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Abstract: The Arctic is warming at four times the global rate, changing the diversity, activity and
distribution of vectors and associated pathogens. While the Arctic is not often considered a hotbed of
vector-borne diseases, Jamestown Canyon virus (JCV) and Snowshoe Hare virus (SSHV) are mosquito-
borne zoonotic viruses of the California serogroup endemic to the Canadian North. The viruses are
maintained by transovarial transmission in vectors and circulate among vertebrate hosts, both of
which are not well characterized in Arctic regions. While most human infections are subclinical or
mild, serious cases occur, and both JCV and SSHV have recently been identified as leading causes
of arbovirus-associated neurological diseases in North America. Consequently, both viruses are
currently recognised as neglected and emerging viruses of public health concern. This review aims
to summarise previous findings in the region regarding the enzootic transmission cycle of both
viruses. We identify key gaps and approaches needed to critically evaluate, detect, and model the
effects of climate change on these uniquely northern viruses. Based on limited data, we predict
that (1) these northern adapted viruses will increase their range northwards, but not lose range at
their southern limits, (2) undergo more rapid amplification and amplified transmission in endemic
regions for longer vector-biting seasons, (3) take advantage of northward shifts of hosts and vectors,
and (4) increase bite rates following an increase in the availability of breeding sites, along with
phenological synchrony between the reproduction cycle of theorized reservoirs (such as caribou
calving) and mosquito emergence.

Keywords: Aedes; climate change; distribution potential; Jamestown Canyon virus; mosquito-borne;
Orthobunyavirus; snowshoe hare virus; vector

1. Introduction

Unlike other encephalitic vector-borne viruses of medical and veterinary importance,
which tend to be associated with tropical climates, viruses in Arctic ecosystems can replicate,
transmit and overwinter at extreme temperatures. Their mosquito vectors and reservoir
hosts (such as barren ground caribou, which migrate to northern breeding grounds in
summer) also display seasonal hyperabundance and phenotypic synchronicity. Research
on the two northernmost members of the California serogroup (CSG) viruses— Snowshoe
Hare virus (SSHV) and Jamestown Canyon virus (JCV)—was primarily conducted in the
1970s and 80s. Recent reports in people and wildlife in the Canadian North have raised a
need to revisit the distribution, ecology, and climate sensitivity of these emerging, neglected
viruses. In particular, the application of newer molecular tools is needed; most studies
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previously focused on La Crosse virus (LACV) and other orthobunyaviruses with more
temperate distributions, such that vaccines and antiviral treatments are almost completely
lacking for both SSHV and JCV. While the phylogeography, interspecific viral reassortment
and the theratogenic effects of these viruses on wild and domestic animals are topics that
warrant exploration, it is beyond the scope of this review. Here we take a closer look
at the life cycle of these Arctic-adapted viruses. We review and critically evaluate the
virus biology, vector status of mosquitoes associated with transmission and highlight the
epidemiology of these viruses with regard to host species and human cases, and how all
this will be, or already is being, affected by global climate change. This is particularly
important in light of recent findings that climate change is occurring at four times the global
rate in the Arctic [1], and that climate change will cause increased viral spill over events in
a warming Canadian Arctic [2].

2. The Viruses
2.1. History of SSHV and JCV

The family Peribunyaviridae in the order Bunyavirales includes globally distributed
viruses of medical and veterinary importance in the genera Orthobunyavirus, Herbevirus,
Pacuvirus and Shangavirus [3]. The Orthobunyavirus genus consist of 18 serologically and ge-
netically related mosquito-borne serogroups, including the California serogroup. California
serogroup viruses are now recognized as the second-most-common cause of arbovirus-
associated neurological disease in North America [4,5]. Viruses in this genus include
SSHV, JCV, and LACV, among others, all prevalent throughout North America. These
viruses are classified as potentially re-emerging viruses, threatening public health. Snow-
shoe Hare virus was first isolated in 1958 from the serum of a lethargic Snowshoe Hare
(Lepus americanus) in Montana, USA [6], with the first human disease documented in the
province of Québec, Canada, in 1978 [7]. Jamestown Canyon virus was first isolated in
the US from a pool of Culiseta inornata mosquitoes collected in Jamestown Canyon near
Boulder, Colorado, in 1961 and has recently been identified as an emerging cause of febrile
and neuroinvasive disease in Canada and the USA. Although SSHV and JCV are typically
asymptomatic, both viruses have been reported in all provinces and territories, including
the northern territories in Canada [8–10].

2.2. Genome Structure and Replication

Orthobunyavirus virions are enveloped, spherical or pleomorphic in shape, (80–120 nm)
with glycoprotein surface projections (5–18 nm) embedded in a lipid bilayer envelope (about
5 nm) (Figure 1) [3,11]. These viruses have negative-sense, single-stranded, tripartite RNA
genomes consisting of three segments designated S—small, M—medium and L—large
(Figure 1) [3,12,13]. The S segment encodes two proteins in overlapping reading frames:
the nucleoprotein (N) and an intracellular non-structural protein (NSs) [12,14–18]. The non-
structural protein is a major virulence factor and is not essential for replication [19]. The
M segment encodes two surface glycoproteins, termed Gn and Gc, as well as a second non-
structural protein, NSm (Figure 1). The two glycoproteins are type I integral membrane
proteins that enable viral attachment and entry into the host cell and are considered important
determinants of virulence [13,15,20,21]. The NSm non-structural protein comprises three
hydrophobic domains (I, III, and V) and two non-hydrophobic domains (II and IV), and
is required for virus assembly as demonstrated for Bunyamwera virus (BUNV), although
not essential for virus viability [22]. The M segment also determines the viral neutralization
phenotype, with Gn and Gc shown to be the major proteins that elicit neutralizing antibodies
against LACV [23]. The L segment encodes the viral RNA-dependent RNA polymerase
(RdRp) that catalyses transcription and replication [21,24]. The three genomic RNA segments
are encapsidated by the N protein to form ribonucleoprotein complexes that associate with
the RdRp and are contained within the lipid envelope of the particle (Figure 1) [19].
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the viral genomes into the cytoplasm. The primary transcription of viral mRNAs, facili-
tated by RdRp, is initiated, resulting in mRNAs that contain host-derived nucleotides at 
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surface. Virions are released from the cell via exocytosis, and the glycoproteins undergo 
a final maturation step upon exit (Figure 2). 

The receptor usage of bunyaviruses is still incompletely understood. Recently, stud-
ies have focused on identifying such receptors, although none specifically for SSHV or 
JCV have been identified. Studies on host cell receptors primarily focused on phlebo-
viruses (order Bunyavirales, family: Phenuiviridae) and to a lesser extent, LACV. Dendritic 
cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and 
liver-specific SIGN (L-SIGN) bind carbohydrate structures present on viral glycoproteins 
and function as attachment factors for several enveloped arboviruses, including Germis-
ton virus, an orthobunyavirus (DC-SIGN only) [29], phlebo- [29,30] and alphaviruses [31]. 
Hofmann et al. [32] demonstrated DC-SIGN, but not L-SIGN, as a potential receptor for 
LACV entry—the first data for CSG viruses. This study also demonstrated that pseudo-
typed virus-bearing LACV Gn/Gc has overlapping but not identical tropisms for human 
and animal cells compared to phleboviruses, suggesting that these genera have different 
receptor requirements for host cell entry. Heparin sulfate proteoglycan is a glycoprotein 
expressed on the cell surface of all animals that acts as an attachment receptor for various 
arboviruses [33,34], including two orthobunyaviruses (Akabane virus and Schmallenberg 
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Even though JCV and SSHV are the most common CSG viruses found in Canada, they
are also among the most neglected CSG viruses [8,25,26]. Few studies have elucidated the
replication cycle of these viruses, with most information inferred from studies of BUNV,
the Orthobunyavirus prototype, or from the closely related LACV within the CSG viruses.
Replication of Orthobunyaviruses starts with the virion attaching via surface glycoproteins
and entering the cell through clathrin-mediated endocytosis (CME) (reviewed by [19,27]
(Figure 2)). After this process, now called receptor-mediated endocytosis, virion uncoating
and the fusion of the viral membrane with the endosomal membrane releases the viral
genomes into the cytoplasm. The primary transcription of viral mRNAs, facilitated by
RdRp, is initiated, resulting in mRNAs that contain host-derived nucleotides at their 5′

ends [5,19,27,28]. Viral mRNA translation yields the two structural surface glycoproteins
Gn and Gc and the nonstructural protein, NSm. The glycoproteins enter the endoplasmic
reticulum (ER) from where they localize to the Golgi complex, where replication occurs.
For replication to occur, the negative-sense viral genome is converted into positive-sense
antigenomes, resulting in ribonucleoproteins (Figures 1 and 2). Virus particles bud into the
Golgi membrane-derived vesicles from here they are trafficked to the cell surface. Virions
are released from the cell via exocytosis, and the glycoproteins undergo a final maturation
step upon exit (Figure 2).

The receptor usage of bunyaviruses is still incompletely understood. Recently, studies
have focused on identifying such receptors, although none specifically for SSHV or JCV
have been identified. Studies on host cell receptors primarily focused on phleboviruses
(order Bunyavirales, family: Phenuiviridae) and to a lesser extent, LACV. Dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and liver-
specific SIGN (L-SIGN) bind carbohydrate structures present on viral glycoproteins and
function as attachment factors for several enveloped arboviruses, including Germiston
virus, an orthobunyavirus (DC-SIGN only) [29], phlebo- [29,30] and alphaviruses [31].
Hofmann et al. [32] demonstrated DC-SIGN, but not L-SIGN, as a potential receptor for
LACV entry—the first data for CSG viruses. This study also demonstrated that pseudo-
typed virus-bearing LACV Gn/Gc has overlapping but not identical tropisms for human
and animal cells compared to phleboviruses, suggesting that these genera have different
receptor requirements for host cell entry. Heparin sulfate proteoglycan is a glycoprotein
expressed on the cell surface of all animals that acts as an attachment receptor for various
arboviruses [33,34], including two orthobunyaviruses (Akabane virus and Schmallenberg
virus). However, further studies are needed to determine if this is an important attachment
factor for the CSG viruses, contributing to the emerging field of active molecular biology
research on bunyaviruses.
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Earlier studies have demonstrated that LACV, SSHV, and to a lesser extent, JCV, are
sensitive to lysosomotropic agents, indicating that virions enter cells by receptor-mediated
endocytosis and not by direct fusion at the plasma membrane [35]. Elsewhere [36], CME
has been extensively demonstrated for LACV in various cell lines, including primary
neuronal cultures. This study also demonstrated that both SSHV and JCV use CME to enter
cells [36], and that macropinocytosis and caveolar endocytosis, both established routes
of viral entry, are not critical for the cellular entry of LACV. Successful LACV infection
depends on Rab5, a key regulator of endocytic transport to early endosomes, which plays
an important regulatory role in early endosomes, but not on Rab7, which is associated with
late endosomes. Clathrin, or receptor-mediated endocytosis, is an entry mechanism used
by many viruses, including encephalitic viruses such as West Nile virus [37] and Japanese
encephalitis virus [38], and is a possible pathway for neuroinvasion for CSG viruses. For
LACV, amino acids 860–1442 of the Gc glycoprotein have been identified as the principal
determinant of virus fusion and cell entry [39]. Additionally, a small segment within this
region was predicted to have structural homology with the fusion protein (E1) of Sindbis
virus [39] that is important in alphavirus cell entry and fusion [40]. The N protein is the
main protein produced in infected cells and interacts with both genomic and antigenomic
RNA to play a vital role in viral replication. Ogg and Patterson [17] demonstrated that,
similar to BUNV, the 5′ end of JCV contains the viral RNA region responsible for binding
to the nucleocapsid.

2.3. Pathogenesis, Human Infection, and Host Responses

Most of the current understanding of the transmission, dissemination, and pathogene-
sis of CSG viruses in mammals is based on studies with LACV in murine models, with a
few studies in non-human primates as models for vaccine development. The infection of
CSG viruses is initiated by the bite of an infected mosquito. After this, the virus replicates
near the site of entry in the striated muscle, lymph nodes, and/or spleen [5]. The virus
then disseminates to the blood, probably through the lymphatics system, resulting in a
serum viremia followed by crossing of the blood–brain barrier (BBB) to the central nervous
system (CNS). Once in the CNS, the virus targets the cortical and basal ganglia neurons
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and possibly astrocytes [41], leading to inflammatory lesions with monocytic infiltration
and lymphocytic perivascular cuffing that results in encephalitis. Encephalitis has been
associated with a high serum viremia presumably because a high viral titre enhances the
entry of the virus across the BBB. The exact entry route of LACV into the CNS, and over-
coming the BBB, is not clearly defined. A possible route via the olfactory neurons has been
reported [42,43]. LACV infection of the CNS is age-related and juvenile mammals seem to
be more susceptible than adults. Previous case reports of SSHV disease in Canada have
described encephalitis predominantly affecting young children, although cases affecting
adults have been described [4,7,9,26,44–46]. In contrast, for JCV, neuroinvasive disease has
been reported in children, young adults, and older adults [46–48].

Despite the literature supporting a high risk of exposure to SSHV and JCV across
Canada, clinical disease is infrequently documented. Most cases of CSG viruses were
reported between 1978 and 1989, with at least 1 symptomatic infection reported annually
in Canada and a total of over 20 cases during that time period [9]. Of the 20 cases, SSHV
was mostly implicated as the aetiology [9]. The next reported human infection of either
SSHV or JCV in Canada was in 2006 [4], once serology for CSG viruses became available
in 2005, leading to an increase in the recognition of clinical cases in Canada [8]. The low
case rate for CSG viruses could be attributed to subclinical or asymptomatic infections,
along with under-diagnosis and under-reporting. Testing is not often requested due to a
lack of awareness among health care providers regarding CSG virus epidemiology and
clinical manifestations [25,49,50], and the virus is not notifiable to national public health
authorities in Canada. In 2019, the National Microbiology Laboratory (NML) in Winnipeg,
Manitoba, reported 14 JCV cases and 1 SSHV case, with 4 unidentified CSG virus cases [46].
The National Institute of Public Health of Québec (INSPQ) reported 15 JCV and 1 SSHV
cases in 2019, 3 JCV and 3 SSHV cases in 2020 and 7 JCV and 6 SSHV cases in 2021. Clinical
manifestations of SSHV and JCV include headache, fever, dizziness and vomiting, while
photophobia, respiratory distress and rashes have also been documented. Viral encephalitis
is characterized by fever, headache and altered mental status ranging from confusion to
coma, with or without additional signs of brain dysfunction, and even death [4,26,48,50].
There are few studies that estimate human exposure in Canada, with most focusing on the
maritime provinces of New Brunswick and Nova Scotia. Here, PRNT results indicated that
most positive results are due to exposure to JCV [25,51,52].

2.4. Animal Models and Therapeutics Developments

Determining the pathogenesis of these viruses in animals and cell culture models
could help explain the difference in disease outcomes observed in humans. The disease
outcome in mouse models closely resembles human disease, and infection in weanling mice
allows for age-dependent susceptibility studies [5,53]. Studies have demonstrated the dif-
ference in neuropathogenesis between weanling and adult mice after infection with LACV
and SSHV [5,53]. The age-dependent effect was attributed to type I IFN responses, which
were significantly stronger in adult mice compared to weanling mice [53]. Evans et al. [5]
demonstrated that LACV and SSHV induce neurological disease after intraperitoneal and
intranasal inoculation; however, JCV induced disease only after intranasal inoculation.
Similar results were observed by Bennett et al. [54], who reported low levels of neuroin-
vasiveness following the intraperitoneal inoculation of weanling mice with JCV, although
neurovirulence was observed between different clones of the virus.

Mouse models are also readily used for targeted antiviral development and vaccine
efficacy studies. As emerging viruses, the development of vaccines or antiviral treatments
against SSHV and JCV could be beneficial as currently only supportive care is possible for
clinical cases and no vaccine has been approved for human use to date. A live attenuated
orthobunyavirus vaccine candidate has been developed for JCV that successfully induced
neutralizing antibodies in people and protected monkeys against developing viraemia after
JCV infection [55]. As for antiviral therapy, limited studies have examined compounds
against SSHV and JCV. Favipiravir (FPV/ T-705) showed an inhibitory effect against JCV
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replication in African green monkey kidney cells (VERO) as well as neuro-2a cells, and
prolonged survival rate and delayed the onset of neurologic disease in mice inoculated
intracerebrally with JCV [56]. Favipiravir has also demonstrated protection, both in vitro
and in vivo, against other encephalitic viruses such as West Nile virus [57] and Western
equine encephalomyelitis virus [58], demonstrating the broad promise of FPV against
arboviral encephalitides. Kato et al. [56] also reported on the inhibitory effect of ribavirin
on JCV replication in vitro, although in vivo results were not significant. Ribavirin was also
ineffective in treating LACV infection in vivo [59] and showed no antiviral activity against
other orthobunyaviruses such as Oropouche, Caraparu, Guama, Guaroa, or Tacaiuma
viruses in mouse models [60]. Other antiviral compounds inhibiting LACV replication
include valinomycin, lapachol, and lagistase, with valinomycin exhibiting broad activities
against various viruses [61], and should be included in SSHV and JCV therapeutic studies.

3. The Vectors
3.1. Distribution and Abundance of Potential Vector Species

Mosquitoes are the primary vectors of CSG viruses in North America, even though
mechanical transmission by biting flies such as Tabanidae may also contribute to their
transmission cycle. To date, approximately 82 species of mosquitoes are thought to oc-
cur in Canada [62] (https://www.mosquitocatalog.org/—accessed on 15 January 2023).
Jamestown Canyon virus and SSHV have been isolated from several mosquito species
across a wide taxonomic range [63,64]. The local detection of virus, or viral RNA, in field-
trapped mosquitoes is an indication that the virus is circulating among vertebrate hosts
in the region; however, this cannot be considered evidence of vector competency. As an
example, in the USA, JCV was isolated from field-caught Anopheles quadrimaculatus [65].
However, Dieme et al. [66] experimentally determined that this species is not a competent
vector for two strains of JCV naturally circulating in the northeastern USA.

Jamestown Canyon virus has been isolated from more than 25 mosquito species across
temperate North America [63,67], including Aedes triseriatus, Ae. provocans, Ae. squamiger,
Ae. dorsalis, Ae. canadensis, Anopheles punctipennis and Coquillettidia perturbans—all com-
mon species found in Canada. Regionally, JCV has been isolated once from a pool of
Aedes communis (Alberta), once from a pool of Ae. abserratus/punctor (Newfoundland and
Labrador) and twice from mixed Aedes pools (Alberta, Quebec) [64,68,69]. The trans-
mission of JCV (i.e., vector competence) has been demonstrated for only a few species:
Ae. canadensis, Ae. provocans, Cs. inornata and Cq. perturbans found throughout Canada, and
An. punctipennis in southern regions [62,70].

Aedes provocans is present in all Canadian provinces except Yukon, Newfoundland, and
Labrador [62], and was the sole species from which JCV was isolated during an outbreak in
Wisconsin (USA) [71]. The outbreak virus was isolated from several pools of adults over
two years, while another viral isolate was detected in larvae. Interestingly, Ae. provocans
was not the most abundant species, accounting for approximately only 3% of the total
sample (Figure 3) [71]. In fact, the most frequently sampled species was Cq. perturbans
(~38%), followed by Ae. canadensis (~14%), with both species thought to be important
vectors of JCV. Similarly, JCV was not isolated from Cq. perturbans (accounting for nearly
50% of the sampled and screened mosquitoes) in a study in Maine (USA), but was instead
isolated from Ae. cantator, Ae. provocans, Ae. sollicitans and Uranotaenia sapphirina [67]. The
vector dynamics of JCV are thus not clearly understood and regional surveillance as well
as vector competence studies are clearly warranted.

In contrast with JCV, which appears to have high vector specificity, SSHV is commonly
isolated from the most abundant or dominant species of field-caught mosquitoes in the
Canadian North, which are usually Aedes spp. (Figure 3) [68,69,72–77]. As an example,
SSHV was isolated from five mosquito species (Aedes canadensis, Ae. cinereus, Ae. communis,
Ae. hexodontus and Cs. inornata) and was the most abundant, generally comprising more
than half of the sampled mosquitoes. SSHV was only isolated from Cs. inornata when it
accounted for a larger proportion of the sample [75].

https://www.mosquitocatalog.org/
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Figure 3. (Top) Proportions of dominant mosquitoes species from which Jamestown Canyon virus
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Furthermore, SSHV is often considered vectored by “non-Culex” mosquitoes; however,
a wide range of mosquito species are potential vectors of SSHV, and it may be that the
current distribution of SSHV merely coincides with that of Aedes spp. and Cs. inornata
and not Culex spp. From an evolutionary perspective, Culiseta is more closely related to
Culex than Aedes [78], suggesting that further work is needed to determine if SSHV can be
vectored by Culex mosquitoes. The distribution of SSHV may thus not be limited to the
distribution of its currently recognized vectors.

Our understanding of the spatiotemporal distribution of CSG viruses in mosquitoes
in the Arctic and Subarctic is mostly based on surveillance conducted during the 1970s
and 80s [68,69,72–77]. However, vectoral capacity might differ through space and time. As
an example, the vector status of Ae. stimulans appears to vary regionally. Aedes stimulans
in Indiana (USA) transmits JCV vertically and horizontally, and has an apparent prefer-
ence for white-tailed deer, which become viraemic for JCV [79]. There are several studies
north of Indiana, however, where JCV was not isolated from Ae. stimulans, despite the
species being proportionally well represented and sympatric with white-tailed deer reser-
voirs [67,68,71,73,80]. Therefore, updated and regionally relevant richness and abundance
studies and surveillance to detect distribution shifts in space or time, both critical compo-
nents in the maintenance cycles of arboviruses, are needed.
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Although we do not have good regional data on arbovirus transmission, understand-
ing the phenology and biology of mosquitoes can help generate hypotheses and guide
surveillance efforts. In the Yukon, the potential vectors Ae. cinereus and Cs. inornata
evidently emerge during spring thaw when temperatures remain low [75]; however,
Ae. canadensis and Ae. communis populations quickly become dominant when temper-
atures rise above 26.7 ◦C [76]. In contrast, Wood [62] states that Ae. cinereus overwinter as
eggs and are perhaps of one of the last species to hatch in spring. The emergence time of
Ae. cinereus thus requires clarification. It is also worth noting that while both Ae. canadensis
and Ae. cinereus are seemingly univoltine in the Yukon, bivoltine and mulitivoltine pop-
ulations exist where conditions are suitable, an important phenology considering virus
transmission and climate change [62].

Moving eastward, Ae. hexodontus gradually become more abundant and are present in
high numbers alongside Ae. communis in the Northwest Territories [77]. Further east, in
Nunavut, Ae. hexodontus and Ae. nigripes completely replace Ae. communis as the dominant
species [74]. Aedes hexodontus is the species responsible for the formidable reputation the
Arctic has for mosquitoes [62]. The eggs of this species hatch at around 0 ◦C, with larvae
displaying a high minimum temperature threshold, getting a head start on sympatric
species [62].

East of Hudson Bay, Ae. punctor is seemingly the most frequently trapped species and
accounted for most of the samples in studies from Québec, Newfoundland and Labrador [69,72].
Unlike the morphologically similar Ae. hexodontus, which prefers open country, Ae. punctor is
mostly confined to the boreal forest. The eggs of Ae. punctor also hatch in early spring when ice
is still melting, and are among the first species to pupate [62].

Culiseta inornata is found across western and southern Canada and is strongly as-
sociated with the prairies [62]. Culiseta inornata overwinter as adults in the burrows of
vertebrates and are therefore among the first adult mosquitoes present after the winter at
low temperatures and have even been observed feeding on humans at temperatures below
0 ◦C [62,76]. Coupled with the known replication of CSG viruses in the salivary glands of
Cs. inornata at temperatures as low as 5 ◦C, the virus may well overwinter in Cs. inornata
adults [76].

The spatial and/or temporal distribution, species succession, voltinism, regional
vectoral capacity, and overwintering of mosquitoes is thus fragmented, not well understood
and outdated. These life histories might further be altered by climate change and in turn
alter the epidemiological dynamics of CSG viruses.

3.2. Transovarial Transmission and Temperature Thresholds

Overwintering via transovarial transmission is common for Orthobunyaviruses and
likely plays an important role in the enzootic maintenance of both JCV and SSHV [81] in
the Canadian North [8]. The transovarial transmission of JCV has been demonstrated in
the USA for several species of mosquitoes that also occur in Canada. The virus has been
isolated from adult Ae. triseriatus reared from field-collected eggs in Ohio [82], from adult
Ae. provocans reared from larvae in Wisconsin [71], from male Ae. stimulans specimens in
Indiana [79] as well as from immature Ae. abserratus and Ae. cataphylla [81]. JCV can infect
Culiseta inornata both horizontally (via hosts) and vertically (generationally) [83].

While the vertical transmission of JCV is clearly a possible overwintering mechanism,
transovarial transmission may be less efficient at cold temperatures. In a study in California,
reducing temperature from 20 ◦C to 10 ◦C while incubating Ae. squamiger larvae reduced
the infection rate of the resulting adult female mosquitoes [83]. This sensitivity of JCV to
temperature highlights the need to determine the thermal thresholds of JCV below which
viral replication and/or survival are affected. JCV could infect Aedes cataphylla horizontally
but not vertically when larvae were incubated at 5 ◦C for 10 days, followed by 10 ◦C until
emergence [83]. These low temperatures likely imitate the natural conditions experienced
by Ae. cataphylla at high altitudes. Since the distribution range of Ae. cataphylla reaches
the western Arctic and the species readily feeds on humans—this has relevance for the
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Canadian Arctic, and warmer temperatures may well enhance the transovarial transmission
of JCV.

Transovarial transmission is likely also important for SSHV, which has been isolated
in Canada from wild-caught Aedes immatures in the Yukon [84], as well as from adult
Ae. implicatus and Ae. communis adults reared from wild-caught larvae in Saskatchewan
and Québec, respectively [72,85]. Snowshoe Hare virus is transmitted by both vertical and
venereal routes in Ae. triseriatus and Cs. inornata inoculated by intrathoracic injection [86].
Temperature thresholds are better characterized for SSHV compared to JCV, with viral
survival and infectivity varying with infective dose, vector species, and incubation length.
For example, wild-caught Cs. inornata intrathoracically injected with 30 mouse LD50
transmitted SSHV to mice after 17 days incubating at 26.7 ◦C; the replicating virus was
isolated from the salivary glands of Cs. inornata injected with only 0.03 mouse LD50 after
46 days of incubating at 12.8 ◦C, but no infectivity was detected after 46 days at 4.4 ◦C with
an infective dose less than 3 mouse LD50 [75]. In contrast, SSHV maintained transmission in
Ae. cinereus at lower temperatures, with wild-caught Ae. cinereus readily transmitting SSHV
to mice after the intrathoracic injection of at least 3 mouse LD50 after 15 days incubating
at 12.8 ◦C. At 4.4 ◦C, the replicating virus could be isolated from Ae. cinereus salivary
glands after 57 days [75]. Similarly, the replicating virus could be isolated from the salivary
glands of wild-caught Ae. canadensis incubating at 4.4 ◦C after 17 days [76]. Snowshoe Hare
virus is thus capable of replicating in vectors at low temperatures for an extended period,
providing an additional route for overwintering.

Cool temperatures also restrict the distribution potential of introduced vectors and
their viruses. Although not yet broadly established in Canada, the principal vector for many
important vector-borne pathogens, such as yellow fever, dengue and Zika, Aedes aegypti,
is seemingly also a competent vector of SSHV [86]. Even though laboratory colonies of
the species could not be maintained at 10 ◦C [76], SSHV was transmitted via bites after
three weeks at 26.7 ◦C and four weeks at 12.8 ◦C [86]. Less than half of the mosquitoes
infected at feeding transmitted the virus, reaffirming the limiting role temperature plays in
transmission [86]. Another invasive species, Aedes albopictus, is also now regularly collected
in Eastern Canada [87]. Since both species have demonstrated vectoral capacity for a wide
range of viruses (including CSG viruses) and exhibit anthropophilic behaviour, monitoring
their distribution in a warming future is important.

Further surveillance is needed to update current understanding of vector distribution
patterns in Canada, as is experimental work to better determine the thermal limits of both
viruses and vectors. Our comprehension of mosquito host range and preferences in the Cana-
dian North is based on only a few relevant reports [79,88,89]. Since heteroxenous lifecycles of
arboviruses can be complex, multidisciplinary approaches are needed to assess the mosquito
vectorial capacity, vector competence, host preference, and spatiotemporal distribution.

4. Mammalian Hosts

Under present and future climate warming scenarios, both SSHV and JCV are pre-
dicted to undergo northward range expansion in Subarctic and Arctic regions, where
a wide range of mammals already have evidence of exposure to these viruses [90]. As
infection with these viruses typically results in transient viremia, most of the published
literature from Canada has focused on antibody detection in humans and animals using a
competitive ELISA and/or a plaque reduction neutralization test (PRNT) [51,91]. This has
revealed a wide range of hosts that can become infected, including humans, lagomorphs,
rodents, foxes, polar bears, domesticated livestock (horses, cows, and sheep), and multiple
cervids [51,76,91–93]. However, there are relatively few mammalian hosts that are thought
to be competent reservoirs for the viruses: small mammals (rodents and lagomorphs)
for SSHV and wild cervids for JCV [94–96]. These animals play a significant role in the
enzootic transmission cycle of CSG viruses in temperate regions of Canada and the United
States [8]. Other hosts that are exposed to CSG viruses are not thought to contribute signifi-
cantly to further transmission, though they may be sentinels, indicating the presence of
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CSG viruses in ecosystems and serving as predictors for human health risk and/or range
expansion [97,98].

As expected, JCV is most often found in larger animals, while SSHV is commonly
found in small mammals across Canada (Figure 4) [93]. This pattern appears to remain
consistent in Arctic regions (Figure 4) [76,91]. Though many species of mosquitoes can
carry both SSHV and JCV, there may be differences in vector feeding preferences for some
competent vectors, which may contribute to the differences in exposure that are observed
in different taxa [99]. Caribou appear to play an important role in the maintenance of JCV
in northern ecosystems, as they are highly exposed and are the most common cervid north
of the treeline [91]. This is consistent with a previous study that identified white-tailed
deer as amplifying hosts for JCV in the United States [100]. In addition, high exposure in
lagomorphs from northern provinces and territories suggests that they may be amplifying
hosts for SSHV, though experimental infection studies are lacking for northern species [101].
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Created with BioRender.com.

It is difficult to fully understand the transmission dynamics of CSG viruses in the
north, as there are few long-term studies in Arctic wildlife. However, one study examined
exposure to CSG viruses during three time periods (1986–1989, 1995–1998, 2015–2017)
for polar bears from western Hudson Bay and found a significant association between
summer air temperatures and antibody prevalence in bears [91], suggesting that exposure
to CSG viruses has already and will continue to increase for Arctic wildlife as the climate
warms [102]. Bears located near Churchill along the coastline also experienced less exposure
to CSG viruses during this study, likely due to the dampening effect of ocean wind on



Viruses 2023, 15, 1242 11 of 19

mosquito activity [91,93]. Though bears may serve as sentinels for climate-driven change
in the Arctic, it is unknown if they are amplifying hosts for CSG viruses.

Caribou, which are likely to be important maintenance hosts for JCV in the North,
exhibit unique behaviours among cervids in Canada. These animals are generally classified
as sedentary or migratory, with sedentary caribou (some woodland ecotypes) locally
dispersing and migratory caribou moving in large herds to alpine habitats (mountain
ecotype) or tundra habitats (migratory tundra ecotype) during the calving season [103].
Depending on the scale of these migrations, caribou may or may not be good sentinels
for local risk of CSG viruses, as those that undergo large dispersals could provide a poor
signal for CSG virus presence at sampling sites. For example, positive animals in the
migratory tundra ecotype may only reflect the presence of CSG viruses around their
calving grounds in the Arctic, corresponding with their location during periods of insect
activity [91]. Regardless, the movement of caribou herds into tundra ecosystems provides
opportunities for the dissemination of JCV, especially as insect activity overlaps with
calving and postpartum, when herds are most vulnerable [104]. The reservoir potential of
Rangifer species, including caribou and reindeer, appears likely, as reindeer are capable of
developing viremia for five days following subcutaneous inoculation with JCV and appear
to develop minimal health effects following infection [105].

Northern rodents and lagomorphs that are suspected to be involved with SSHV mainte-
nance uniquely exhibit cyclical population irruptions in the Arctic. For example, snowshoe
hares have a wide distribution across Canada and undergo 9 to 11 year population cycles in
boreal forests [106]. In addition, lemmings and Arctic hares exhibit three to four year cycles
in tundra regions [107,108]. Though cyclic and noncyclic hare and rodent populations are
probably involved with the maintenance of SSHV in the North, population irruptions with
cyclic species provide prime opportunities for the dissemination of SSHV. A population
peak that is accompanied by warmer summer temperatures would likely increase the
density of amplifying hosts and mosquitoes, creating ideal scenarios for transmission. In
addition, these animals have small home ranges, making them important sentinels for local
SSHV risk for humans around northern communities [109]. Future studies could focus on
serosurveys of these rodent and lagomorph species to identify whether SSHV and other
viruses are present across Arctic ecosystems, along with experimental infection studies to
verify if they are suitable amplifying hosts.

There is no information available for the duration of antibody production in northern
species, limiting the interpretation of results from long-lived animals that may be exposed
over multiple summers [91]. However, sampling animals with short lifespans or sampling the
young of the year may provide a clear picture of seroprevalence during specific time-periods.

5. Climate Change

Over the past 50 years, increased global connectivity and anthropogenic climate change
in the Arctic have altered the distribution and abundance of pathogens, contributing to
the frequency of emerging infectious disease outbreaks [110]. In particular, the western
Canadian Arctic has experienced a warming trend of ~2.5 ◦C, compared to the Canadian
national average of 1.9 ◦C, since monitoring began in 1948 [111]. The recent estimates
suggest that the Arctic is warming at four times the global rate [1]. Northward advancement
of the treeline and a 50–60% increase in Arctic precipitation over the past 20 years have also
been observed in tundra ecosystems [112,113]. Climate models project that these patterns
will continue in the future, with increased warming in northern regions and higher rates
of warming predicted in the winter versus the summer [102]. Similarly, climate models
predict higher rates of precipitation, with roughly a 7–24% increase depending on low- and
high-emission scenarios, and a shift from snow to rain in the spring and fall seasons [102].
All these changes may break down barriers for the emergence of arboviruses by altering
the population dynamics of viruses, vectors, and wildlife hosts.

As the CSG viruses do not have an environmental stage, the most climate-sensitive
part of the life cycle is in the mosquito poikilothermic hosts, rather than in the mammalian
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endothermic hosts. In general, most vector-borne viruses have higher rates of development
in vectors (i.e., shorter extrinsic incubation periods) under warmer temperatures, suggesting
that there will be an increased amplification of the circulating virus in currently endemic
regions (which includes most of Canada, including the northernmost communities). This is
at least the case expected for West Nile virus under different climate change scenarios [114].
Temperatures are not likely to warm above the viral survival limits (especially in the Arctic),
since mosquitoes are mobile hosts and will seek shelter before exceeding their survival
threshold. Likewise, these viruses are not likely to disappear at their southern distributional
limits within Canada since they are both currently present well into the United States.
While there is limited information, empirical evidence indicates that warming temperatures
will increase both the overwinter survival of viruses in mosquitoes, and perhaps most
importantly, the success of transovarial transmission of viruses within mosquitoes. In
addition, the infectivity of SSHV is higher in mosquitoes incubated at higher temperatures.
If, as it appears, SSHV is more capable of using different vector species, it will likely be
less affected by climate-driven changes in vector diversity than JCV. In short, warmer
conditions will likely lead to increased viral survival, development rates, and transmission
in endemic regions, without losing viral establishment in southern regions, and possibly
increasing their northern distributional limits along with their hosts and vectors.

The overall effect of climate warming on mosquito vectors in the Canadian Arctic is
likely to be positive and substantial, in the form of shifts in life-history traits of arthro-
pods, including the survival, fecundity, development time, host-seeking behaviours and
phenology of interspecies interactions [115,116]. Warmer winter temperatures and thicker
snowpacks may favour the survival of adult mosquitoes in dens of vertebrate hosts. De-
creasing winter mortality due to a decrease in the number of winter days with extremely
low temperatures is likely to cause a northward shift in the current distribution of some
Aedes species [117]. Warming temperatures could result in an earlier hatching of mosquitoes
and increase their activity period in the summer [118]. With a longer activity period, the
presence and proportion of infected female mosquitoes will increase, and the transmission
risk of arboviruses might be higher [119]. Warmer water temperatures in summer will
enhance the survival of immature mosquitoes in biofilms and enhance the development of
larger and more fecund adults [120]. Warming summer temperatures could decrease egg
retention in female mosquitoes, especially Ae. impiger [121], making oviposition faster, and
shorten the interval between successive gonotrophic cycles [118]. This will also shorten
the development time required for immature mosquitoes, thus reducing their exposure
to aquatic predators, and increasing survival and the number of generations that can be
completed each summer. This short development rate is likely to bring mosquitoes into
phenological synchrony with caribou [104]; however, it is also possible that the earlier
emergence of adult mosquitos in spring as a result of warming may create a disconnect
with migrating caribou, who may be driven more by photoperiod than temperature. In
general, longer active seasons will alter the host/vector dynamic by increasing the time
available for host harassment, thus providing more opportunities for vector-borne disease
transmission [115]. Finally, with regard to mosquito species currently of importance to
CSG virus transmission in the Canadian North, Ae. cinereus and Cs. inornata will likely
emerge earlier each spring [75], while Ae. canadensis and Ae. communis populations will
likely continue to dominate in warmer summer temperatures [76]. Both Ae. canadensis and
Ae. cinereus will likely switch from univoltine patterns to bivoltine and even mulitivoltine
populations as conditions become more suitable [62]. Anopheles punctipennis—currently
a southern vector for JCV—may move further north and Aedes provocans may be able to
colonize regions where it is currently absent. Invasive species such as Ae. aegypti and
Ae. albopictus are competent for JCV and SSHV and may well be able to newly establish
further north in Canada. While interspecific competition outcomes and vector competency
are too complex to predict, warmer conditions will lead to earlier and longer seasons for
mosquito activity, faster development, an increased number of generations of mosquitoes
per season, an increased overwinter survival of eggs and adults, and an overall higher
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abundance, activity, and diversity of mosquitoes competent to serve as vectors for JCV and
SSHV in Canada.

In comparison with temperature, changes in precipitation and regional hydrology
are also extremely important for mosquito populations, but substantially more difficult to
predict on a meaningful scale. While, intuitively, wetter conditions should favour mosquito
abundance and reproduction, there may be checks and balances. Overall, precipitation in
the Canadian North will increase [122], and likely an increase in standing water in summer
will increase available breeding habitat, but melting permafrost will reduce suitable habitat
for Arctic mosquito species [104,115,118]. Since their eggs must be submerged over an
extensive period to be able to hatch, the permafrost ensures that soil is saturated with water
and that temporary waterbeds are flooded [118,123]. Melting of the permafrost may lead to
dryer soil, reducing the number of eggs hatching and leading to a population decline in
some Arctic species [124,125], especially in competition with drought-adapted southern
species [126]. Therefore, the direction of the overall effect of changing moisture conditions
on mosquito populations is likely positive, but probably highly regionally variable.

The effects of climate change on mammalian reservoir hosts for CSG viruses are largely
unknown. Indeed, further work is needed to determine the actual reservoir hosts in Sub-
arctic and Arctic regions of Canada, hampered by the challenges of transient viremia and
access to samples from free-ranging wildlife in remote regions. In general, rodents and
hares are the likely reservoir for SSHV, and cervids (predominantly caribou above 60◦ N in
Canada) are the host for JCV. Climate, especially precipitation, is strongly linked to rodent
abundance, often with vegetation growth as the intermediary variable [127]. Therefore, in-
creased precipitation could lead to higher rodent abundance overall, but greater variability
could drive an increased magnitude of peaks and troughs in rodent populations that might
destabilize transmission of CSG viruses. Caribou populations in northern Canada are
declining; based on the Species at Risk Act and the Committee on the Status of Endangered
Wildlife in Canada (COSEWIC) https://www.canada.ca/en/environment-climate-change/
services/species-risk-education-centre/caribou.html—accessed on 15 January 2023), boreal
and barren ground caribou are listed as threatened, and Peary caribou and Dolphin-Union
caribou are listed as endangered. Declining caribou populations may therefore reduce
suitable reservoirs for JCV; however, white-tailed deer (Odocoileus virginianus) along with
other cervids also appear to serve as competent reservoirs for JCV and are already moving
north in Canada, largely in response to climate and habitat alteration [128]. While the
direction of change is too complicated to predict, plausible mechanisms for climate change
to alter reservoir host ecology in the Canadian North include, but are not limited to, altered
overwinter survival with deeper snowpacks, increased competition from invasive species,
increased length of feeding and breeding seasons, and increased pressure from other, more
pathogenic diseases, and parasites that may alter survival and reservoir competence. Over-
all, it is likely that both SSHV and JCV are broad enough in their reservoir host preferences
that they are resilient to climate-driven changes in mammalian diversity. The current high
seroprevalence in caribou indicates that transmission is already widespread, and while this
is not likely to be contributing to caribou declines, the effects of the viruses themselves are
not known in free-ranging wildlife. In general, warming temperatures could be causing
stress on host species such as caribou, making them more vulnerable to disease, including
those that were not particularly pathogenic under normal circumstances, such as CSG
viruses (Bradley et al., 2018).

6. Public Health Messaging

Frontline medical providers need to consider arboviruses, and specifically CSG viruses,
as a differential diagnosis for neurological disease and order appropriate serological and
molecular testing. Serosurveys in Canada have only been conducted in isolated commu-
nities and regions, and more broad sampling (perhaps through blood banks) is needed
to determine the level of exposure in the general population. Snowshoe Hare virus and
JCV are transmitted by mosquitoes, which means that hunters and trappers in northern

https://www.canada.ca/en/environment-climate-change/services/species-risk-education-centre/caribou.html
https://www.canada.ca/en/environment-climate-change/services/species-risk-education-centre/caribou.html
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communities likely do not acquire the viruses while working directly with wildlife or
harvested carcasses. However, safe carcass handling, including the use of hand washing
and gloves, remains recommended [8]. Even so, the risk of exposure increases with time
spent outdoors [92]. As mosquitoes are the primary means of transmission of these viruses,
transmission to mammals is likely limited to the summer months when mosquitoes are
active in the North. Mitigation strategies targeting human exposure include public health
messaging promoting the use of effective insect repellents and long clothing to prevent
bites. Reducing the interaction between wildlife and mosquitoes is nearly impossible and
reducing the population density of mosquitoes via insecticides, larvicides or the Sterile
Insect Technique (releasing large numbers of sterilized males) is currently impractical due
to a lack of infrastructure and a vast geographic area in the north. The use of any of these
techniques would also need to be accompanied by a detailed risk assessment for potential
non-target impacts. The benefits of traditional and cultural activities, including outdoor
activities during peak mosquito activity during the summer, likely outweigh the risks of
infection, though preventative measures can be used to reduce the potential for insect bites.
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