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ABSTRACT

Purpose: O6-methylguanine DNA methyltransferase (MGMT)-silenced
tumors reveal sensitivity to temozolomide (TMZ), whichmay be enhanced
by PARP inhibitors. Approximately 40% of colorectal cancer has MGMT
silencing and we aimed to measure antitumoral and immunomodulatory
effects from TMZ and olaparib in colorectal cancer.

Experimental Design: Patients with advanced colorectal cancer were
screened for MGMT promoter hypermethylation using methylation-
specific PCR of archival tumor. Eligible patients received TMZ 75 mg/m2

days 1–7with olaparib 150mg twice daily every 21 days. Pretreatment tumor
biopsies were collected for whole-exome sequencing (WES), and multiplex
quantitative immunofluorescence (QIF) of MGMT protein expression and
immune markers.

Results: MGMT promoter hypermethylation was detected in 18/51 (35%)
patients, 9 received study treatment with no objective responses, 5/9 had
stable disease (SD) and 4/9 had progressive disease as best response.
Three patients had clinical benefit: carcinoembryonic antigen reduction,
radiographic tumor regression, and prolonged SD. MGMT expression by
multiplex QIF revealed prominent tumorMGMTprotein from 6/9 patients

without benefit, while MGMT protein was lower in 3/9 with benefit. More-
over, benefitting patients had higher baseline CD8+ tumor-infiltrating
lymphocytes.WES revealed 8/9 patients withMAPkinase variants (7KRAS
and 1 ERBB). Flow cytometry identified peripheral expansion of effector
T cells.

Conclusions: Our results indicate discordance betweenMGMT promoter
hypermethylation andMGMT protein expression. Antitumor activity seen
in patients with low MGMT protein expression, supports MGMT protein
as a predictor of alkylator sensitivity. Increased CD8+ TILs and peripheral
activated T cells, suggest a role for immunostimulatory combinations.

Significance: TMZ and PARP inhibitors synergize in vitro and in vivo in
tumors with MGMT silencing. Up to 40% of colorectal cancer is MGMT
promoter hypermethylated, and we investigated whether TMZ and ola-
parib are effective in this population. We also measured MGMT by QIF
and observed efficacy only in patients with low MGMT, suggesting quan-
titative MGMT biomarkers more accurately predict benefit to alkylator
combinations.

Introduction
Colorectal cancer remains highly prevalent with few available biomarker-
guided therapies. However, promoter hypermethylation of O6-methylguanine
DNA methyltransferase (MGMT) is identified in approximately 40% of
metastatic colorectal cancer (1, 2). Hypermethylation of the MGMT promoter
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is expected to result in decreased MGMT mRNA/protein expression, which
reduces the capacity of tumor cells to repair the lethal O6-methylguanine le-
sions produced by alkylating agents and renders these tumors more susceptible
to these agents, including temozolomide (TMZ; refs. 3–5). Moreover, the base
excision repair pathway is a parallel process of alkylator repair and prelimi-
nary studies suggest that TMZ in combination with PARP inhibitors (PARPi)
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may enhance tumor cell death inMGMT-silenced tumors (6–8). The increased
sensitivity of tumors to TMZ with a PARPi is multifactorial and includes the
presence of stalled replication forks typically overcome by homologous re-
combination (HR) DNA repair, and PARPi can delay the initiation of this
HR-mediated recovery (7). Furthermore, “PARP trapping” ontoDNA is impor-
tant for PARPi+TMZ sensitivity, which points to olaparib as an ideal candidate
to use in combination with TMZ (7–10).

These preclinical findings suggesting enhanced TMZ sensitivity with PARPi
have led to several clinical trials in different tumor types. One example, a prior
clinical trial of TMZ with veliparib in patients with advanced colorectal can-
cer reported a disease control rate (DCR) of 24% after two cycles (11). This
study did not select patients with MGMT promoter hypermethylated tumors
and used a PARPi with limited PARP trapping effect. The biological deter-
minants for treatment sensitivity and resistance in this setting remain poorly
explored. Here, we report the results of a single-arm, investigator-initiated,
phase II clinical trial of TMZ in combination with olaparib in patients with
MGMT promoter hypermethylated advanced colorectal cancer. We evaluated
the clinical activity and explored biological determinants using genomic and
protein-based biomarkers.

Materials and Methods
Study Design and Participants
This study was a single-arm, open-label, phase II clinical trial performed
at the Yale Cancer Center. Eligible patients had histopathologic confirma-
tion of stage IV microsatellite stable (MSS) colorectal cancer that progressed
after 5-fluorouracil, oxaliplatin, irinotecan ,and appropriate biologic ther-
apy. Promoter hypermethylation of MGMT was an integral biomarker for
selection/enrollment and patients were prescreened using archival tumor
tissue samples. The MGMT promoter hypermethylation was measured by
methylation-specific PCR (MS-PCR) in the Clinical Laboratory Improvement
Amendments (CLIA)-certified Yale Molecular Diagnostics Laboratory. As an
integral biomarker for enrollment, MS-PCR was selected over other methods
ofMGMT testing such as pyrosequencing andmethyl-BEAMing given the vali-
dation of MS-PCR for clinical trial samples in our institution. These alternative
methods ofMGMT testing are likely only semiquantitative given the rough es-
timates of tumor percentage. Furthermore, while they may offer advantages to
predict response to TMZ monotherapy or TMZ/cytotoxic combinations (2, 12,
13) their predictive power is uncertain for TMZ + PARPi, which may work at
differentMGMT levels (14, 15). A full list of eligibility criteria is available as Sup-
plementary Materials and Methods S1. All patients provided written informed
consent as a condition of participation and the Yale University Institutional
Review Board approved the study, which adheres to Good Clinical Practice
Guidelines. The study was conducted in accordance with the Declaration of
Helsinki and followed the Consolidated Standards of Reporting Trials. The
ClinicalTrials.gov Identifier is NCT04166435.

Procedures
Patients received a starting dose of TMZ 75 mg/m2 days 1–7 with continuous
olaparib 150 mg twice daily during 21-day cycles. The standard olaparib dose
of 300 mg twice daily was not used to due to the enhanced myelosuppression
with PARPi-chemotherapy combinations. The TMZ was selected on the basis
of prior experience with TMZ and olaparib by Farago and colleagues and we
aimed to use continuous PARP inhibition for continuous PARP trapping and

thus a slightly lower dose of olaparib 150 mg twice daily was selected (16). Par-
ticipants received TMZ and olaparib until progression of disease, unacceptable
toxicity, death or withdrawal. Tumor RECIST measurements were performed
at baseline and every 6 weeks on study. The study mandated a pretreatment
tumor biopsy along with an optional progression biopsy. Blood and buffy coat
were collected at screening, during treatment, and on-progression.

For whole-exome sequencing (WES), DNA from the pretreatment tissue
samples and patient-matched normal DNA extracted from buffy coats were se-
quenced. The WES was performed using Illumina NovaSeq 6000 at the Yale
Center for Genome Analysis for tumor/normal pairs. A multiplex quantitative
immunofluorescence (QIF) panel was standardized for simultaneous and spa-
tially resolved measurement of DAPI (all nuclei), cytokeratin (CK; epithelial or
tumor cells), MGMT protein, γH2AX, and CD8+ tumor-infiltrating lympho-
cytes (TIL) in the whole tissue sections from tumor biopsies. Antibodies for
MGMT,γH2AX, andCD8were validated for specificity and reproducibility and
multiplex QIF was performed as reported previously (17, 18). A control tissue
microarray sample containing positive and negative control samples was used
for assay validation and stained alongside the trial samples for reproducibility
assessment. Imaging was acquired on a Vectra Polaris instrument. For isolation
of peripheral blood mononuclear cells (PBMC), whole blood was subjugated
to density gradient separation using Ficoll-Paque PLUS. Cells were frozen in
liquid nitrogen until all samples from the time course had been collected.

Outcomes
Theprimary endpoint of the clinical trial was the objective response rate (ORR),
defined as the proportion of patients with complete or partial response by RE-
CIST. Secondary endpoints included progression-free survival (PFS), overall
survival (OS), DCR, and safety and tolerability of the combination. Exploratory
endpoints included MGMT protein expression by QIF, changes in peripheral
immune cell populations, and changes in tumor mutational burden.

Statistical Analysis
A null hypothesis of a 5% ORR was used with alternative hypothesis ORR of
≥25%. An early stopping rule with a Bayesian analysis plan for the ORR was
planned for after the first 9 patients with ≥1 response required to continue en-
rollment to a total sample size of 30 patients. Four responses in a full cohort
of 30 patients were required to meet the primary endpoint. Survival functions
were compared using Kaplan–Meier graphical analysis and the log-rank test.
Comparisons between continuous QIF scores across groups were conducted
using the Mann–Whitney test. Patient characteristics were compared using the
Student t test for continuous variables and χ2 test for categorical variables.
The statistical analysis and graphical representation was performed in Graph-
pad Prism v7.01 for windows (GraphPad Software, Inc). All two-tailed P values
≤0.05 were considered as statistically significant.

Data Availability Statement
The genomic data generated in this study are publicly available in Sequence
Read Archive BioProject ID PRJNA956444. Non-genomic data will be made
available based on reasonable request to the corresponding author.

Results
Between February 19, 2020 and June 22, 2021, 62 patients with metastatic MSS
colorectal cancer were screened for MGMT promoter hypermethylation, of
which 51 had adequate tumor tissue for clinical gradeMGMT testing by bisulfite
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FIGURE 1 Trial profile. CONSORT diagram for enrolled participants.

deamination and MS-PCR. We identifiedMGMT promoter hypermethylation
in 18/51 (35%) of patient samples (Fig. 1). Nine patients received TMZ with ola-
parib due to the predefined stopping rule and their baseline characteristics are
outlined in Table 1. No patients had a confirmed partial or complete response,
5/9 (56%) had a best response of stable disease (SD) and 4/9 (44%) had progres-
sive disease, and the study closed early per the predefined stopping rule. For
those patients with SD by RECIST, 3 patients had reductions in carcinoembry-
onic antigen (CEA) of ≥25% (Fig. 2A) and ≥10% tumor regression by RECIST
(Fig. 2B). The median PFS was 3.0 months (95% CI: 2.1–not reached) and me-
dian OS was 9.4 months (95% CI: 6.7–not reached; Supplementary Fig. S1A
and S1B). Treatment-related adverse events are summarized in Table 2. Five pa-
tients underwent dose modifications for treatment-related adverse events, 3 for
grade 3 neutrophil count decrease, 1 for grade 3 platelet count decrease, and 1
for grade 3 mucositis. For analysis of correlative studies, the cases were divided
in two clinical groups including patients who had clinical benefit as defined by
CEA reduction, minor radiographic tumor regression by RECIST v1.1 (>10%)
and prolonged SD by RECIST v1.1 (≥100 days), and those who did not experi-
ence clinical benefit (e.g., progressive disease). A study representativeness table
is provided by Supplementary Table S1.

Whole-exome DNA sequencing was performed on tumor and matched non-
tumor samples from all patients who received study treatments. The mean

TABLE 1 Baseline characteristics

Characteristic
TMZ + Olaparib
(N = 9)

Age
Median 59
Range 45–78

Sex – no. (%)
Male 4 (44)
Female 5 (56)

Race – no. (%)
White 8 (89)
Black 1 (11)

ECOG performance status – no. (%)
0 3 (33)
1 6 (67)

Side of primary tumora – no. (%)
Left 4 (44)
Right 5 (56)

Tumor grade – no. (%)
Poorly differentiated 3 (33)
Moderately differentiated 6 (67)

Molecular results – no. (%)
KRAS mutated 7 (78)
KRAS/RAF wildtype 2 (22)
Microsatellite stable 9 (100)

Number of prior therapies – no. (%)
2 2 (22)
≥3 7 (78)

aRight side defined as tumors primary to splenic flexure.

coverage was 486 reads and the mean number of nonsynonymous mutations
across cases was 527 (range, 279–527). Molecular analysis revealed 8/9 (89%)
had tumor-specific deleterious variants in genes of the MAP kinase pathway
(7 KRAS and 1 ERBB), and 8/9 (89%) had TP variants (Supplementary
Fig. S2). The mean tumor mutational burden was 15 mutations/megabase
(range, 6–41) as outlined in Supplementary Fig. S2A. One patient without any
clinical benefit had a BRCA2 mutation, and no HR-related mutations were
identified in any of the patients who experienced clinical benefit. Given the
limited sample size no association was noted between patient outcomes and
genomic alterations.

To obtain a quantitative and spatially resolved assessment of MGMT protein
expression, DNA damage response (DDR), and TILs in pretreatment and post-
treatment tumors, we studied the biopsy samples with a 5-colored multiplexed
QIF panel containing themarkers DAPI for all cells, cytokeratin for tumor cells,
MGMT, γH2AX as a marker of DDR, and CD8 for cytotoxic T cells (represen-
tative example: Fig. 3A). Themarker scores were selectively measured in tumor
and non-tumor stromal cells based on their colocalization with the epithelial/
tumor cell marker cytokeratin as reported previously (18). Despite showing
MGMT promoter hypermethylation byMS-PCR,MGMT protein was detected
in cytokeratin-positive tumor cells from six of the nine baseline biopsy sam-
ples. Repeat bisulfite deamination and MS-PCR of the MGMT promoter was
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FIGURE 2 Biochemical and radiographic response. A, Spider plot of the percent change of CEA (ng/dL) from baseline for evaluable patients. Each
color represents a patient. B, Waterfall plot for all evaluable patients, representing radiographic best response of tumor change from baseline
according to RECIST v1.1. The * denotes patients that had progression of non-target lesions at the time of disease progression.

conducted as confirmation on all pretreatment biopsies and all 9 patients
remainedMGMT promoter-hypermethylated at enrollment.

Despite the limited number of cases, the tumor cell–specific MGMT protein
expression in the pretreatment biopsies of the 3 patients who derived clinical
benefit from study treatment was significantly lower compared with the pre-
treatment biopsies of the 6 patients who did not experience disease stabilization
on study (Fig. 3B). The cases with clinical activity showed also numerically
higher levels of γH2AX in tumor cells and significantly higher CD8+ TILs
(Fig. 3C and D). Two patients with clinical benefit underwent biopsy at the
time of disease progression with 1 patient biopsied at the same site for both
pretreatment and progression and another patient with a pretreatment lymph

TABLE 2 Frequency of treatment-related adverse events and
laboratory abnormalities

Event Any grade Grade ≥3

Any event – no. (%) 9 (100) 7 (78)
Any serious event – no. (%)a 0 0
Most common events – no. (%)

Nausea 3 (34) 0
Fatigue 2 (22) 0
Anorexia 2 (22) 0
Constipation 1 (11) 0
Mucositis 1 (11) 1 (11)
Concentration impairment

Laboratory abnormalities – no. (%)
White blood cell count decreased 6 (67) 3 (34)
Neutrophil count decrease 5 (56) 4 (44)
Platelet count decreased 5 (56) 2 (22)
Anemia 4 (44) 0
Lymphocyte count decrease 3 (34) 2 (22)
Aspartate aminotransferase increased 2 (22) 0
Alkaline phosphatase increased 1 (11) 0

aOne serious adverse event was reported for one patient nausea/vomiting that
was related to underlying disease.

node biopsy and progression biopsy of peritoneal metastasis. Both patients
remained mismatch repair proficient on progression biopsy. The progression
biopsies showed marked increased in tumoral MGMT protein levels relative
to the pretreatment biopsy and a trend toward decreased γH2AX and CD8+

T-cell tumor infiltration (Supplementary Fig. S3). Together, these results sug-
gest that MGMT protein can be expressed in a substantial fraction of MGMT
promoter-methylated colorectal cancer, and low MGMT expression in tumor
cells and increased local effector TILs were associated with benefit from TMZ
and olaparib. Conversely, elevated tumoral-cell MGMT protein expression
was associated with lack of any clinical benefit from the treatment regimen,
supporting the value of this metric as a biomarker.

Peripheral blood was collected to assess the pharmacodynamic effects of the
study treatment on PBMC. For each PBMC population (Fig. 3E–I) the baseline
mean for all patients was calculated and the percent change from baselinemean
was measured on cycle 2 day 1 (“On Treatment”) and at the time of progression
for all patients. Most prominently, an expansion and proliferation of recently
activated CD8+ T cells was seen with treatment, as well as increases in both
naïve and memory T cells (Fig. 3E–G). There was also an expansion of tumor-
associated natural killer (NK) cells (CD56bright CD16−), and an increase in
multiple T-cell exhaustion markers (Fig. 3H and I). A classification of the im-
mune cell subtype from the flow cytometry results is available in Supplementary
Table S2.

Discussion
Our study represents the first clinical evaluation of TMZ plus a PARPi in
MGMT promoter hypermethylated colorectal cancer. Although, no responses
by RECIST v1.1 were observed, correlative studies suggest potential for fur-
ther evaluation of this therapy by refining the biomarker selection strategy.
Moreover, this is the first prospective assessment of the MGMT protein levels,
γH2AX and TILs using spatially resolved quantitative analysis in this setting.
Here we found prominent discordance between the MGMT promoter hyper-
methylation status andMGMTprotein expression in colorectal cancers and the
associated clinical outcomes. Furthermore, in patients with clinical benefit, in-
creasedMGMTprotein expression at progressionwas noted, representing a po-
tential resistancemechanism to study treatment.Our data suggest that localized
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FIGURE 3 Low tumor-specific MGMT protein expression and high CD8+ T-cell infiltration are seen in the pretreatment biopsies of patients who
derived clinical benefit from the trial and trial therapy alters the PBMC population. A, Representative multicolor images of a pretreatment biopsy
sample with tumor cell–selective MGMT downregulation and paired posttreatment biopsy with increased tumor-specific MGMT expression. Epithelial
and tumor cells are highlighted by CK (green channel). MGMT-positive cells are shown in the red channel, γH2AX-positive cells in the yellow channel,
and CD8-positive cells in the white channel. Bar = 100 μm. Mean levels of MGMT (B), γH2AX (C), and CD8 (D) in the pretreatment biopsies of patients
who derived clinical benefit on trial (white bars) and who did not show any clinical benefit (gray bars). Differences between groups were compared
using the nonparametric Mann–Whitney test. The P values obtained for marker comparisons are indicated within each chart. E–I, The change from
baseline mean for each cell population was plotted for two timepoints (i) on-treatment (cycle 2) and (ii) progression by RECIST. The maximal
positive/negative mean % change values are plotted for five different panels; (E) Basic Immunophenotype panel; (F) Memory-Naïve and Activated T
Cell panel; (G) T Cell Proliferation panel; (H) Monocytes/DC/NK Cell panel; and (I) T Cell Exhaustion panel.
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MGMT protein measurements could be a superior biomarker than MGMT
methylation by MS-PCR in this population and tumors with low MGMT
protein and high CD8+ TILs derived increased clinical benefit from TMZ
plus olaparib combination therapy. Flow cytometry of PBMCs also revealed
an expansion in activated CD8+ T cells after treatment with TMZ plus ola-
parib (Supplementary Fig. S3). Our findings of an increase in CD8+ TILs and
PBMCs may support the potential investigation of alkylator-immunotherapy
combinations in MGMT silenced tumors.

The antitumoral activity for approved agents in the third line setting for col-
orectal cancer is extremely limited with response rates of approximately 1%
with regorafenib and TAS-102 (19, 20). Furthermore, our patient population
was heavily pretreated with 7/9 (78%) of patients receiving at least three prior
therapies, likely making it more difficult to achieve a radiographic response.
Thus, while we did not observe an objective response, the reductions in target
lesions described in Fig. 2 are noteworthy and consistent with treatment ac-
tivity in a subset of patients. It is also possible that the lower dose of olaparib
may have limited the efficacy, but 300 mg twice daily olaparib is intolerable in
a chemotherapy combination.

Prior to our clinical trial evaluating TMZ and olaparib in colorectal cancer, a
previous clinical evaluated TMZ with veliparib, a PARPi (11). However, veli-
parib does not “trap” PARP like other PARPis, such as olaparib, and is presumed
to be inferior to PARPis with the ability to PARP-“trap” when used in combi-
nation with TMZ (7–10). Moreover, this study did not restrict enrollment to
MGMT promoter hypermethylated colorectal cancer as our study did, nor did
it analyze MGMT expression and TILs. Recently, data from Morano and col-
leagues in the MAYA trial described the combination of TMZ and low-dose
ipilimumab/nivolumab in patients with MSS colorectal cancer, indicating a
very promising ORR and survival with the combination (21). These observa-
tions were further supported by the ARETHUSA trial, which treated patients
with colorectal cancer with “TMZ priming” followed by pembrolizumab and
revealed acquiredMSH variants, a genomic signature for TMZ, and increased
tumormutational burden after the “TMZpriming” (22).While preliminary, the
MAYA and ARETHUSA trials suggests immunogenicity with TMZ treatment,
and support further novel strategies to use alkylators together with immunos-
timulatory therapies. However, in glioma, TMZ-induced hypermutation has
not translated into enhanced sensitivity to immune checkpoint inhibitors,
which highlights the need for additional biomarkers (23). The results from our
clinical trial also support the concept that tumors with lower levels of MGMT
are more immunogenic given our observations of higher CD8+ T-cell levels
in MGMT low tumors and that TMZ may enhance the antitumor immune re-
sponse by a pharmacodynamic effect of increased immunostimulatory PBMCs.
These observations are novel and have not been described in previous TMZ
single monotherapy or combination strategies, and the role that the addition
of olaparib may play in the pharmacodynamic PBMCs effects will require fur-
ther study. Additional exploratory descriptive analysis of the PBMC changes
for patients with clinical benefit versus no benefit is outlined in Supplementary
Fig. S4, which are limited by the small sample size, but do suggest an increase
in multiple PBMC populations for the clinical benefit group.

Our genomic analysis revealed APC to be among the most commonly mu-
tated genes, which is consistent with the typical molecular profile of colorectal
cancer. In contrast, previous observations forMGMT promoter hypermethyla-
tion in colorectal cancer were that these tumors are more likely to arise from
serrated adenomas and serrated adenocarcinomas, which are less frequently
APC-mutated (24, 25). Thus, MGMT promoter hypermethylated colorectal

cancer may be heterogenous in development compared with the conventional
development of adenomatous polyps. The elevated tumor mutational burden
of 15 mutations/megabase, may suggest these tumors have increased levels of
tumor neoantigens and therefore more immunogenic, which could be due to
impairedDNA repair in the setting ofMGMT promoter hypermethylation. The
high prevalence of MAP kinase mutations (KRAS and ERBB) is important
should future biologic therapy be added to TMZ combinations, and support
the use of bevacizumab over cetuximab/panitumumab. Moreover, tumor hy-
poxia induced by bevacizumab may sensitize tumors to PARPis by creating
homologous recombination deficiency (26, 27).

For metastatic colorectal cancer, the successful use of alkylator combinations in
the future will require a careful selection of biomarkers, which should include
a quantitative measure of MGMT protein expression, as supported by our find-
ings. Comparable findings are described by other groups showing thatMGMT
promoter hypermethylation is necessary but not sufficient for TMZ sensitivity
for colorectal cancer (21). We confirm this observation by showing a lack of
correlation between these two markers in the current study and in our related
presented work (28). Thus, a future direction of TMZ and PARPi combination
could be in patients with specifically low tumoral MGMT protein levels.

The major limitation of our study is the small sample size of patients that
received TMZ and olaparib. While we did identify MGMT promoter hyper-
methylation in 18/51 (35%) prescreened patients, only 9 received the study
treatment due to the predefined early stopping rule. Furthermore, we assessed
MGMT testing by MS-PCR which is our CLIA lab’s validated MGMT test,
but it is possible that alternative MGMT promoter hypermethylation testing
such as methyl-BEAMing or pyrosequencing would have better enriched our
cohort for response (2, 12, 13). Our correlative analysis is also limited by a
lack of on-treatment or progression biopsies to study changes in the tumor
microenvironment after treatment with TMZ and olaparib.

In conclusion, TMZ and olaparib was tolerable and did reveal antitumor ac-
tivity in a subset of patients with MGMT promoter hypermethylated tumors
that also had lowMGMTprotein expression and increased CD8+ effector TILs.
However, given the lack of response in the overall treatment group, this did not
justify continuing enrollment beyond 9 patients. Nevertheless, it was notewor-
thy that MGMT promoter hypermethylation was seen in 35% of prescreened
patients, and treated patients had higher than expected MAPK signaling al-
terations. Furthermore, the treatment of TMZ plus olaparib has a noticeable
impact on activated CD8+ T cells in patients with advanced colorectal cancer,
and therefore novel alkylator-immunotherapy combinationsmay bewarranted.
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