, and sRNAs that
regulate proteins (117, 118). cis-sRNAs are located on the complementary strand from
their regulatory target and carry out their regulation by binding directly to the mRNA
produced from the gene and inhibiting translation (119). These cis-sRNAs usually regu-
late genes whose product is toxic to the cell at high concentrations (120). trans-sRNAs,
in contrast, have limited complementation to the mRNA that they regulate, giving
them a broader range of regulatory capacity, and are usually found at different genom-
ic sites than the genes they regulate (114). Their mechanisms of action are also much
broader, similar to riboswitches; binding of a trans-sRNA to a target mRNA can inhibit
translation from occurring by occluding the ribosome binding site (Shine-Dalgarno
sequence), which also often marks the mRNA for degradation (121, 122). They can also
have positive effects on the target mRNA by relieving a secondary RNA structure in the
mRNA, exposing the ribosome binding site (118). These sSRNAs are often expressed dur-
ing a specific physiological state and coordinate a cellular response to environmental
stimuli (118). The binding of these trans-sRNA molecules to their target is often medi-
ated by the ribosomal S1 protein, the Sm-like Hfg protein, or other RNA-binding pro-
teins (123, 124). sRNAs that regulate proteins do so by mimicking RNA or DNA targets
of the regulated protein, as in the case of the 6S RNA in E. coli that inhibits RNA poly-
merase activity (125).

Relevance of RNA-Based Regulation to Oligotrophs

Our primary argument here is that oligotrophs are generally reduced in transcrip-
tional regulation compared to copiotrophs, while retaining other forms of regulation,
including RNA-based regulation. This does not necessitate that oligotrophs have a greater
abundance of RNA-based regulators on a per-kilobase basis, although this is a distinct pos-
sibility as discussed below. Rather, at the very least, the general lack of transcriptional regu-
lation in oligotrophs means that other forms of regulation take on added importance in
these cell types (24, 126). To our knowledge, there has not been any direct comparison of
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the prevalence of RNA-based regulation between aquatic oligotrophs and copiotrophs,
which offers an interesting further area of research. However, there are two pieces of evi-
dence that suggest that marine oligotrophs may have larger numbers of RNA regulators
than copiotrophs, although this will require further work.

The first piece of evidence comes from Prochlorococcus, where an impressively large
number of RNA-based regulators has been reported (126), with over 73% of gene expres-
sion being linked to RNA regulators over a diel cycle (56). In addition, one of the two gluta-
mine riboswitches (glutamine type 1) found in Prochlorococcus is unique in that it controls
the expression of four genes, in contrast to the one gene generally regulated by glutamine
type 1 riboswitches in other, more copiotrophic marine phytoplankton, hinting at an
expanded role of this and, potentially, other riboswitches in Prochlorococcus (22). Finally, a
high proportion (44%) of the primary transcriptome of two strains of Prochlorococcus,
MED4 and MIT9313, are devoted to cis-sRNAs, much more than any other type of tran-
script, with trans-sRNA only comprising 5 to 9% of the transcriptome (127). Other, nonoli-
gotrophic phytoplankton have much lower proportions of cis-sRNA (15 to 30%) (128).

The second piece of evidence comes from the vast amount of RNA molecules meas-
ured in marine metatranscriptomic studies from oligotrophic waters that are involved
in regulation. Early studies of metatranscriptomic data found that riboswitches in par-
ticular are common and diverse in the environment, both in the oligotrophic open
ocean and soil samples (129). At the Hawaii Oceanic Time Series (HOT), many measured
transcripts (~16%) were small RNA molecules, many of which were either known to be
regulatory or were putatively involved in regulation (130, 131). At multiple other oligo-
trophic, open ocean sites, a large proportion (~19%) of measured transcripts were
found to be unannotated, >75-bp RNA transcripts, most likely regulatory RNA (132). In
addition, when some of the most abundant transcripts measured at various sites in the
open ocean were examined closely, they were found to be regulatory RNAs such as
riboswitches (133).

Examples of Riboswitches in Oligotrophs

SAR11 cells are known to have riboswitches from a variety of riboswitch classes,
some of which appear to be unique to SAR11 cells and are of unknown functions (134).
One of the best-studied examples is a pair of glycine riboswitches in “Ca. Pelagibacter
ubique” strain HTCC1062. These cells are conditionally auxotrophic for glycine and ser-
ine as a consequence of gene losses that appear to have been driven by selection for
small genome size. They elegantly regulate glycine metabolism with riboswitches to
avoid glycine starvation, while channeling excess glycine and glycine precursor mole-
cules to energy metabolism (4, 135). When intracellular glycine is low, the two independ-
ent, cis-acting glycine riboswitches repress transcription/translation of GIcB (malate syn-
thase) and the aminomethyltransferase GevT. As intracellular glycine concentrations rise,
GIcB is activated by its riboswitch, channeling excess glyoxylate (a glycine precursor) into
the TCA cycle. Higher intracellular glycine concentrations activate the second riboswitch,
causing transcription/translation GevT, which cleaves glycine to produce ATP, NH,, and
CO, (136). This unusual configuration, as seen also in the absence of the P, regulated sys-
tem for nitrogen uptake in SAR11, appears to replace a common, vital, and complex regu-
lated system with a system composed of fewer genes.

Two other instances of riboswitches being involved in essential metabolic pathways
in SAR11 have also been uncovered. The response of Pelagibacter cells to sulfur limita-
tion is largely mediated by riboswitches (69). The four most upregulated genes by
Pelagibacter cells under sulfur limitation are all located downstream from S-adenosyl-
methionine riboswitches, which inhibit the translation of mRNA into protein (69). One
of the most upregulated genes, ordL, was found to be located downstream of a con-
served motif suggestive of a novel riboswitch (69). The response of Pelagibacter cells to
sulfur limitation involves re-allocating sulfur to methionine instead of increasing
expression of organosulfur transporter proteins, as was found to be the case for nitro-
gen and phosphate limitation (69). This was postulated to be due to Pelagibacter cells
being adapted to a marine environment where organosulfur compounds are rarely
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limiting (69). In addition, riboswitches are also thought to be involved in vitamin B,
synthesis in Pelagibacter cells (137). Pelagibacter cells require thiamine, a vitamin B,
precursor, for growth; the putative transporter for thiamine in these cells, ThiV, is
located next to a riboswitch that binds thiamine-diphosphate (ThPP; the active form of
vitamin B;) (137). The authors of that study theorized that, when ThPP is present in suf-
ficient quantities in the cell, it binds the riboswitch and prevents the transcription and/
or translation of ThiV, preventing excess production of thiamine transporters (137).

As in SART1, oligotrophic cyanobacteria such as Prochlorococcus have multiple
instances of riboswitches, many of which are related to vitamin B,, or B, metabolism,
in addition to two types of glutamine riboswitches, as mentioned above (138). The
breadth of riboswitches in Prochlorococcus has recently been reviewed at length (22).

Examples of Small Noncoding RNAs in Oligotrophs

In oligotrophic cyanobacteria, there are a plethora of well-characterized sRNAs,
many of which are involved in core processes such as photosynthesis and nitrogen me-
tabolism (139). The recent review of Prochlorococcus regulation has in-depth discussion
on sRNAs in Prochlorococcus (22). In general, Prochlorococcus tends to primarily utilize
cis-sRNAs in regulation, as noted above. The sRNAs in Prochlorococcus have been
shown to be involved in light adaptation, nitrogen limitation, and iron limitation, with
a range of different sRNAs showing differential expression under different light
regimes (126), nitrogen limitation (140), and iron limitation (141). cis-sRNAs are also
involved in phage infection by protecting a wide set of mRNAs from degradation by
RNase E, which is upregulated during phage infection (142).

In heterotrophic oligotrophic bacteria, there are several instances of sRNAs playing
an important regulatory role. In the genomes of SAR86 cells, genome regions contain-
ing carbon assimilation pathways were found to be heavily populated with putative
sRNAs (143). In the oligotrophic Sphingopyxis granuli strain TFA, isolated from river
sediment, more than 90 putative SRNAs have been identified, with the trans-sRNA suhB
playing an important role in the regulation of the degradation of tetralin, an environ-
mentally contaminating hydrocarbon (144).

POSTTRANSLATIONAL REGULATION

At the posttranslational level, enzyme activity can be modulated through either cova-
lent modifications (often called posttranslational modifications [PTMs]) or allosteric regula-
tion. This allows for rapid (seconds to minutes) responses to environmental stimuli that, in
many cases, are reversible and spare the cell from the machinery needed for a transcrip-
tional response (145). Posttranslational regulation has similar advantages to RNA-based
regulation, with the added benefit of a potentially shorter time scale response, since trans-
lation is usually the slowest part of gene expression (146).

Introduction to Covalent and Allosteric Posttranslational Regulation

Covalent posttranslational regulation (PTMs) involves the modification of proteins
via the addition or removal of certain groups (e.g., phosphate, acetyl, methyl, etc.) or
other modifications to amino acid residues (e.g., disulfide-bond formation or cleavage)
(147). These modifications result in changes to enzyme function, the formation of pro-
tein complexes, etc. (148). There are numerous different types of PTMs, with acetyla-
tion and phosphorylation being two of the most widespread mechanisms (148, 149).
The usage of PTMs as a regulatory mechanism in bacterial cells is only beginning to be
understood but appears to be broadly used across bacterial taxa in diverse processes
such as metabolism, protein synthesis, cell cycle, etc. (147-150), although modifica-
tions happen at a lower rate in bacteria than eukaryotes and at low stoichiometric lev-
els, making detection challenging (147). In addition, different enrichment steps are
needed for measuring different types of modifications, making it challenging to
encompass all PTMs in one study. It was long thought that PTMs were only used in
eukaryotes, since bacteria were too “simple” to use PTMs (151). Thus, it is only in recent
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years that global studies of PTMs in a time-resolved manner in response to environ-
mental stimuli have been conducted (150).

Allosteric posttranslational regulation involves the binding of a regulatory molecule
to an enzyme at a noncompetitive (or allosteric) site, changing the conformation of the
enzyme and thus its activity (152). Allosteric regulation differs from PTMs in that allo-
steric regulation is generally reversible, while PTMs are generally not reversible. Also,
allosteric regulation generally does not require an effector enzyme to carry out the
posttranslational regulation, as PTMs do. Similar to PTMs, allosteric regulation of
enzyme activity has been understudied to date on a broad scale (153), although it is
likely to be widespread (153, 154).

Relevance of Posttranslational Regulation to Oligotrophs

In theory, as with RNA-based regulation, posttranslational regulation might be
especially relevant for oligotrophs, especially given the ability to modulate enzyme ac-
tivity quickly, since translation generally is the longest part of gene expression, as
noted before. However, as noted with RNA-based regulation, this does not necessitate
that oligotrophs have a greater abundance of posttranslational regulators than copio-
trophs, although this is possible. Between the two types of posttranslational regulation,
allosteric is the most likely to be enriched in oligotrophs, since PTMs come with the
added cost of needing an enzyme to carry out the PTM, which takes up genomic space,
as well as the energy cost necessary to carry out the PTM. In addition, the most com-
mon type of PTM, phosphorylation, requires the use of phosphate, which is a limiting
nutrient in the oligotrophic ocean. Allosteric regulation does not take up any genomic
space, does not require energy input, and is readily reversible. Thus, if oligotrophs do
have an enrichment in posttranslational regulation compared to copiotrophs, we
would predict that allosteric regulation would be the most likely mechanism.

However, the hypothesis that oligotrophs have a greater reliance on allosteric regu-
lation than copiotrophs will be challenging to fully examine on a whole-cell basis
(sometimes called the “allosterome”). In fact, there are very few studies of the alloster-
ome of a bacterial species, and the few that have been conducted are not comprehen-
sive of all metabolic pathways in the cell (154-156). The challenges behind studying
the allosteromes of cells, especially oligotrophs, are several: (i) the number of potential
regulatory interactions in a cell is vast, given the large number of active enzymes in a
cell and the large diversity of potentially regulatory small molecules in cells (variable
by cell type and growth status [157]); (ii) allosteric regulation usually involves weak
interactions, which are difficult to measure (156); and (iii) past large-scale computa-
tional studies identifying whole-cell allosteric interactions rely on decades of metabolic
studies, something that is not currently available for most oligotrophs (155). Most
likely, a whole-cell allosterome study comparing an oligotrophic and copiotrophic spe-
cies is not plausible in the near future. Instead, as a start, focusing on one or more
well-studied metabolic pathways and characterizing the allosteric interactions present
in a model marine oligotroph and copiotroph would be a more achievable start, using
some of the techniques already employed in model organisms (154-156).

We used our previously discussed functional comparison of marine oligotrophs and
copiotrophs (Fig. 2) to address the question of whether genes involved in PTM are
more common in oligotrophs than copiotrophs, with our prediction being that oligo-
trophs would have similar numbers of PTM genes as copiotrophs. We separated genes
for known PTMs (acetylation, phosphorylation [kinases], ubiquitination, methylation,
glycosylation, adenylation, and peptidases) into a separate category (O:PTM) from
other category O (translation) genes. O:PTM genes were found to be at similar genomic
proportions in both lifestyle categories, while the remaining category O genes were
significantly enriched in oligotrophs (Fig. 2C). This could indicate that regulation via
these known PTM:s is used at similar rates within both copiotrophs and oligotrophs, in
contrast to transcriptional regulation. One difficulty with this approach is that the
PTMs used in this analysis have all been discovered and studied almost exclusively in
copiotrophs. Further studies are needed to assess the relative importance of regulation
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at the PTM level in oligotrophs compared to copiotrophs, both at the physiological
and the genomic level.

Examples of Posttranslational Regulation in Oligotrophs

Reported instances of posttranslational regulation in oligotrophs are rare, but a few
have been reported. Several oligotrophic species from the Sphingomonadales order
were found to have numerous instances of PTMs, both under normal growth condi-
tions and in response to starvation, but the identity of the proteins modified and the
nature of the modifications are unclear, as these experiments were conducted using
two-dimensional electrophoresis methods (158-160). In oligotrophic Nitrosopumilus
maritimus SCM1, 6% of the detected proteins were found to be modified by N-terminal
acetylation under normal growth (72), which is a lower proportion than found in other
archaea (~29%) (161). A recent study of L-alanine metabolism in SAR11 also found evi-
dence for posttranslational regulation of the L-alanine transporter, perhaps via alloste-
ric regulation, although this was not experimentally confirmed (76).

KINETIC REGULATION

All of the types of regulation discussed so far have been part of hierarchical regula-
tion, which modulate protein abundance/activity via the abundance of transcripts or
enzymes. Kinetic regulation occurs outside of hierarchical regulation, where enzyme
activities are modulated by metabolite-enzyme interactions, completely separate from
the abundances of transcripts or enzymes (162). Thus, kinetic regulation is instantane-
ous and does not require extra genomic space or energy costs.

Introduction to Kinetic Regulation

Kinetic regulation relies on different enzymes having different affinities for the
same metabolites. Thus, at low levels of a given metabolite, it might be processed by a
high-affinity enzyme, which sends it through one metabolic pathway. At higher con-
centrations, however, the same metabolite might be processed by an enzyme with
lower affinity for the metabolite, but which has a higher activity, resulting in the
metabolite being shunted down a different metabolic pathway. This form of regulation
is widespread in cells and coordinates the flux of nutrients through cellular metabolism
with hierarchical regulation, making it challenging to dissect on a case-by-case basis.
Thus, many studies of kinetic regulation have been carried out in model organisms for
central pathways on a large scale using modeling approaches. Examples include
whole-cell modeling and use of '3C flux analysis in E. coli, which found that kinetic reg-
ulation occurs at the level of individual intracellular metabolite concentrations, as well
as a whole-cell coordination of metabolite uptake and growth rate (162-164).

Relevance of Kinetic Regulation to Oligotrophs and an Example

As noted previously, forms of regulation that do not require excess genomic space
or extra energetic/nutrient costs and are able to respond quickly are likely the most
useful to aquatic oligotrophs. Since all of these are true of kinetic regulation, we would
predict that kinetic regulation would be especially prevalent in oligotrophs. This was
also the prediction of Button, who predicted that oligotrophs, due to the relatively
constant nutrient concentrations that they are exposed to, might emphasize kinetic
control more than hierarchical regulation (26). This hypothesis, however, will be chal-
lenging to study on a global scale, as noted with allosteric regulation, given the diffi-
culties posed with studying kinetic regulation (noted above). However, the one
reported instance of kinetic regulation in an aquatic oligotroph (regulation of dime-
thylsulfoniopropionate, DMSP, and metabolism in SAR11), provides support for our hy-
pothesis that kinetic regulation is more prevalent in oligotrophs than copiotrophs. This
regulation is illustrated in Fig. 5 in comparison to the regulation of DMSP metabolism
in many copiotrophic bacteria.

DMSP is primarily metabolized in marine bacteria through either a cleavage pathway,
which results in the gas dimethylsulfide (DMS) being released, or the demethylation
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FIG 5 lllustration of the differences between a common copiotrophic strategy of regulating dimethylsulfoniopropionate (DMSP) metabolism and the kinetic

regulation of DMSP metabolism found in SAR11 cells. DMS, dimethyl sulfide; MeSH, methanethiol.

pathway, which results in the incorporation of the sulfur (S) from DMSP into biomass
and release of methanethiol gas (73). In copiotrophic bacteria such as Roseobacter spe-
cies, either DMSP itself or its catabolic products act as inducers of the DMSP lyase or
demethylation genes (73). In the SAR11 strain “Ca. Pelagibacter ubique” HTCC1062,
DMSP metabolism is under kinetic control instead of being transcriptionally regulated.
No transcriptional response was observed in HTCC1062 cells in response to the addition
of DMSP, and metabolism of DMSP did not increase upon preconditioning with DMSP
(74). Instead, both the demethylation (mediated by DmdA) and cleavage (mediated by
DddK) pathways are operational and constitutively expressed, resulting in the two path-
ways competing for metabolism of DMSP (74). However, DmdA has a higher affinity for
DMSP than DddK, resulting in DMSP metabolism primarily being shunted into absorp-
tion of S from DMSP until cellular demands for S have been met, when increasing
amounts of DMSP are shunted to the cleavage pathway for release as DMS (74). It seems
that one of the adaptations of SAR11 to a life of oligotrophy is the replacement of tran-
scriptional regulation of DMSP metabolism with kinetic regulation, reducing the amount
of genomic coding and proteome complexity needed and increasing the speed of
response.

WHY DO OLIGOTROPHS USE LESS TRANSCRIPTIONAL REGULATION?

One of the primary questions that has yet to be definitively answered is why there
is an evolutionary trend in oligotrophs to less transcriptional regulation; below, we pro-
pose three potential factors that may have played a role in this evolutionary trend,
illustrated in Fig. 6.

One viable explanation is that transcriptional regulation has diminished fitness
value in many of the niches found in nutrient-limited environments because of the ele-
mental and energetic costs of transcriptional regulation. Cellular resources required for
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transcriptional regulation include the costs of coding sequences and transcribing and
translating regulatory proteins (165). Most oligotrophs have streamlined genomes,
with reduced intragenic regions, few pseudogenes and paralogs, an enrichment in nu-
cleotides and amino acids with lower nitrogen content, and few regulatory genes (24).
These adaptations are thought to be a strategy to reduce the cellular requirement for
essential nutrients such as nitrogen and phosphorous that are limiting in oligotrophic
environments (24). The reduction in genome complexity that accompanies the loss of
transcriptional regulatory systems would, in theory, result in cells that need fewer mac-
ronutrients and less energy to reproduce (166, 167). However, it is an open question of
whether the loss of transcriptional regulatory systems results in a large enough conser-
vation of macronutrients and energy to explain the absence of transcriptional regula-
tion in oligotrophs.

Another potential explanation for diminished regulation in oligotrophs lies in the
nonmotile lifestyle of many oligotrophic cells. Cells in the ocean inhabit a patchy envi-
ronment where they encounter ephemeral patches of high nutrient concentrations,
interspersed within larger regions of low nutrient concentrations (168). Cells with tran-
scriptional regulation must be able to turn on the genes needed to metabolize
nutrients either before the patch dissipates, which can happen within 10 min of the
patch forming (169, 170), or before they leave the nutrient patch. This is perhaps one
reason why copiotrophs tend to be motile (14, 52), which allows them to locate and
occupy nutrient patches and attach to particles, providing enough time to switch on
metabolic enzymes. Oligotrophs, on the other hand, are generally nonmotile and/or
nonchemotactic (Fig. 2) (14), possibly because their small cell size renders motility
unfeasible due to Brownian effects, or because motility, like all genome complexity,
seems to lose some of its fitness value in niches where resources are expensive (171,
172). Thus, nonmotile oligotrophs have no means to direct their drift through the
water, resulting in a reduced amount of time spent in nutrient patches and an absence
of time spent attached to particles (76, 169). If nonmotile oligotrophs relied on tran-
scriptional regulation to turn on the necessary metabolic enzymes for nutrients
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encountered in patches, the time required for these systems to initiate would preclude
them from being able to make full use of the nutrients they encounter, as they would
exit the patch before their metabolic systems are fully activated (76). The constitutive
expression of most genes in oligotrophs, especially those related to carbon metabo-
lism, means that the oligotrophs are able to instantly utilize whatever nutrients they
encounter in a patch before they exit it, which reduces the cost of missed opportuni-
ties that nonmotile oligotrophs would otherwise incur.

On the other hand, the strategy of constitutively expressing genes for carbon me-
tabolism incurs the costs of synthesizing proteins that have no use when the corre-
sponding nutrient is absent. This strategy would not make much sense for a heterotro-
phic cell in a niche where the composition of the nutrient field varied qualitatively on
time scales much larger than transcriptional response times. However, this strategy
would make sense for cells that specialize in harvesting organic compounds that are
not special, i.e., the small molecules and polymers common to all cell types. Enzyme
multifunctionality has been reported in streamlined oligotrophs, such as SAR11 (173-
175), which in principle broadens substrate range at no regulatory cost and potentially
could be a factor offsetting the costs of deregulation strategies. This may be why heter-
otrophic oligotrophs are especially lacking in transcriptional regulation of carbon oxi-
dation functions: there is a much wider diversity of carbon compounds available than
inorganic nutrients. This strategy of constitutively expressing metabolic genes has
been observed previously in E. coli cells that become adapted to a fluctuating environ-
ment as a memory mechanism or adaptive plasticity and has also been observed in
thermal priming of dinoflagellates (39, 176). But instead of a short-term, epigenetic
plasticity, oligotrophs seem to have undergone genomic adaptations to deal with the
consistently low-nutrient, fluctuating ocean environment they experience.

Another potential reason for the lack of transcriptional regulation in oligotrophs
revolves around the low ambient nutrient concentrations in the open ocean. If fluctua-
tions in ambient nutrient concentrations tended to be below the threshold concentra-
tions necessary to turn on regulatory systems, then, even if there was a potential
advantage, regulation would not be effective. The threshold concentration above
which motility is induced in marine bacteria has been found to be 0.001% (wt/vol)
tryptic soy broth (177). A similar result was found in E. coli, where chemotaxis was not
induced under a threshold concentration of a variety of compounds, and was only
induced upon increases in nutrient concentrations that followed the Weber law (178).
In marine diatoms, chemotaxis toward silicate particles was only induced when the sili-
cate concentration was above a certain threshold (179). It may be that motility, with its
large energy expenditure, is more tightly controlled based on nutrient concentrations
than metabolic enzymes to diminish the potential for large costs to cells without bene-
fits. This would argue for a second option, that cells can sense even low concentrations
of nutrients, but do not expend energy to acquire them because of the risks (180).

The discussion above highlights some of the complexities in understanding why
selection has favored different regulatory strategies depending on the pathway, the or-
ganism, and the niche. While some trends, for example the lesser amount of transcrip-
tional regulation in oligotrophs, are clear, there are only a few examples from the cell
biology of oligotrophs to illustrate other key concepts, and therefore our understand-
ing of these issues will have to await investigations that find ways to probe these ques-
tions across a larger selection of different cell types.

IMPLICATIONS OF THE OLIGOTROPHIC REGULATORY STRATEGY AND FUTURE
PROSPECTS

Much of this review has focused on marine oligotrophs, since the majority of experi-
mental studies of regulation in oligotrophs have been carried out in marine oligotrophs.
Freshwater oligotrophs with streamlined features have been reported, as with the fresh-
water clade of SAR11 (181), but regulation in these organisms has been less studied. We
would expect to see similar patterns of regulation in freshwater oligotrophs as well,
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although this requires further confirmation. Similarly, in soil, it was long thought that
large genomes were the norm, until the discovery of a highly abundant soil microbe
with hallmarks of a streamlined genome (182). The adaptive pressures of soil environ-
ments are very different from aquatic environments, so it remains to be seen whether
the same patterns of adaptation and genome evolution reported in marine oligotrophs
will be repeated in soil oligotrophs. However, a previously described study that exam-
ined functional enrichment by lifestyle category across all environments (animal-associ-
ated, soil, marine, etc.) found a very strong depletion of genes involved in transcriptional
regulation in oligotrophs (27). Thus, we predict that the pattern of regulation described
here is generalizable to all oligotrophs across all environments. Nonetheless, it is clear
that oligotrophs use transcriptional regulation when it is selectively advantageous, as
described previously, and that different oligotrophs have different nuances of this gen-
eral regulatory strategy.

In addition, much of our review has focused on two oligotrophic groups, SAR11 and
Prochlorococcus, since most of the available information about regulation in aquatic
oligotrophs has come from studies of these important model organisms, which are the
most abundant microbial lineages in aquatic environments worldwide. As noted in the
introduction, however, the oligotrophy/copiotrophy concept idealizes a spectrum of
ecological strategies, so we would not predict that aquatic microbes are strictly dichot-
omous with respect to the alternate strategies we describe. Rather, the study of SAR11
and Prochlorococcus, which are the most successful oligotrophs in the world, offers
broadly generalizable conclusions about the oligotrophic lifestyle that will likely vary
based on a given oligotroph’s niche.

One intriguing consequence of reduced transcriptional regulation in marine oligotrophs
is that they may have less control over influxes of nutrients and growth rate, which is not a
problem as long as their environment remains oligotrophic but could lead to metabolite
imbalances in artificial environments. Increases in intracellular metabolites to toxic levels
has been proposed as a cause of growth inhibition in oligotrophs exposed to high nutrient
concentrations (175, 183). On the other hand, several instances have been reported in
which very high intracellular accumulations of transported metabolites are metabolized
later, providing these cells a means of exploiting transient nutrient surfeits. This “excess
uptake” strategy has been observed in bulk marine microbial communities for glycine be-
taine (184), for DMSP in cultured SAR11 (74), and has been proposed to cause increases in
polyamine storage and cell size, presumably from changes in turgor pressure, in SAR11
cells exposed to high polyamine levels (175).

The expansion of microbial diversity by metagenomics has revealed many new unculti-
vated lineages, including major new groups of abundant organisms that have highly
reduced genomes such as the Patescibacteria and DPANN superphyla. Interestingly,
although evidence about regulatory strategies in these two large groups is minimal, the
genomic evidence available for Patescibacteria indicates many hallmarks of the oligotrophic
strategy described above, with severe reductions in transcriptional regulatory proteins,
two-component systems, and chemotaxis having been reported (185). In addition, the ma-
jority of reported Patescibacteria and DPANN genomes contain fewer o-factors than
expected per genome size (mean o-factors/kb of 0.0066 and 0.043 for Patescibacteria and
DPANN, respectively; one would expect closer to 0.01 for these genome sizes) based on a
previously reported model fit for o-factors and genome size (24, 186). In a number of
cases, it has been established that Patescibacteria and DPANN superphyla are involved in
symbioses (187, 188), providing a ready explanation for reductive genome evolution.

The evidence reviewed above indicates a dichotomy in paths to microbial success,
wherein one path leads to versatile cells that can exploit environmental fluctuations, and
incidentally grow well in labs, whereas the other path, seemingly more common, leads
to success when relative stability in nutrient production and sustained competition com-
bine to hold nutrient fluctuations in narrow ranges. Generally, when microbiologists
observe very small genomes in nature, they suspect either mutualistic or parasitic sym-
bioses. The patterns of gene regulation we report suggest an alternate explanation: if
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simplicity/efficiency and complexity/versatility represent polar strategies for success, is it
possible that some cells might be prospering in nature that are even more simple than
the global oligotrophs that have become model organisms? By recognizing that the
imprint of oligotrophy on regulation is not simply diminished transcriptional regulation
but instead fine network tuning by selection to achieve success in a different niche, we
might be able to recognize more extreme examples of reductive evolution that are due
to environmental adaptation rather than coevolution.

CONCLUSIONS

Like many aspects of biology, regulatory strategies of microorganisms are more

complicated than was originally thought. With the increased awareness of the impor-
tance of oligotrophic microbes to environmental processes, more and more oligo-
trophs are being brought into culture, where the nuances of their regulatory strategies
can be studied more closely. The realization that many abundant oligotrophs have
reduced transcriptional regulation and constitutively express most of their genes for
carbon oxidation has led to the testable hypothesis that oligotrophs instead rely pri-
marily on posttranscriptional regulation. As has been noted above, many types of post-
transcriptional regulation have only begun to be explored, especially in oligotrophs.
For example, the breadth of potential riboswitches in microbes is still being uncovered
and offers a promising avenue for further discoveries of posttranscriptional regulation.
Both posttranslational and metabolic regulation are other vast, underexplored fields,
especially in oligotrophs. We hope this review has communicated to readers that there
are broad trends in regulation that distinguish oligotrophs from copiotrophs, even if as
yet we do not fully understand the selective pressures that drive these trends or the
integration of different types of regulation in relation to these two very different
trophic strategies.
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