Skip to main content
. 2023 May 17;14(25):6876–6881. doi: 10.1039/d3sc01867a

Transfer coefficients and standard reduction potentials of disulfides.

RSSRa E p b , c/V α b , d E 0 e/V E 0Ep λ h/eV
1 −2.13 0.27 −1.68 ± 0.05 0.45 1.20
2 −1.81 0.24 −1.43 ± 0.01 0.38 1.16
3f −1.84 0.20 −1.38 ± 0.05 0.46 1.33
4 −1.94 0.20 −1.45 ± 0.04 0.49 1.09
5 −1.95 0.21 −1.83 ± 0.02 0.12 0.77
6 −2.32 0.22 −1.90 ± 0.05 0.42 1.21
7 −2.37 0.28 −2.06 ± 0.01 0.31 0.95
8 −2.09 0.22 −1.77 ± 0.01 0.32 1.02
9 −1.84 0.21 −1.17 ± 0.05 0.67 1.53
10 −2.18 0.26 −1.90 ± 0.02 0.28 1.00
11 −1.92 0.21 −1.28 ± 0.08 0.67 1.53
12 −2.30 0.25 −1.96 ± 0.06 0.34 1.11
13g −1.40 0.33 −1.12 0.28 1.10
14 −1.53 0.23 −1.20 ± 0.02 0.33 1.06
a

Compounds shown in Fig. 3.

b

Cyclic voltammograms recorded on anhydrous acetonitrile solutions containing 1.5 mM RSSR and 0.1 M tetrabutylammonium hexafluorophosphate (Fig. S1A).

c

Cathodic peak potential vs. NHE.

d

Calculated from eqn (7).

e

E 0 determined from extrapolation of Epα plots to α = 0.5 (Fig. S1B).

f

Data for compound 3 taken from ref. 24.

g

Data for compound 13 taken from ref. 20.

h

λ determined from the slope of of Epα plots.