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Abstract
The deployment of methanol like alternative fuels in engines is a necessity of the present time to
comprehend power requirements and environmental pollution. Furthermore, a comprehensive
prediction of the impact of the methanol-gasoline blend on engine characteristics is also required
in the era of artificial intelligence. The current study analyzes and compares the experimental and
Artificial Neural Network (ANN) aided performance and emissions of four-stroke, single-cylinder
SI engine using methanol-gasoline blends of 0%, 3%, 6%, 9%, 12%, 15%, and 18%. The experiments
were performed at engine speeds of 1300–3700 rpm with constant loads of 20 and 40 psi for
seven different fractions of fuels. Further, an ANN model has developed setting fuel blends, speed
and load as inputs, and exhaust emissions and performance parameters as the target. The dataset
was randomly divided into three groups of training (70%), validation (15%), and testing (15%)
using MATLAB. The feedforward algorithm was used with tangent sigmoid transfer active function
(tansig) and gradient descent with an adaptive learning method. It was observed that the continu-
ous addition of methanol up to 12% (M12) increased the performance of the engine. However, a
reduction in emissions was observed except for NOx emissions. The regression correlation coef-
ficient (R) and the mean relative error (MRE) were in the range of 0.99100–0.99832 and 1.2%–
2.4% respectively, while the values of root mean square error were extremely small. The findings
depicted that M12 performed better than other fractions. ANN approach was found suitable for
accurately predicting the performance and exhaust emissions of small-scaled SI engines.
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Introduction

The world’s need for fossil fuels to run vehicles and industries is increasing at a dis-
turbing rate.1 On the other side, the formation of fossil fuels is not an overnight
process as it takes quite a large amount of time after the organic matter is being
buried under pressure and heat. Hence, the consumption of fossil fuels is increasing
at a much faster rate than the formation of fossil fuels themselves. That is why fos-
sil fuels are depleting rapidly, and it is expected that if the same rate of fossil fuel
consumption is continued, then they will be diminished around 2112.2–4 Moreover,
the utilization of fossil fuels in vehicles is also responsible for many environmental
problems and is hazardous for human health as well. The discharge gases which
result from the burning of fossil fuels are the primary cause of global warming, acid
rain, smog production, and emissions like carbon dioxide (CO2), carbon monoxide
(CO), nitrogen oxides (NOx), oxides of Sulphur (SOx), particulate matters (PM),
and hydrocarbons (HC) which are very harmful not only for the environment but
also for all the living creatures on the planet.5–7 This has led researchers to investi-
gate greener fuels for vehicles.8

In these hard times, it has become substantially crucial to find alternatives for
helping the decrement in fossil fuel depletion. The main alternatives contain alcohol-
based fuels (ethanol, methanol, etc.), vegetable oils, gaseous fuels, ethers, fats, and
biodiesel.9–13 Methanol carries the most important properties and characteristics
among all the other alternative fuels due to its extensive production from simple raw
materials like coal, natural gas, etc.6,14 Methanol is mainly considered most efficient
in the case of spark ignition engines as it results in higher brake power and reduced
emissions.15–19 The high octane number of the methanol makes it more adaptive
towards running at high compression ratios without knocking.17,20–22

The failure of classical modeling methods and techniques has led researchers to
look for alternatives. Artificial Neural Network (ANN) is being used in engineering
and scientific applications for its ability to provide solutions for complex non-linear
problems. The ability of prediction of ANN makes it a unique statistical tool that
estimates and provides the results based on experimental data and conditions. It uses
actual data to train and validate the network for the prediction of results.23 It also
provides room for retraining and reassessing the network if the input data is varied.24

The summary of experimental and ANN working is presented in Figure 1.

Literature survey

Methanol-gasoline blends have demonstrated that with the increase in the ratio of
the methanol in the blend, the emissions are reduced by a generous amount such as
when M85 is used, the CO and NOx emissions are reduced by about 25% and 80%
effectively.18 The conversion of emissions can also be optimized with the help of
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devices such as a three-way catalytic converter (TWC). The M30 is used at 5�C dur-
ing the cold start and warming up the process, and results reveal a 50% reduction
in HC emissions in the cold start. On the other hand, during the warming-up pro-
cess further 30% and 50% reduction in HC emissions along with CO emissions,
respectively, and the increase in the EGT aids in the activation of TWC.19 The
emissions are also dependent on the wheel power, and the speed as the comparison
between the ethanol-gasoline and methanol-gasoline blends showed that at the
speed of 80 km/h, HC and CO emissions were decreased to a reasonable amount.
This trend is not followed at the speed of 100km/h at 15 kW due to the increment
in the air-fuel equivalence ratio.20,25

In this study, the blend of methanol is tested against the various performance
indicators of the engine such as brake power (BP), Torque, brake thermal effi-
ciency (BTE), brake specific fuel consumption (BSFC), and exhaust gas tempera-
ture (EGT). Apart from the performance characteristics, the emissions parameters
of the engine including CO2, CO, NOx, and HC are also observed simultaneously.
Furthermore, the blend of methanol aids in solving the critical issue of the deple-
tion of fossil fuels and also in the reduction of emissions that are hazardous for the
environment. Their evaluation is also concerned with the efficiency of the blend
used.

In the previous decade, due to the high compatibility and accuracy of ANN
models, the researchers have employed ANN extensively.26–30 The ANN models
have already been employed in internal combustion engines for the prediction of
various parameters.31–44 Sayin et al.45 employed ANN for a gasoline engine study
and produced results in a range of 0.983–0.99 for the correlation coefficient. The
proposed model of Cay et al.46 predicted correlation coefficient (R) values around

Figure 1. Graphical abstract.
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0.99 for training and testing data for performance and exhaust of gasoline engines.
Kiani et al.47 found the correlation coefficient (R) in ranges of 0.71–0.99 for
gasoline-ethanol fuel blends. Yusuf and coworkers6 suggested accurate ANN mod-
els for methanol engine performance. They found the regression coefficient close to
1 for the network structure of 4-7-1 performance indicators with mean errors in
less than 5% range. Kapusuz et al.48 predicted the performance of an SI engine
with ethanol-methanol blends and concluded that a mixture M11E1 (Methanol
11%, Ethanol 1%) produced the best performance and the regression coefficient
was in the range 0.931–0.990. Samet et al. used a diesel engine with diethyl ether
blend up to 10%. The ANN model predicted results with the regression coefficient
(R2) in the range of 0.964–0.9878 and with MRE values in an interval of 0.51%–
4.8%.

In light of the literature studied, the significance of the accuracy and compatibil-
ity of ANN models in internal combustion engines is undeniable. Researchers have
employed ANN for SI engines with alcoholic and hydrogen blends as well as with
hydrogen. This article will widen the scope of the use of ANN in SI engines with
methanol blends. The effect of fuel ratio along with load and engine speed are
comprehensively studied in this article and the accuracy of the predictive model of
ANN is evaluated for small-scale single-cylinder engines.

Experimental work

Experimental setup

The experimental setup included a four-stroke, single-cylinder, and spark ignition
(Honda GX160) engine. The characteristics of the engine are presented in Table 1.
Testing was performed without any modification in the engine structure. A 7-inch
Dynomite (water-brake) dynamometer was used for testing. A specially designed
mild steel shaft was used to connect the engine with the dynamometer. The emis-
sions of the engine were measured using an EMS-5002 emission analyzer. The mea-
suring cylinder of 500ml with 0.5ml grading was used to supply the fuel and
measure the fuel flow.49 A thermocouple based; digital thermometer was used to
measure the EGT. There were seven different cylinders used in the

Table 1. Properties of the experimental test engine.

Factor Description

Cylinder diameter 68 mm
Stroke length 45 mm
Cylinder volume 163 cc
Compression ratio 9.0:1
Torque 10.3 Nm/2500 rpm
Peak power 3.6 kW/3600 rpm
Cooling system Air cooled
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experimentation, each for a different methanol-gasoline blend. The load was
applied to the dynamometer using the piping system and pump with water as a
working fluid. The schematic diagram of the experimental setup is given in Figure
2.

Fuel preparation

The gasoline was obtained from Pakistan State Oil Company and used as a refer-
ence for all blends. The properties of gasoline (M0) are presented in Table 2. The
methanol was obtained from the merchandise of Merck50 and added in gasoline.
Methanol was used in concentrations of 3%, 6%, 9%, 12%, 15%, and 18% by vol-
ume with gasoline represented as M3, M6, M9, M12, M15, and M18 respectively.
To prepare a completely homogenous mixture of the fuels, the mixture was stirred
continuously using a magnetic stirrer (hot plate 78-1) for 20min. The fuel prepara-
tion schematic is demonstrated in Figure 3. The fuel blends were poured into the
cylinder within 2min of their preparation to ensure homogeneity. The properties of
pure methanol (M100) and the fuel blends are also shown in Table 2.

Testing procedure

The testing was carried out by increasing the engine speed from 1300 rpm to
3700 rpm in equal increments of 300 rpm to 3700 rpm using the throttle. There were
two variations of engine loads applied at every speed. Initially, the engine was
started using only gasoline until it reached a steady-state operation. To ensure the

Figure 2. Schematic of engine test bed and experimental setup.
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homogeneity of the mixture and to avoid moisture, the blends were prepared only
10min before the experimentation.

The test was performed three times under each condition to ensure the accuracy
and average of three readings were taken. The value of engine speed and the applied
load was noted using the Dynomite 2010 software, fuel consumption was measured
while the torque, BSFC, brake power, and BTE was computed using heating values
and density. The EGT was measured using a thermometer and CO2, CO, HC, and
NOx emissions were measured from the EMS emission analyzer.

Uncertainty analysis

The degree of accuracy of measured experimental parameters and is determined
using uncertainty analysis. The physical limitation of the experimental setup pro-
vides the magnitude of the error in each measurement. These error percentages for

Table 2. Properties of methanol blended fuels.

Properties Fuel blends

M0 M3 M6 M9 M12 M15 M18 M100

Density
(kg/m3)

731 732.83 734.66 736.49 738.32 740.15 741.98 792

Viscosity
(mPa.s)

0.602 0.60176 0.60152 0.60128 0.60104 0.6008 0.60056 .594

Octane
number

92 92.9 93.8 94.7 95.6 96.5 97.4 122

Calorific
value (kJ/kg)

44200 43567 42934 42301 41668 41035 40402 23100

Oxygen
content % v/v

0 1.5 3 4.5 6 7.5 9 50

Figure 3. Fuel preparation.
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performance and emissions parameters are given in Table 3. The overall experimen-
tal uncertainty was calculated using known errors in the parameters with the help
of the general equation (1)49
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in y and xi respectively. Putting the error percentages from Table 3 in equation (1),
the uncertainty of the experiment was calculated as follow;51
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Experimental results and discussion

Alcoholic fuels generally provide cleaner and smoother combustion in gasoline
engines as compared to conventional fuels. The experimental outcomes have
demonstrated that methanol increases the torque, brake power, BTE, EGT, and
NOx emissions, whereas, it decreases the BSFC, and emissions indicators like CO,
CO2, and HC.

Performance parameter

The lower heating value of methanol as compared to gasoline with higher energy
conversion provides increased output power in smaller engines, reduces the BSFC,
and increases the BTE. The brake power increases due to methanol because of its

Table 3. Uncertainties and measurement accuracies of parameters.

Parameter Measurement range Accuracy Uncertainty (%)

Torque 0� 45Nm 60:1Nm 61
Speed 0� 8000rpm 65rpm 60:5
Power 0� 50kW 60:05kW 60:1
SFC - 60:1g=kWh 60:4
BTE - - 60:5
EGT 0� 13008C 618C 60:1
CO 0� 18vol% 60:01vol% 60:2
CO2 0� 18vol% 60:01vol% 60:2
HC 0� 5000ppm 61ppm 60:2
NOX 0� 5000ppm 61ppm 60:2
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oxygen content, which makes the mixture lean, hence improves the combustion of
fuel.18,51 BTE is a measure of the useful work done by the combustion of fuels.52,53

The BSFC decreases with the increase of brake power while BTE increases.

Brake power. The change in the BP of the engine against engine speeds for various
blends is given in Figure 4(a). The increase in methanol content increased the BP
of the engine for each testing speed. Since the BP is directly proportional to the
engine speed hence it demonstrated consistent increases with the increase in engine
speed. The hydraulic load increment from 20 to 40psi also favored the increase in
BP due to increments in the torque.54 The percentage increase at the load of 20 psi
is 2.71%, 11.76%, 17.51%, 19.76%, 11.83%, and 20.27% and at the load of
40 psi is 5.62%, 6.83%, 7.28%, 10.02%, 6.73%, and 2.73% for blends of M3, M6,
M9, M12, M15, and M18 respectively. Since the evaporation heat of gasoline is les-
ser than methanol, the density of charge increases and higher power was pro-
duced.55 The increased oxygen content of methanol improves energy conversion
due to smoother combustion, which tends to increase the brake power. The brake
power showed a significant decrease with the increase of methanol beyond 12%
because the increasing content of methanol in blends significantly reduces the
calorific value of the blend.56 The BP of M18 was reduced marginally and was les-
ser than gasoline at higher engine speeds. The increase in the concentration of
methanol in the fuel increased the power at all speeds to a certain amount.57

Figure 4(b) demonstrates averages of brake power for each fuel blend over a com-
plete range of speed. The varying speed generated average value for M0, M3, M6,
M9, M12, M15, and M18 fuel blends as 904.0, 928.5, 1010.3, 1062.2, 1082.6,
1010.9, and 901.6W at 20 psi load and 1288.3, 1360.7, 1376.2, 1382.1, 1417.4,
1375.0, and1323.4W at 40psi load respectively. The highest increase in brake
power was recorded for M12 as 19.76% for 20 psi load and 10.02% for 40 psi load.

Figure 4. (a) Variation of brake power against engine speed, and (b) average values of brake
power for various blends.
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Torque. The variation in the torque of the engine against engine speed for different
blends is given in Figure 5(a). The continuous increase of methanol in gasoline
increased the torque for the entire speed range. The increase of speed also favored
the increase of torque as at higher speeds due to faster burning of fuel the energy
input and output increase.54 The increase in load increased the torque significantly
due to an increase in applied force. The percentage increase at the load of 20 psi is
2.71%, 11.76%, 17.51%, 19.76%, 11.83%, and 20.27% and at the load of 40 psi is
5.62%, 6.83%, 7.28%, 10.02%, 6.73%, and 2.73% for blends of M3, M6, M9,
M12, M15, andM18 respectively. The addition of methanol produces lean mixtures
and results in efficient burning.56 The knocking decreases due to an increase in
octane number with the addition of methanol so timing is advanced, producing
higher cylinder pressure and in return higher torque.55 The decrease in torque by
the addition of methanol higher than 12% is due to a significant decrease in input
power. The calorific value of methanol is almost half of gasoline and so the contin-
uous addition decreased the energy input and caused the output torque to drop.
Figure 5(b) demonstrates the average values of torque over the entire speed range
at different loads for all fuel blends. The varying speed generated average value of
torque for M0, M3, M6, M9, M12, M15, and M18 fuel blends as 3.20, 3.29, 3.58,
3.75, 3.83, 3.57, and 3.19Nm at 20psi load and 4.62, 4.91, 4.98, 5.01, 5.14, 4.98,
and 4.76Nm at 40 psi load respectively. The highest increase in torque was recorded
for M12 as 19.62% for 20 psi load and 12.19% for 40 psi load.

Brake thermal efficiency. The effect of methanol blends on BTE is presented in Figure
6(a). The BTE increases uniformly for 1300–2800 rpm and then it decreases at a
load of 20 psi however, it increases uniformly for 1300–3100 rpm and then shows a
sudden increase for 3400 rpm for 40 psi load and decreases afterward. The increase
of BTE at lower speeds is due to the creation of a lean mixture. At higher speeds,

Figure 5. (a) Variation of experimental torque against engine speed, and (b) average values of
torque for various blends.
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the combustion is fast and abrupt, so BTE decreases rapidly.56 The maximum BTE
for all fuels was obtained at 2800 rpm for 20 psi load and 3400 rpm for 40 psi load
due to the highest energy conversion. The higher power output for a load of 40 psi
generates higher BTE. The percentage increase at the load of 20 psi is 2.66%,
6.28%, 9.53%, 11.30%, 4.88%, and 20.63% at the load of 40 psi is 5.61%, 9.23%,
13.26%, 15.41%, 11.45%, and 6.40% for blends of M3, M6, M9, M12, M15, and
M18 respectively. The increment of power, smoother and efficient burning were the
major factors in increasing the BTE.52,53 The efficiency increase is also due to iso-
choric combustion and less flow and dissociation losses due to a higher density of
methanol.58 Figure 6(b) demonstrates the average values of BTE over the complete
speed range at different loads for each fuel blend. The varying speed at constant
load generated average value of thermal efficiency for M0, M3, M6, M9, M12,
M15, and M18 fuel blends as 14.66%, 15.05%, 15.56%, 16.01%, 16.31%, 15.37%,
and 14.57% at 20psi load and 17.36%, 18.33% 18.96%, 19.66%, 20.03%, 19.35%,
and 18.47% at 40 psi load respectively. The highest increase in thermal efficiency
was recorded for M12 as 11.30% for 20 psi load and 15.41% for 40 psi load.

Brake specific fuel consumption. The variation in the BSFC of the engine against
engine speed for various blends is given in Figure 7(a). The decrease of BSFC at
lower speeds because of a significant increase in BP. At higher speeds, the combus-
tion is fast and abrupt, so BSFC increases rapidly.56 The minimum BSFC for all
fuels was obtained at 2800 rpm for 20 psi load and 3400 rpm for 40 psi load. The
higher power output for the load of 40 psi generated a smaller BSFC. The percent-
age decrease at the load of 20 psi is 0.61%, 1.36%, 2.57%, 2.93%, and 24.49% at
the load of 40 psi is 2.36%, 4.16%, 6.08%, 6.40%, and 1.58% for blends of M3,
M6, M9, M12, and M15 respectively. The fuel blend of M18 showed an increase in
BSFC by 11.82% for 20 psi and 5.03% for 40 psi load. The BSFC decreased for

Figure 6. (a) Variation of experimental BTE against engine speed, and (b) average values of BTE
for various blends.
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smaller methanol blends due to higher heat of vaporization and smaller AFR, how-
ever, it increased for higher methanol blends.59 The BSFC decreased because of the
increased fuel density and BMEP of an engine which also results in increasing
BTE.60,61 Figure 7(b) demonstrates the average values of BSFC for the complete
speed range at different loads for each fuel blend. The varying speed at constant
load generated average value of BSFC for M0, M3, M6, M9, M12, M15, and M18
fuel blends as 0.540, 0.539, 0.532, 0.526, 0.524, 0.564, and 0.603 kg/kWh at 20 psi
load and 0.458, 0.447, 0.438, 0.430, 0.428, 0.450 and 0.481 kg/kWh at 40 psi load
respectively. The maximum decrement in BSFC was noted for M12 as 2.93% for
20 psi load and 6.40% for 40 psi load and the maximum increase was obtained for
M18 as 11.82% for 20 psi and 5.03% for 40 psi load.

Exhaust Gas Temperature. The efficient burning of the fuel due to increased methanol
content increases the in-cylinder temperature. The EGT indicates the heat gener-
ated during the combustion of blends.62 So, the increase in EGT due to an increase
in methanol content as demonstrated in Figure 8(a) because of an increase in oxy-
gen percentage in the fuel. The percentage increase in the EGT is 3.38%, 11.43%,
19.48%, 24.65%, 25.53%, and 27.38% at the load of 20 psi and 4.27%, 7.06%,
10.70%, 13.26%, 16.98% and 18.95% at 40psi for blends of M3, M6, M9, M12,
M15, and M18 respectively.

Figure 8(b) demonstrates the average values of EGT over the complete speed
range at both loads for each fuel blend. The varying speed at constant load gener-
ated average value of EGT for M0, M3, M6, M9, M12, M15, and M18 fuel blends
as 243, 251, 271, 290, 303, 305, and 309�C at 20psi load and 299, 312, 320, 331,
339, 350, and 3568C at 40 psi load respectively. The highest increase in EGT was
recorded for M18 as 27.38% at 20 psi load and 18.95% at 40psi load.

Figure 7. (a) Variation of experimental BSFC against engine speed, and (b) average values of
BSFC for various blends.
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Emission Parameters

The lean mixture produced due to increased overall oxygen content of fuel with the
addition of methanol helped in efficient burning. This helps to produce a higher
amount of oxygen that resulted in cleaner combustion and reduction of carbon oxi-
des and HC. However, the increase in EGT produces a higher amount of NOx as
nitrogen reacts rapidly with oxygen at a higher temperature.

Figure 8. (a) Variation of experimental EGT against engine speed, and (b) average values of
EGT for various blends.

Figure 9. (a) Variation of experimental CO against engine speed, and (b) average values of CO
for various blends.
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CO Emissions. The evident decrease in the concentrations of CO can be seen with an
increase in the concentration of methanol in Figure 9(a). It explains that the com-
bustion is turning towards completion. The AFR reaches towards stoichiometric
value as the amount of methanol increases because of the low carbon contents of
methanol. The percentage decrease in the CO emissions is 4.66%, 10.19%, 15.17%,
19.36%, 23.87%, and 29.05% at the load of 20 psi and 8.05%, 17.63%, 20.06%,
21.66%, 25.15%, and 27.81% at 40 psi for blends of M3, M6, M9, M12, and M15
respectively. The presence of oxygen also helps to generate a high oxygen-to-fuel
ratio which significantly increases the regions of rich fuel inside the combustion
chamber.19,55,56,63

Figure 9(b) demonstrates the average values of CO emissions over the entire
speed range at both loads for each fuel blend. The varying speed at constant load
generated average value of CO emissions for M0, M3, M6, M9, M12, M15, and
M18 fuel blends as 3.82, 3.64, 3.43, 3.24 3.08, 2.91, and 2.71% by volume at 20 psi
load and 2.92, 2.69, 2.41, 2.34, 2.29, 2.19, and 2.11% by volume at 40 psi load
respectively. The highest decrease in CO emissions was recorded for M18 as
29.05% for 20 psi load and 27.81% for 40 psi load.

CO2 Emissions. The significant decrement in the concentrations of CO2 can be
observed with an increase in the methanol content as demonstrated in Figure
10(a). The higher concentrations of methanol decrease the carbon content and
increase the oxygen content. The increase in load also decreases the emissions as
BSFC was small for higher load and fuel consumption was lower.58 The percentage
decrease in the CO2 emissions is 2.23%, 5.05%, 6.65%, 11.18%, 14.07%, and
16.84% at the load of 20 psi and 4.58%, 9.08%, 11.02%, 12.57%, 14.89%, and
16.25% at 40psi for blends of M3, M6, M9, M12, and M15 respectively. The

Figure 10. (a) Variation of experimental CO2 against engine speed, and (b) average values of
CO2 for various blends.
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higher amount of oxygen and low carbon content of methanol decreases CO2 emis-
sions because of the decrease in carbon to oxygen ratio.59

Figure 10(b) demonstrates the average values of CO2 emissions over the entire
speed range at both loads for each fuel blend. The varying speed at constant load
generated average value of CO2 emissions for M0, M3, M6, M9, M12, M15, and
M18 fuel blends as 5.81, 5.66, 5.48, 5.28, 5.05, 4.87, and 4.68% by volume at 20 psi
load and 6.03, 5.90, 5.73, 5.63, 5.36, 5.18, and 5.02% by volume at 40 psi load
respectively. The highest decrease in CO2 emissions was recorded for M18 as
16.84% for 20 psi load and 16.25% for 40 psi load.

HC emissions. The decrease in the concentrations of HC with the increase in the con-
centration of methanol is presented in Figure 11(a). The relative increase in AFR
because of the increased percentage of oxygen content in fuel decreases the HC
emissions.61 The percentage decrease in the HC emissions is 2.12%, 4.97%, 7.92%,
11.05%, 14.14%, and 17.04% at the load of 20 psi and 3.51%, 7.53%, 10.81%,
14.66% 18.56%, and 21.68% at 40psi for blends of M3, M6, M9, M12, and M15
respectively. The emissions are reduced to an efficient and higher combustion rate
with an increase in speed.64

Figure 11(b) demonstrates the average values of HC emissions over the com-
plete speed range at both loads for each fuel blend. The varying speed at constant
load generated average value of HC emissions for M0, M3, M6, M9, M12, M15,
and M18 fuel blends as 230, 225, 219, 212, 205, 198, and 191ppm at 20 psi load
and 199, 192, 184, 178, 170, 162, and 156ppm at 40 psi load respectively. The high-
est decrease in HC emissions was recorded for M18 as 17.04% for 20 psi load and
21.68% for 40 psi load.

NOx emissions. The variation of concentrations of NOx with the blends of methanol
is given in Figure 12(a). There is a substantial increase in NOx emissions since

Figure 11. (a) Variation of experimental HC against engine speed, and (b) average values of
HC for various blends.
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emissions of NOx are dependent on the exhaust temperature which increases with
load and speed.64 Initially, with the increase in exhaust gas temperature, there is an
increase in NOx emission contents. It is patently clear from Figure 8(a) and 12(a)
that with the increase in the methanol content in the fuel, the NOx emission
increases which is quite in line with the increasing trend of exhaust gas tempera-
ture. The percentage decrease in the NOx emissions is 5.49%, 12.54%, 19.19%,
28.73%, 35.81%, and 41.13% at the load of 20 psi and 10.22%, 18.60%, 28.04%,
34.58%, 39.41%, and 45.11% at 40 psi for blends of M3, M6, M9, M12, and M15
respectively. The higher rate of combustion of fuel increases the flame temperature
due to which the NOx emissions increase.61 Figure 12(b) demonstrates the average
values of NOx emissions over the complete speed range at both loads for each fuel
blend. The varying speed at constant load generated average value of NOx emis-
sions for M0, M3, M6, M9, M12, M15, and M18 fuel blends as 316, 333, 355, 376,
406, 429, and 445ppm at 20 psi load and 357, 393, 423, 457, 480, 497, and 518 ppm
at 40 psi load respectively. The highest decrease in NOx emissions was recorded for
M18 as 41.13% for 20 psi load and 45.11% for 40 psi load.

ANN model

Artificial Neural Network (ANN) is a designed statistical model based on the visual
processing system of the human brain. It stimulates the performance of the system
analytically. This is a widely used powerful technique for processing, analyzing,
and predicting the results of non-linear data. There are three layers, consisting of
processing particles called neurons; input layer, hidden layer, and output layer. The
interlinked structure of weighted biases exists between the neurons of consecutive
layers, which transfers the signals.65 The model is based on the experimental results.
These results are used for training and validation of the ANN model to generate

Figure 12. (a) Variation of experimental NOx against engine speed, and (b) average values of
NOx for various blends.
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the predicted output under different circumstances. The activation function acts as
a function between layers and generates the predicted output using the training data
set. The learning process utilizes the concept of RMSE for accuracy (equation (1)).
The input layer of the model consists of user-defined entries and generated through
experimentation. The prediction of the variables from ANN is generated after the
processing of neurons via a specific activation function after training. The iterations
in training are performed to reduce the error and once it reaches the required toler-
ance, training is complete.47

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i= 1

ti � pið Þ2
s

ð2Þ

In equation (2), ‘t’ is the real output, ‘p’ is the predicted output, and ‘n’ is the num-
ber of entries of the experimental data set.

The proposed network structure for ANN is presented in Figure 13. In total, ten
three-layer experimental models of ANN were employed. The first model included
the three input nodes: engine speed, load, and blend ratios, a single hidden layer
with thirty-two nodes, and an output layer with nine nodes. All the remaining nine
models had single output neurons, one for each output. The data was divided into
three portions randomly by MATLAB NN Toolbox; training, validation, and test-
ing data set which included 70%, 15%, and 15% respectively. The feedforward net-
work algorithm was used in the hidden and output layer with a hyperbolic tangent
sigmoid (tansig) as the active function. The feedforward network provides swift
responses on the basis of error ratios generated in each iterations and uses these
errors to modify the network to get accurate results in time efficient manner. On
the other hand, tansig is improved form of tanh function and have steeper differen-
tial as compared to normal sigmoid functions. Owing to these, tansig is highly
effective in larger datasets (such as this) due to quick learning and grading. The
learning algorithm of gradient descent with adaptive learning (traingda) was
selected in the ANN structure. The best results were chosen based on the minimum
MRE of experimental and predicted output, defined in equation (2). The correla-
tion coefficient (R) closest to +1 was achieved for the better-predicted outcome.
This explains the linear relationship between the experimental and predicted out-
come as positive and results are highly accurate.66

MRE %ð Þ= 1

n

Xn

i= 1

ti � pi

ti

����
����*100

� �
ð3Þ

The forward feed processes the information using neurons in the first stage and an
error is generated. The error is then examined by network comparing the predicted
output generated through the ANN with the experimental output. This error is
later sent to the input layer in the feedback stage of the network. The communica-
tion links are updated, and weighted output is generated by adaptation and retrain-
ing. The network performs multiple iterations this way.66 The ANN results were
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generated using the structure demonstrated in Figure 12. The statistical estimation
of results was guided by two basic indicators: correlation coefficient (R) and MRE.
The statistical estimation in ranges of R. 0.99 and MRE\ 3% was set as a defin-
ing parameter for the success of the ANN model. If the required values were not
achieved in the first loop of 1000 iterations for any statistical indicator, the adapta-
tion rate was varied. The learning rate was set between the step increment of 1.1
and step decrement of 0.9.

ANN results

The prediction of results using the ANN model proved to be highly successful. The
first model with the total experimental results of all the parameters generated highly
accurate results for each parameter. The comparison of the experimental results
and estimated output gave the correlation coefficient (R) of 0.99832 and MRE of
1.95%. The model generated results are presented in Figure 14. After the first

Figure 13. ANN model structure for SI engine with methanol blended fuels.
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success, the ANN model for individual outputs was employed to predict the values
comprehensively. The forward feedback algorithm and network structure provided
sufficiently accurate results.

The comparative results for experimental and predicted values of BP, torque,
BSFC, BTE, and EGT are presented in Figure 15(a)–(e) respectively. The correla-
tion coefficient for predicted results of torque, BP, BSFC, BTE, and EGT were
0.9972, 0.9982, 0.9910, 0.9932, and 0.9951 respectively. The calculated MREs were
1.8%, 1.4%, 1.3%, 1.5%, and 1.7% for BP, torque, BSFC, BTE, and EGT respec-
tively. The RMSEs were 26.8W, 0.072Nm, 0.008 kg/kWh, 0.365%, and 6.686�C
for BP, torque, BSFC, BTE, and EGT respectively.

The ANN generated estimated values for the performance of small-scale SI
engines with methanol blended fuel yielded highly accurate results. It was noted
that the designed ANN model predicted the performance of the engine with MRE
in the range of 1.3%–1.8% and R values were in the range of 0.99100–0.99825.
The RMSE values were also found extremely low in the case. It indicates that the
performance of SI engines can be accurately simulated with proper modeling of
ANN. Figure 16(a)–(e) represent the comparison of experimental results and ANN
predicted outputs against each test case of the original testing scheme for BP, tor-
que, BSFC, BTE, and EGT respectively.

Figure 14. The correlation coefficient values of training, validation and testing data for overall
experimental results.
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The comparative analysis of experimental and predicted results for CO emis-
sions is presented in Figure 17(a). The results generated via ANN for CO produced
the MRE of 1.7%, the R of 0.9971, and the RMSE of 0.092%v. Figure 17(b) indi-
cates the experimental and predicted comparison for CO2 emissions. The compari-
son generated the MRE of 1.5%, the R of 0.9983, and the RMSE of 0.108%v. The
comparative analysis for predicted and experimental results of HC emissions is
depicted in Figure 17(c). The MRE value, R, and RSME for HC were observed as
2.4%, 0.9966, and 5.02 ppm respectively. Similarly, the comparative results of NOx

Figure 15. Predicted results of ANN for the (a) BP, (b) torque, (c) BSFC, (d) BTE, and (e) EGT
against experimental results.
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emissions are shown in Figure 17(d). The results showed the MRE, R, and RMSE
of 1.7%, 0.9937, and 9.2 ppm respectively.

The ANN-based predicted values for the emissions of a small-scale SI engine
with methanol blended fuel produced extremely good results. The ANN model pre-
dicted the emissions of the engine with MRE in the range of 1.5%–2.4% and R in
the range of 0.99375–0.99832. This shows that the emissions of SI engines can be

Figure 16. Comparative analysis of ANN prediction and experimental results for the (a) Brake
Power, (b) Torque, (c) BSFC, (d) BTE, and (e) EGT for each test case.
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precisely predicted using an accurate ANN model. Figure 18(a)–(e) represent the
comparison of experimental results and ANN predicted outputs against 126 test
cases of the original testing scheme for CO, CO2, HC, and NOx, respectively. The
predicted results were completely inline and demonstrated similar behavior as the
experimental outcomes.

Conclusions

The use of methanol-gasoline blend (M12) in the small-scale SI engine provided
maximum energy conversion into useful work and resulted in increasing torque,
BP, and BTE (14.9%, 15.4%, and 13.4% respectively). The BSFC was decreased
by 4.7% as compared to M0. The emissions of CO2, CO, and HC were decreased
with the increase of methanol percentage in the fuel blends due to the presence of
oxygen content and smaller carbon to hydrogen ratio. The CO, CO2, and HC were
decreased by 28.4%, 16.5%, and 19.4% respectively for M18 in comparison with
M0. The higher oxygen and hydrogen content improve the burning thus generating

Figure 17. Predicted results of ANN for the (a) CO, (b) CO2, (c) HC, and (d) NOx for each
test case.
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higher heat and associated EGT and NOx emissions. Therefore, 23.2% and 43.1%
increase in EGT and NOx emissions were observed.

The continuous addition of methanol does not guarantee an increase in BP and
BTE. Moreover, BP, torque, and BTE increased up till M12 and then started to
decrease. For M18, the increment in BP, torque, and BTE was reduced to 1.4%,
1.2%, and 2.9% as compared to the increments of M12 (15.4%, 14.9%, and
13.4%) respectively. The BSFC also started to increase with the addition of metha-
nol after M12. However, the emission parameters had shown constant behavior
with an increase in the concentration of methanol in the fuel.

It is abundantly clear that the ANN generated results were well within the range
of the actual experimental results. The acquired results of the ANN verified
extremely good statistical correlations. The overall MRE was in the range of
1.3%–2.4%, whereas the R was in the range of 0.99100–0.99832. The RMSE for
each parameter was extremely small. The lower error values for each parameter
depicted that the ANN could be employed to predict the performance and emis-
sions of a small-scale single-cylinder SI engine accurately. The effect of oxidative

Figure 18. Comparative analysis of ANN prediction and experimental results for the (a) CO,
(b) CO2, (c) HC, and (d) NOx for each test case.

22 Science Progress



fuels on change in engine oil properties is recommended for the future work. The
use of methanol in the gasoline engine may significantly alter the characteristics of
the engine oil due to its different physico-chemical properties as compared to gaso-
line fuel. It can be said that ANN can be used to predict the outcomes of any com-
plex and multivariate system providing help in reducing time, cost, and human
effort.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, author-
ship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication
of this article.

ORCID iDs

Ehtasham Ahmed https://orcid.org/0000-0001-8557-4940
Muhammad Usman https://orcid.org/0000-0003-0429-5355

References

1. Asif M and Muneer T. Energy supply, its demand and security issues for developed and

emerging economies. Renew Sustain Energy Rev 2007; 11: 1388–1413.

2. Shafiee S and Topal E. When will fossil fuel reserves be diminished? Energ Policy 2009;

37: 181–189.
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Appendix

Notation

ANN Artificial Neural Network
BP Brake Power
BSFC Brake Specific Fuel Consumption
BTE Brake Thermal Efficiency
EGT Exhaust Gas Temperature
MRE Mean Relative Error
n Number of Points in data set
p Predicted output
t Experimental Output
R Correlation Coefficient
RMSE Root Mean Square Error
Ø Uncertainty
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